Sequencer.cc revision 8967:fc2c4db64ded
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "base/misc.hh"
30#include "base/str.hh"
31#include "config/the_isa.hh"
32#if THE_ISA == X86_ISA
33#include "arch/x86/insts/microldstop.hh"
34#endif // X86_ISA
35#include "cpu/testers/rubytest/RubyTester.hh"
36#include "debug/MemoryAccess.hh"
37#include "debug/ProtocolTrace.hh"
38#include "debug/RubySequencer.hh"
39#include "mem/protocol/PrefetchBit.hh"
40#include "mem/protocol/RubyAccessMode.hh"
41#include "mem/ruby/buffers/MessageBuffer.hh"
42#include "mem/ruby/common/Global.hh"
43#include "mem/ruby/profiler/Profiler.hh"
44#include "mem/ruby/slicc_interface/RubyRequest.hh"
45#include "mem/ruby/system/CacheMemory.hh"
46#include "mem/ruby/system/Sequencer.hh"
47#include "mem/ruby/system/System.hh"
48#include "mem/packet.hh"
49#include "params/RubySequencer.hh"
50
51using namespace std;
52
53Sequencer *
54RubySequencerParams::create()
55{
56    return new Sequencer(this);
57}
58
59Sequencer::Sequencer(const Params *p)
60    : RubyPort(p), deadlockCheckEvent(this)
61{
62    m_store_waiting_on_load_cycles = 0;
63    m_store_waiting_on_store_cycles = 0;
64    m_load_waiting_on_store_cycles = 0;
65    m_load_waiting_on_load_cycles = 0;
66
67    m_outstanding_count = 0;
68
69    m_instCache_ptr = p->icache;
70    m_dataCache_ptr = p->dcache;
71    m_max_outstanding_requests = p->max_outstanding_requests;
72    m_deadlock_threshold = p->deadlock_threshold;
73
74    assert(m_max_outstanding_requests > 0);
75    assert(m_deadlock_threshold > 0);
76    assert(m_instCache_ptr != NULL);
77    assert(m_dataCache_ptr != NULL);
78
79    m_usingNetworkTester = p->using_network_tester;
80}
81
82Sequencer::~Sequencer()
83{
84}
85
86void
87Sequencer::wakeup()
88{
89    // Check for deadlock of any of the requests
90    Time current_time = g_eventQueue_ptr->getTime();
91
92    // Check across all outstanding requests
93    int total_outstanding = 0;
94
95    RequestTable::iterator read = m_readRequestTable.begin();
96    RequestTable::iterator read_end = m_readRequestTable.end();
97    for (; read != read_end; ++read) {
98        SequencerRequest* request = read->second;
99        if (current_time - request->issue_time < m_deadlock_threshold)
100            continue;
101
102        panic("Possible Deadlock detected. Aborting!\n"
103             "version: %d request.paddr: 0x%x m_readRequestTable: %d "
104             "current time: %u issue_time: %d difference: %d\n", m_version,
105             Address(request->pkt->getAddr()), m_readRequestTable.size(),
106             current_time, request->issue_time,
107             current_time - request->issue_time);
108    }
109
110    RequestTable::iterator write = m_writeRequestTable.begin();
111    RequestTable::iterator write_end = m_writeRequestTable.end();
112    for (; write != write_end; ++write) {
113        SequencerRequest* request = write->second;
114        if (current_time - request->issue_time < m_deadlock_threshold)
115            continue;
116
117        panic("Possible Deadlock detected. Aborting!\n"
118             "version: %d request.paddr: 0x%x m_writeRequestTable: %d "
119             "current time: %u issue_time: %d difference: %d\n", m_version,
120             Address(request->pkt->getAddr()), m_writeRequestTable.size(),
121             current_time, request->issue_time,
122             current_time - request->issue_time);
123    }
124
125    total_outstanding += m_writeRequestTable.size();
126    total_outstanding += m_readRequestTable.size();
127
128    assert(m_outstanding_count == total_outstanding);
129
130    if (m_outstanding_count > 0) {
131        // If there are still outstanding requests, keep checking
132        schedule(deadlockCheckEvent,
133                 m_deadlock_threshold * g_eventQueue_ptr->getClock() +
134                 curTick());
135    }
136}
137
138void
139Sequencer::printStats(ostream & out) const
140{
141    out << "Sequencer: " << m_name << endl
142        << "  store_waiting_on_load_cycles: "
143        << m_store_waiting_on_load_cycles << endl
144        << "  store_waiting_on_store_cycles: "
145        << m_store_waiting_on_store_cycles << endl
146        << "  load_waiting_on_load_cycles: "
147        << m_load_waiting_on_load_cycles << endl
148        << "  load_waiting_on_store_cycles: "
149        << m_load_waiting_on_store_cycles << endl;
150}
151
152void
153Sequencer::printProgress(ostream& out) const
154{
155#if 0
156    int total_demand = 0;
157    out << "Sequencer Stats Version " << m_version << endl;
158    out << "Current time = " << g_eventQueue_ptr->getTime() << endl;
159    out << "---------------" << endl;
160    out << "outstanding requests" << endl;
161
162    out << "proc " << m_Read
163        << " version Requests = " << m_readRequestTable.size() << endl;
164
165    // print the request table
166    RequestTable::iterator read = m_readRequestTable.begin();
167    RequestTable::iterator read_end = m_readRequestTable.end();
168    for (; read != read_end; ++read) {
169        SequencerRequest* request = read->second;
170        out << "\tRequest[ " << i << " ] = " << request->type
171            << " Address " << rkeys[i]
172            << " Posted " << request->issue_time
173            << " PF " << PrefetchBit_No << endl;
174        total_demand++;
175    }
176
177    out << "proc " << m_version
178        << " Write Requests = " << m_writeRequestTable.size << endl;
179
180    // print the request table
181    RequestTable::iterator write = m_writeRequestTable.begin();
182    RequestTable::iterator write_end = m_writeRequestTable.end();
183    for (; write != write_end; ++write) {
184        SequencerRequest* request = write->second;
185        out << "\tRequest[ " << i << " ] = " << request.getType()
186            << " Address " << wkeys[i]
187            << " Posted " << request.getTime()
188            << " PF " << request.getPrefetch() << endl;
189        if (request.getPrefetch() == PrefetchBit_No) {
190            total_demand++;
191        }
192    }
193
194    out << endl;
195
196    out << "Total Number Outstanding: " << m_outstanding_count << endl
197        << "Total Number Demand     : " << total_demand << endl
198        << "Total Number Prefetches : " << m_outstanding_count - total_demand
199        << endl << endl << endl;
200#endif
201}
202
203void
204Sequencer::printConfig(ostream& out) const
205{
206    out << "Seqeuncer config: " << m_name << endl
207        << "  controller: " << m_controller->getName() << endl
208        << "  version: " << m_version << endl
209        << "  max_outstanding_requests: " << m_max_outstanding_requests << endl
210        << "  deadlock_threshold: " << m_deadlock_threshold << endl;
211}
212
213// Insert the request on the correct request table.  Return true if
214// the entry was already present.
215RequestStatus
216Sequencer::insertRequest(PacketPtr pkt, RubyRequestType request_type)
217{
218    assert(m_outstanding_count ==
219        (m_writeRequestTable.size() + m_readRequestTable.size()));
220
221    // See if we should schedule a deadlock check
222    if (deadlockCheckEvent.scheduled() == false) {
223        schedule(deadlockCheckEvent, m_deadlock_threshold + curTick());
224    }
225
226    Address line_addr(pkt->getAddr());
227    line_addr.makeLineAddress();
228    if ((request_type == RubyRequestType_ST) ||
229        (request_type == RubyRequestType_RMW_Read) ||
230        (request_type == RubyRequestType_RMW_Write) ||
231        (request_type == RubyRequestType_Load_Linked) ||
232        (request_type == RubyRequestType_Store_Conditional) ||
233        (request_type == RubyRequestType_Locked_RMW_Read) ||
234        (request_type == RubyRequestType_Locked_RMW_Write) ||
235        (request_type == RubyRequestType_FLUSH)) {
236
237        // Check if there is any outstanding read request for the same
238        // cache line.
239        if (m_readRequestTable.count(line_addr) > 0) {
240            m_store_waiting_on_load_cycles++;
241            return RequestStatus_Aliased;
242        }
243
244        pair<RequestTable::iterator, bool> r =
245            m_writeRequestTable.insert(RequestTable::value_type(line_addr, 0));
246        if (r.second) {
247            RequestTable::iterator i = r.first;
248            i->second = new SequencerRequest(pkt, request_type,
249                                             g_eventQueue_ptr->getTime());
250            m_outstanding_count++;
251        } else {
252          // There is an outstanding write request for the cache line
253          m_store_waiting_on_store_cycles++;
254          return RequestStatus_Aliased;
255        }
256    } else {
257        // Check if there is any outstanding write request for the same
258        // cache line.
259        if (m_writeRequestTable.count(line_addr) > 0) {
260            m_load_waiting_on_store_cycles++;
261            return RequestStatus_Aliased;
262        }
263
264        pair<RequestTable::iterator, bool> r =
265            m_readRequestTable.insert(RequestTable::value_type(line_addr, 0));
266
267        if (r.second) {
268            RequestTable::iterator i = r.first;
269            i->second = new SequencerRequest(pkt, request_type,
270                                             g_eventQueue_ptr->getTime());
271            m_outstanding_count++;
272        } else {
273            // There is an outstanding read request for the cache line
274            m_load_waiting_on_load_cycles++;
275            return RequestStatus_Aliased;
276        }
277    }
278
279    g_system_ptr->getProfiler()->sequencerRequests(m_outstanding_count);
280    assert(m_outstanding_count ==
281        (m_writeRequestTable.size() + m_readRequestTable.size()));
282
283    return RequestStatus_Ready;
284}
285
286void
287Sequencer::markRemoved()
288{
289    m_outstanding_count--;
290    assert(m_outstanding_count ==
291           m_writeRequestTable.size() + m_readRequestTable.size());
292}
293
294void
295Sequencer::removeRequest(SequencerRequest* srequest)
296{
297    assert(m_outstanding_count ==
298           m_writeRequestTable.size() + m_readRequestTable.size());
299
300    Address line_addr(srequest->pkt->getAddr());
301    line_addr.makeLineAddress();
302    if ((srequest->m_type == RubyRequestType_ST) ||
303        (srequest->m_type == RubyRequestType_RMW_Read) ||
304        (srequest->m_type == RubyRequestType_RMW_Write) ||
305        (srequest->m_type == RubyRequestType_Load_Linked) ||
306        (srequest->m_type == RubyRequestType_Store_Conditional) ||
307        (srequest->m_type == RubyRequestType_Locked_RMW_Read) ||
308        (srequest->m_type == RubyRequestType_Locked_RMW_Write)) {
309        m_writeRequestTable.erase(line_addr);
310    } else {
311        m_readRequestTable.erase(line_addr);
312    }
313
314    markRemoved();
315}
316
317bool
318Sequencer::handleLlsc(const Address& address, SequencerRequest* request)
319{
320    //
321    // The success flag indicates whether the LLSC operation was successful.
322    // LL ops will always succeed, but SC may fail if the cache line is no
323    // longer locked.
324    //
325    bool success = true;
326    if (request->m_type == RubyRequestType_Store_Conditional) {
327        if (!m_dataCache_ptr->isLocked(address, m_version)) {
328            //
329            // For failed SC requests, indicate the failure to the cpu by
330            // setting the extra data to zero.
331            //
332            request->pkt->req->setExtraData(0);
333            success = false;
334        } else {
335            //
336            // For successful SC requests, indicate the success to the cpu by
337            // setting the extra data to one.
338            //
339            request->pkt->req->setExtraData(1);
340        }
341        //
342        // Independent of success, all SC operations must clear the lock
343        //
344        m_dataCache_ptr->clearLocked(address);
345    } else if (request->m_type == RubyRequestType_Load_Linked) {
346        //
347        // Note: To fully follow Alpha LLSC semantics, should the LL clear any
348        // previously locked cache lines?
349        //
350        m_dataCache_ptr->setLocked(address, m_version);
351    } else if ((m_dataCache_ptr->isTagPresent(address)) &&
352               (m_dataCache_ptr->isLocked(address, m_version))) {
353        //
354        // Normal writes should clear the locked address
355        //
356        m_dataCache_ptr->clearLocked(address);
357    }
358    return success;
359}
360
361void
362Sequencer::writeCallback(const Address& address, DataBlock& data)
363{
364    writeCallback(address, GenericMachineType_NULL, data);
365}
366
367void
368Sequencer::writeCallback(const Address& address,
369                         GenericMachineType mach,
370                         DataBlock& data)
371{
372    writeCallback(address, mach, data, 0, 0, 0);
373}
374
375void
376Sequencer::writeCallback(const Address& address,
377                         GenericMachineType mach,
378                         DataBlock& data,
379                         Time initialRequestTime,
380                         Time forwardRequestTime,
381                         Time firstResponseTime)
382{
383    assert(address == line_address(address));
384    assert(m_writeRequestTable.count(line_address(address)));
385
386    RequestTable::iterator i = m_writeRequestTable.find(address);
387    assert(i != m_writeRequestTable.end());
388    SequencerRequest* request = i->second;
389
390    m_writeRequestTable.erase(i);
391    markRemoved();
392
393    assert((request->m_type == RubyRequestType_ST) ||
394           (request->m_type == RubyRequestType_ATOMIC) ||
395           (request->m_type == RubyRequestType_RMW_Read) ||
396           (request->m_type == RubyRequestType_RMW_Write) ||
397           (request->m_type == RubyRequestType_Load_Linked) ||
398           (request->m_type == RubyRequestType_Store_Conditional) ||
399           (request->m_type == RubyRequestType_Locked_RMW_Read) ||
400           (request->m_type == RubyRequestType_Locked_RMW_Write) ||
401           (request->m_type == RubyRequestType_FLUSH));
402
403
404    //
405    // For Alpha, properly handle LL, SC, and write requests with respect to
406    // locked cache blocks.
407    //
408    // Not valid for Network_test protocl
409    //
410    bool success = true;
411    if(!m_usingNetworkTester)
412        success = handleLlsc(address, request);
413
414    if (request->m_type == RubyRequestType_Locked_RMW_Read) {
415        m_controller->blockOnQueue(address, m_mandatory_q_ptr);
416    } else if (request->m_type == RubyRequestType_Locked_RMW_Write) {
417        m_controller->unblock(address);
418    }
419
420    hitCallback(request, mach, data, success,
421                initialRequestTime, forwardRequestTime, firstResponseTime);
422}
423
424void
425Sequencer::readCallback(const Address& address, DataBlock& data)
426{
427    readCallback(address, GenericMachineType_NULL, data);
428}
429
430void
431Sequencer::readCallback(const Address& address,
432                        GenericMachineType mach,
433                        DataBlock& data)
434{
435    readCallback(address, mach, data, 0, 0, 0);
436}
437
438void
439Sequencer::readCallback(const Address& address,
440                        GenericMachineType mach,
441                        DataBlock& data,
442                        Time initialRequestTime,
443                        Time forwardRequestTime,
444                        Time firstResponseTime)
445{
446    assert(address == line_address(address));
447    assert(m_readRequestTable.count(line_address(address)));
448
449    RequestTable::iterator i = m_readRequestTable.find(address);
450    assert(i != m_readRequestTable.end());
451    SequencerRequest* request = i->second;
452
453    m_readRequestTable.erase(i);
454    markRemoved();
455
456    assert((request->m_type == RubyRequestType_LD) ||
457           (request->m_type == RubyRequestType_IFETCH));
458
459    hitCallback(request, mach, data, true,
460                initialRequestTime, forwardRequestTime, firstResponseTime);
461}
462
463void
464Sequencer::hitCallback(SequencerRequest* srequest,
465                       GenericMachineType mach,
466                       DataBlock& data,
467                       bool success,
468                       Time initialRequestTime,
469                       Time forwardRequestTime,
470                       Time firstResponseTime)
471{
472    PacketPtr pkt = srequest->pkt;
473    Address request_address(pkt->getAddr());
474    Address request_line_address(pkt->getAddr());
475    request_line_address.makeLineAddress();
476    RubyRequestType type = srequest->m_type;
477    Time issued_time = srequest->issue_time;
478
479    // Set this cache entry to the most recently used
480    if (type == RubyRequestType_IFETCH) {
481        m_instCache_ptr->setMRU(request_line_address);
482    } else {
483        m_dataCache_ptr->setMRU(request_line_address);
484    }
485
486    assert(g_eventQueue_ptr->getTime() >= issued_time);
487    Time miss_latency = g_eventQueue_ptr->getTime() - issued_time;
488
489    // Profile the miss latency for all non-zero demand misses
490    if (miss_latency != 0) {
491        g_system_ptr->getProfiler()->missLatency(miss_latency, type, mach);
492
493        if (mach == GenericMachineType_L1Cache_wCC) {
494            g_system_ptr->getProfiler()->missLatencyWcc(issued_time,
495                                                   initialRequestTime,
496                                                   forwardRequestTime,
497                                                   firstResponseTime,
498                                                   g_eventQueue_ptr->getTime());
499        }
500
501        if (mach == GenericMachineType_Directory) {
502            g_system_ptr->getProfiler()->missLatencyDir(issued_time,
503                                                   initialRequestTime,
504                                                   forwardRequestTime,
505                                                   firstResponseTime,
506                                                   g_eventQueue_ptr->getTime());
507        }
508
509        DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %d cycles\n",
510                 curTick(), m_version, "Seq",
511                 success ? "Done" : "SC_Failed", "", "",
512                 request_address, miss_latency);
513    }
514
515    // update the data
516    if (g_system_ptr->m_warmup_enabled) {
517        assert(pkt->getPtr<uint8_t>(false) != NULL);
518        data.setData(pkt->getPtr<uint8_t>(false),
519                     request_address.getOffset(), pkt->getSize());
520    } else if (pkt->getPtr<uint8_t>(true) != NULL) {
521        if ((type == RubyRequestType_LD) ||
522            (type == RubyRequestType_IFETCH) ||
523            (type == RubyRequestType_RMW_Read) ||
524            (type == RubyRequestType_Locked_RMW_Read) ||
525            (type == RubyRequestType_Load_Linked)) {
526            memcpy(pkt->getPtr<uint8_t>(true),
527                   data.getData(request_address.getOffset(), pkt->getSize()),
528                   pkt->getSize());
529        } else {
530            data.setData(pkt->getPtr<uint8_t>(true),
531                         request_address.getOffset(), pkt->getSize());
532        }
533    } else {
534        DPRINTF(MemoryAccess,
535                "WARNING.  Data not transfered from Ruby to M5 for type %s\n",
536                RubyRequestType_to_string(type));
537    }
538
539    // If using the RubyTester, update the RubyTester sender state's
540    // subBlock with the recieved data.  The tester will later access
541    // this state.
542    // Note: RubyPort will access it's sender state before the
543    // RubyTester.
544    if (m_usingRubyTester) {
545        RubyPort::SenderState *requestSenderState =
546            safe_cast<RubyPort::SenderState*>(pkt->senderState);
547        RubyTester::SenderState* testerSenderState =
548            safe_cast<RubyTester::SenderState*>(requestSenderState->saved);
549        testerSenderState->subBlock->mergeFrom(data);
550    }
551
552    delete srequest;
553
554    if (g_system_ptr->m_warmup_enabled) {
555        delete pkt;
556        g_system_ptr->m_cache_recorder->enqueueNextFetchRequest();
557    } else if (g_system_ptr->m_cooldown_enabled) {
558        delete pkt;
559        g_system_ptr->m_cache_recorder->enqueueNextFlushRequest();
560    } else {
561        ruby_hit_callback(pkt);
562    }
563}
564
565bool
566Sequencer::empty() const
567{
568    return m_writeRequestTable.empty() && m_readRequestTable.empty();
569}
570
571RequestStatus
572Sequencer::makeRequest(PacketPtr pkt)
573{
574    if (m_outstanding_count >= m_max_outstanding_requests) {
575        return RequestStatus_BufferFull;
576    }
577
578    RubyRequestType primary_type = RubyRequestType_NULL;
579    RubyRequestType secondary_type = RubyRequestType_NULL;
580
581    if (pkt->isLLSC()) {
582        //
583        // Alpha LL/SC instructions need to be handled carefully by the cache
584        // coherence protocol to ensure they follow the proper semantics. In
585        // particular, by identifying the operations as atomic, the protocol
586        // should understand that migratory sharing optimizations should not
587        // be performed (i.e. a load between the LL and SC should not steal
588        // away exclusive permission).
589        //
590        if (pkt->isWrite()) {
591            DPRINTF(RubySequencer, "Issuing SC\n");
592            primary_type = RubyRequestType_Store_Conditional;
593        } else {
594            DPRINTF(RubySequencer, "Issuing LL\n");
595            assert(pkt->isRead());
596            primary_type = RubyRequestType_Load_Linked;
597        }
598        secondary_type = RubyRequestType_ATOMIC;
599    } else if (pkt->req->isLocked()) {
600        //
601        // x86 locked instructions are translated to store cache coherence
602        // requests because these requests should always be treated as read
603        // exclusive operations and should leverage any migratory sharing
604        // optimization built into the protocol.
605        //
606        if (pkt->isWrite()) {
607            DPRINTF(RubySequencer, "Issuing Locked RMW Write\n");
608            primary_type = RubyRequestType_Locked_RMW_Write;
609        } else {
610            DPRINTF(RubySequencer, "Issuing Locked RMW Read\n");
611            assert(pkt->isRead());
612            primary_type = RubyRequestType_Locked_RMW_Read;
613        }
614        secondary_type = RubyRequestType_ST;
615    } else {
616        if (pkt->isRead()) {
617            if (pkt->req->isInstFetch()) {
618                primary_type = secondary_type = RubyRequestType_IFETCH;
619            } else {
620#if THE_ISA == X86_ISA
621                uint32_t flags = pkt->req->getFlags();
622                bool storeCheck = flags &
623                        (TheISA::StoreCheck << TheISA::FlagShift);
624#else
625                bool storeCheck = false;
626#endif // X86_ISA
627                if (storeCheck) {
628                    primary_type = RubyRequestType_RMW_Read;
629                    secondary_type = RubyRequestType_ST;
630                } else {
631                    primary_type = secondary_type = RubyRequestType_LD;
632                }
633            }
634        } else if (pkt->isWrite()) {
635            //
636            // Note: M5 packets do not differentiate ST from RMW_Write
637            //
638            primary_type = secondary_type = RubyRequestType_ST;
639        } else if (pkt->isFlush()) {
640          primary_type = secondary_type = RubyRequestType_FLUSH;
641        } else {
642            panic("Unsupported ruby packet type\n");
643        }
644    }
645
646    RequestStatus status = insertRequest(pkt, primary_type);
647    if (status != RequestStatus_Ready)
648        return status;
649
650    issueRequest(pkt, secondary_type);
651
652    // TODO: issue hardware prefetches here
653    return RequestStatus_Issued;
654}
655
656void
657Sequencer::issueRequest(PacketPtr pkt, RubyRequestType secondary_type)
658{
659    int proc_id = -1;
660    if (pkt != NULL && pkt->req->hasContextId()) {
661        proc_id = pkt->req->contextId();
662    }
663
664    // If valid, copy the pc to the ruby request
665    Addr pc = 0;
666    if (pkt->req->hasPC()) {
667        pc = pkt->req->getPC();
668    }
669
670    RubyRequest *msg = new RubyRequest(pkt->getAddr(),
671                                       pkt->getPtr<uint8_t>(true),
672                                       pkt->getSize(), pc, secondary_type,
673                                       RubyAccessMode_Supervisor, pkt,
674                                       PrefetchBit_No, proc_id);
675
676    DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %s\n",
677            curTick(), m_version, "Seq", "Begin", "", "",
678            msg->getPhysicalAddress(),
679            RubyRequestType_to_string(secondary_type));
680
681    Time latency = 0;  // initialzed to an null value
682
683    if (secondary_type == RubyRequestType_IFETCH)
684        latency = m_instCache_ptr->getLatency();
685    else
686        latency = m_dataCache_ptr->getLatency();
687
688    // Send the message to the cache controller
689    assert(latency > 0);
690
691    assert(m_mandatory_q_ptr != NULL);
692    m_mandatory_q_ptr->enqueue(msg, latency);
693}
694
695template <class KEY, class VALUE>
696std::ostream &
697operator<<(ostream &out, const m5::hash_map<KEY, VALUE> &map)
698{
699    typename m5::hash_map<KEY, VALUE>::const_iterator i = map.begin();
700    typename m5::hash_map<KEY, VALUE>::const_iterator end = map.end();
701
702    out << "[";
703    for (; i != end; ++i)
704        out << " " << i->first << "=" << i->second;
705    out << " ]";
706
707    return out;
708}
709
710void
711Sequencer::print(ostream& out) const
712{
713    out << "[Sequencer: " << m_version
714        << ", outstanding requests: " << m_outstanding_count
715        << ", read request table: " << m_readRequestTable
716        << ", write request table: " << m_writeRequestTable
717        << "]";
718}
719
720// this can be called from setState whenever coherence permissions are
721// upgraded when invoked, coherence violations will be checked for the
722// given block
723void
724Sequencer::checkCoherence(const Address& addr)
725{
726#ifdef CHECK_COHERENCE
727    g_system_ptr->checkGlobalCoherenceInvariant(addr);
728#endif
729}
730
731void
732Sequencer::evictionCallback(const Address& address)
733{
734    ruby_eviction_callback(address);
735}
736