Sequencer.cc revision 8615:e66a566f2cfa
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "base/misc.hh"
30#include "base/str.hh"
31#include "config/the_isa.hh"
32#if THE_ISA == X86_ISA
33#include "arch/x86/insts/microldstop.hh"
34#endif // X86_ISA
35#include "cpu/testers/rubytest/RubyTester.hh"
36#include "debug/MemoryAccess.hh"
37#include "debug/ProtocolTrace.hh"
38#include "debug/RubySequencer.hh"
39#include "mem/protocol/PrefetchBit.hh"
40#include "mem/protocol/RubyAccessMode.hh"
41#include "mem/ruby/buffers/MessageBuffer.hh"
42#include "mem/ruby/common/Global.hh"
43#include "mem/ruby/common/SubBlock.hh"
44#include "mem/ruby/profiler/Profiler.hh"
45#include "mem/ruby/recorder/Tracer.hh"
46#include "mem/ruby/slicc_interface/RubyRequest.hh"
47#include "mem/ruby/system/CacheMemory.hh"
48#include "mem/ruby/system/Sequencer.hh"
49#include "mem/ruby/system/System.hh"
50#include "mem/packet.hh"
51#include "params/RubySequencer.hh"
52
53using namespace std;
54
55Sequencer *
56RubySequencerParams::create()
57{
58    return new Sequencer(this);
59}
60
61Sequencer::Sequencer(const Params *p)
62    : RubyPort(p), deadlockCheckEvent(this)
63{
64    m_store_waiting_on_load_cycles = 0;
65    m_store_waiting_on_store_cycles = 0;
66    m_load_waiting_on_store_cycles = 0;
67    m_load_waiting_on_load_cycles = 0;
68
69    m_outstanding_count = 0;
70
71    m_deadlock_threshold = 0;
72    m_instCache_ptr = NULL;
73    m_dataCache_ptr = NULL;
74
75    m_instCache_ptr = p->icache;
76    m_dataCache_ptr = p->dcache;
77    m_max_outstanding_requests = p->max_outstanding_requests;
78    m_deadlock_threshold = p->deadlock_threshold;
79
80    assert(m_max_outstanding_requests > 0);
81    assert(m_deadlock_threshold > 0);
82    assert(m_instCache_ptr != NULL);
83    assert(m_dataCache_ptr != NULL);
84
85    m_usingNetworkTester = p->using_network_tester;
86}
87
88Sequencer::~Sequencer()
89{
90}
91
92void
93Sequencer::wakeup()
94{
95    // Check for deadlock of any of the requests
96    Time current_time = g_eventQueue_ptr->getTime();
97
98    // Check across all outstanding requests
99    int total_outstanding = 0;
100
101    RequestTable::iterator read = m_readRequestTable.begin();
102    RequestTable::iterator read_end = m_readRequestTable.end();
103    for (; read != read_end; ++read) {
104        SequencerRequest* request = read->second;
105        if (current_time - request->issue_time < m_deadlock_threshold)
106            continue;
107
108        panic("Possible Deadlock detected. Aborting!\n"
109             "version: %d request.paddr: 0x%x m_readRequestTable: %d "
110             "current time: %u issue_time: %d difference: %d\n", m_version,
111             Address(request->pkt->getAddr()), m_readRequestTable.size(),
112             current_time, request->issue_time,
113             current_time - request->issue_time);
114    }
115
116    RequestTable::iterator write = m_writeRequestTable.begin();
117    RequestTable::iterator write_end = m_writeRequestTable.end();
118    for (; write != write_end; ++write) {
119        SequencerRequest* request = write->second;
120        if (current_time - request->issue_time < m_deadlock_threshold)
121            continue;
122
123        panic("Possible Deadlock detected. Aborting!\n"
124             "version: %d request.paddr: 0x%x m_writeRequestTable: %d "
125             "current time: %u issue_time: %d difference: %d\n", m_version,
126             Address(request->pkt->getAddr()), m_writeRequestTable.size(),
127             current_time, request->issue_time,
128             current_time - request->issue_time);
129    }
130
131    total_outstanding += m_writeRequestTable.size();
132    total_outstanding += m_readRequestTable.size();
133
134    assert(m_outstanding_count == total_outstanding);
135
136    if (m_outstanding_count > 0) {
137        // If there are still outstanding requests, keep checking
138        schedule(deadlockCheckEvent,
139                 m_deadlock_threshold * g_eventQueue_ptr->getClock() +
140                 curTick());
141    }
142}
143
144void
145Sequencer::printStats(ostream & out) const
146{
147    out << "Sequencer: " << m_name << endl
148        << "  store_waiting_on_load_cycles: "
149        << m_store_waiting_on_load_cycles << endl
150        << "  store_waiting_on_store_cycles: "
151        << m_store_waiting_on_store_cycles << endl
152        << "  load_waiting_on_load_cycles: "
153        << m_load_waiting_on_load_cycles << endl
154        << "  load_waiting_on_store_cycles: "
155        << m_load_waiting_on_store_cycles << endl;
156}
157
158void
159Sequencer::printProgress(ostream& out) const
160{
161#if 0
162    int total_demand = 0;
163    out << "Sequencer Stats Version " << m_version << endl;
164    out << "Current time = " << g_eventQueue_ptr->getTime() << endl;
165    out << "---------------" << endl;
166    out << "outstanding requests" << endl;
167
168    out << "proc " << m_Read
169        << " version Requests = " << m_readRequestTable.size() << endl;
170
171    // print the request table
172    RequestTable::iterator read = m_readRequestTable.begin();
173    RequestTable::iterator read_end = m_readRequestTable.end();
174    for (; read != read_end; ++read) {
175        SequencerRequest* request = read->second;
176        out << "\tRequest[ " << i << " ] = " << request->type
177            << " Address " << rkeys[i]
178            << " Posted " << request->issue_time
179            << " PF " << PrefetchBit_No << endl;
180        total_demand++;
181    }
182
183    out << "proc " << m_version
184        << " Write Requests = " << m_writeRequestTable.size << endl;
185
186    // print the request table
187    RequestTable::iterator write = m_writeRequestTable.begin();
188    RequestTable::iterator write_end = m_writeRequestTable.end();
189    for (; write != write_end; ++write) {
190        SequencerRequest* request = write->second;
191        out << "\tRequest[ " << i << " ] = " << request.getType()
192            << " Address " << wkeys[i]
193            << " Posted " << request.getTime()
194            << " PF " << request.getPrefetch() << endl;
195        if (request.getPrefetch() == PrefetchBit_No) {
196            total_demand++;
197        }
198    }
199
200    out << endl;
201
202    out << "Total Number Outstanding: " << m_outstanding_count << endl
203        << "Total Number Demand     : " << total_demand << endl
204        << "Total Number Prefetches : " << m_outstanding_count - total_demand
205        << endl << endl << endl;
206#endif
207}
208
209void
210Sequencer::printConfig(ostream& out) const
211{
212    out << "Seqeuncer config: " << m_name << endl
213        << "  controller: " << m_controller->getName() << endl
214        << "  version: " << m_version << endl
215        << "  max_outstanding_requests: " << m_max_outstanding_requests << endl
216        << "  deadlock_threshold: " << m_deadlock_threshold << endl;
217}
218
219// Insert the request on the correct request table.  Return true if
220// the entry was already present.
221RequestStatus
222Sequencer::insertRequest(PacketPtr pkt, RubyRequestType request_type)
223{
224    int total_outstanding =
225        m_writeRequestTable.size() + m_readRequestTable.size();
226
227    assert(m_outstanding_count == total_outstanding);
228
229    // See if we should schedule a deadlock check
230    if (deadlockCheckEvent.scheduled() == false) {
231        schedule(deadlockCheckEvent, m_deadlock_threshold + curTick());
232    }
233
234    Address line_addr(pkt->getAddr());
235    line_addr.makeLineAddress();
236    if ((request_type == RubyRequestType_ST) ||
237        (request_type == RubyRequestType_RMW_Read) ||
238        (request_type == RubyRequestType_RMW_Write) ||
239        (request_type == RubyRequestType_Load_Linked) ||
240        (request_type == RubyRequestType_Store_Conditional) ||
241        (request_type == RubyRequestType_Locked_RMW_Read) ||
242        (request_type == RubyRequestType_Locked_RMW_Write) ||
243        (request_type == RubyRequestType_FLUSH)) {
244
245        // Check if there is any outstanding read request for the same
246        // cache line.
247        if (m_readRequestTable.count(line_addr) > 0) {
248            m_store_waiting_on_load_cycles++;
249            return RequestStatus_Aliased;
250        }
251
252        pair<RequestTable::iterator, bool> r =
253            m_writeRequestTable.insert(RequestTable::value_type(line_addr, 0));
254        if (r.second) {
255            RequestTable::iterator i = r.first;
256            i->second = new SequencerRequest(pkt, request_type,
257                                             g_eventQueue_ptr->getTime());
258            m_outstanding_count++;
259        } else {
260          // There is an outstanding write request for the cache line
261          m_store_waiting_on_store_cycles++;
262          return RequestStatus_Aliased;
263        }
264    } else {
265        // Check if there is any outstanding write request for the same
266        // cache line.
267        if (m_writeRequestTable.count(line_addr) > 0) {
268            m_load_waiting_on_store_cycles++;
269            return RequestStatus_Aliased;
270        }
271
272        pair<RequestTable::iterator, bool> r =
273            m_readRequestTable.insert(RequestTable::value_type(line_addr, 0));
274
275        if (r.second) {
276            RequestTable::iterator i = r.first;
277            i->second = new SequencerRequest(pkt, request_type,
278                                             g_eventQueue_ptr->getTime());
279            m_outstanding_count++;
280        } else {
281            // There is an outstanding read request for the cache line
282            m_load_waiting_on_load_cycles++;
283            return RequestStatus_Aliased;
284        }
285    }
286
287    g_system_ptr->getProfiler()->sequencerRequests(m_outstanding_count);
288    total_outstanding = m_writeRequestTable.size() + m_readRequestTable.size();
289    assert(m_outstanding_count == total_outstanding);
290
291    return RequestStatus_Ready;
292}
293
294void
295Sequencer::markRemoved()
296{
297    m_outstanding_count--;
298    assert(m_outstanding_count ==
299           m_writeRequestTable.size() + m_readRequestTable.size());
300}
301
302void
303Sequencer::removeRequest(SequencerRequest* srequest)
304{
305    assert(m_outstanding_count ==
306           m_writeRequestTable.size() + m_readRequestTable.size());
307
308    Address line_addr(srequest->pkt->getAddr());
309    line_addr.makeLineAddress();
310    if ((srequest->m_type == RubyRequestType_ST) ||
311        (srequest->m_type == RubyRequestType_RMW_Read) ||
312        (srequest->m_type == RubyRequestType_RMW_Write) ||
313        (srequest->m_type == RubyRequestType_Load_Linked) ||
314        (srequest->m_type == RubyRequestType_Store_Conditional) ||
315        (srequest->m_type == RubyRequestType_Locked_RMW_Read) ||
316        (srequest->m_type == RubyRequestType_Locked_RMW_Write)) {
317        m_writeRequestTable.erase(line_addr);
318    } else {
319        m_readRequestTable.erase(line_addr);
320    }
321
322    markRemoved();
323}
324
325bool
326Sequencer::handleLlsc(const Address& address, SequencerRequest* request)
327{
328    //
329    // The success flag indicates whether the LLSC operation was successful.
330    // LL ops will always succeed, but SC may fail if the cache line is no
331    // longer locked.
332    //
333    bool success = true;
334    if (request->m_type == RubyRequestType_Store_Conditional) {
335        if (!m_dataCache_ptr->isLocked(address, m_version)) {
336            //
337            // For failed SC requests, indicate the failure to the cpu by
338            // setting the extra data to zero.
339            //
340            request->pkt->req->setExtraData(0);
341            success = false;
342        } else {
343            //
344            // For successful SC requests, indicate the success to the cpu by
345            // setting the extra data to one.
346            //
347            request->pkt->req->setExtraData(1);
348        }
349        //
350        // Independent of success, all SC operations must clear the lock
351        //
352        m_dataCache_ptr->clearLocked(address);
353    } else if (request->m_type == RubyRequestType_Load_Linked) {
354        //
355        // Note: To fully follow Alpha LLSC semantics, should the LL clear any
356        // previously locked cache lines?
357        //
358        m_dataCache_ptr->setLocked(address, m_version);
359    } else if ((m_dataCache_ptr->isTagPresent(address)) &&
360               (m_dataCache_ptr->isLocked(address, m_version))) {
361        //
362        // Normal writes should clear the locked address
363        //
364        m_dataCache_ptr->clearLocked(address);
365    }
366    return success;
367}
368
369void
370Sequencer::writeCallback(const Address& address, DataBlock& data)
371{
372    writeCallback(address, GenericMachineType_NULL, data);
373}
374
375void
376Sequencer::writeCallback(const Address& address,
377                         GenericMachineType mach,
378                         DataBlock& data)
379{
380    writeCallback(address, mach, data, 0, 0, 0);
381}
382
383void
384Sequencer::writeCallback(const Address& address,
385                         GenericMachineType mach,
386                         DataBlock& data,
387                         Time initialRequestTime,
388                         Time forwardRequestTime,
389                         Time firstResponseTime)
390{
391    assert(address == line_address(address));
392    assert(m_writeRequestTable.count(line_address(address)));
393
394    RequestTable::iterator i = m_writeRequestTable.find(address);
395    assert(i != m_writeRequestTable.end());
396    SequencerRequest* request = i->second;
397
398    m_writeRequestTable.erase(i);
399    markRemoved();
400
401    assert((request->m_type == RubyRequestType_ST) ||
402           (request->m_type == RubyRequestType_ATOMIC) ||
403           (request->m_type == RubyRequestType_RMW_Read) ||
404           (request->m_type == RubyRequestType_RMW_Write) ||
405           (request->m_type == RubyRequestType_Load_Linked) ||
406           (request->m_type == RubyRequestType_Store_Conditional) ||
407           (request->m_type == RubyRequestType_Locked_RMW_Read) ||
408           (request->m_type == RubyRequestType_Locked_RMW_Write) ||
409           (request->m_type == RubyRequestType_FLUSH));
410
411
412    //
413    // For Alpha, properly handle LL, SC, and write requests with respect to
414    // locked cache blocks.
415    //
416    // Not valid for Network_test protocl
417    //
418    bool success = true;
419    if(!m_usingNetworkTester)
420        success = handleLlsc(address, request);
421
422    if (request->m_type == RubyRequestType_Locked_RMW_Read) {
423        m_controller->blockOnQueue(address, m_mandatory_q_ptr);
424    } else if (request->m_type == RubyRequestType_Locked_RMW_Write) {
425        m_controller->unblock(address);
426    }
427
428    hitCallback(request, mach, data, success,
429                initialRequestTime, forwardRequestTime, firstResponseTime);
430}
431
432void
433Sequencer::readCallback(const Address& address, DataBlock& data)
434{
435    readCallback(address, GenericMachineType_NULL, data);
436}
437
438void
439Sequencer::readCallback(const Address& address,
440                        GenericMachineType mach,
441                        DataBlock& data)
442{
443    readCallback(address, mach, data, 0, 0, 0);
444}
445
446void
447Sequencer::readCallback(const Address& address,
448                        GenericMachineType mach,
449                        DataBlock& data,
450                        Time initialRequestTime,
451                        Time forwardRequestTime,
452                        Time firstResponseTime)
453{
454    assert(address == line_address(address));
455    assert(m_readRequestTable.count(line_address(address)));
456
457    RequestTable::iterator i = m_readRequestTable.find(address);
458    assert(i != m_readRequestTable.end());
459    SequencerRequest* request = i->second;
460
461    m_readRequestTable.erase(i);
462    markRemoved();
463
464    assert((request->m_type == RubyRequestType_LD) ||
465           (request->m_type == RubyRequestType_IFETCH));
466
467    hitCallback(request, mach, data, true,
468                initialRequestTime, forwardRequestTime, firstResponseTime);
469}
470
471void
472Sequencer::hitCallback(SequencerRequest* srequest,
473                       GenericMachineType mach,
474                       DataBlock& data,
475                       bool success,
476                       Time initialRequestTime,
477                       Time forwardRequestTime,
478                       Time firstResponseTime)
479{
480    PacketPtr pkt = srequest->pkt;
481    Address request_address(pkt->getAddr());
482    Address request_line_address(pkt->getAddr());
483    request_line_address.makeLineAddress();
484    RubyRequestType type = srequest->m_type;
485    Time issued_time = srequest->issue_time;
486
487    // Set this cache entry to the most recently used
488    if (type == RubyRequestType_IFETCH) {
489        if (m_instCache_ptr->isTagPresent(request_line_address))
490            m_instCache_ptr->setMRU(request_line_address);
491    } else {
492        if (m_dataCache_ptr->isTagPresent(request_line_address))
493            m_dataCache_ptr->setMRU(request_line_address);
494    }
495
496    assert(g_eventQueue_ptr->getTime() >= issued_time);
497    Time miss_latency = g_eventQueue_ptr->getTime() - issued_time;
498
499    // Profile the miss latency for all non-zero demand misses
500    if (miss_latency != 0) {
501        g_system_ptr->getProfiler()->missLatency(miss_latency, type, mach);
502
503        if (mach == GenericMachineType_L1Cache_wCC) {
504            g_system_ptr->getProfiler()->missLatencyWcc(issued_time,
505                                                   initialRequestTime,
506                                                   forwardRequestTime,
507                                                   firstResponseTime,
508                                                   g_eventQueue_ptr->getTime());
509        }
510
511        if (mach == GenericMachineType_Directory) {
512            g_system_ptr->getProfiler()->missLatencyDir(issued_time,
513                                                   initialRequestTime,
514                                                   forwardRequestTime,
515                                                   firstResponseTime,
516                                                   g_eventQueue_ptr->getTime());
517        }
518
519        DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %d cycles\n",
520                 curTick(), m_version, "Seq",
521                 success ? "Done" : "SC_Failed", "", "",
522                 request_address, miss_latency);
523    }
524
525    // update the data
526    if (pkt->getPtr<uint8_t>(true) != NULL) {
527        if ((type == RubyRequestType_LD) ||
528            (type == RubyRequestType_IFETCH) ||
529            (type == RubyRequestType_RMW_Read) ||
530            (type == RubyRequestType_Locked_RMW_Read) ||
531            (type == RubyRequestType_Load_Linked)) {
532            memcpy(pkt->getPtr<uint8_t>(true),
533                   data.getData(request_address.getOffset(), pkt->getSize()),
534                   pkt->getSize());
535        } else {
536            data.setData(pkt->getPtr<uint8_t>(true),
537                         request_address.getOffset(), pkt->getSize());
538        }
539    } else {
540        DPRINTF(MemoryAccess,
541                "WARNING.  Data not transfered from Ruby to M5 for type %s\n",
542                RubyRequestType_to_string(type));
543    }
544
545    // If using the RubyTester, update the RubyTester sender state's
546    // subBlock with the recieved data.  The tester will later access
547    // this state.
548    // Note: RubyPort will access it's sender state before the
549    // RubyTester.
550    if (m_usingRubyTester) {
551        RubyPort::SenderState *requestSenderState =
552            safe_cast<RubyPort::SenderState*>(pkt->senderState);
553        RubyTester::SenderState* testerSenderState =
554            safe_cast<RubyTester::SenderState*>(requestSenderState->saved);
555        testerSenderState->subBlock->mergeFrom(data);
556    }
557
558    ruby_hit_callback(pkt);
559    delete srequest;
560}
561
562bool
563Sequencer::empty() const
564{
565    return m_writeRequestTable.empty() && m_readRequestTable.empty();
566}
567
568RequestStatus
569Sequencer::makeRequest(PacketPtr pkt)
570{
571    if (m_outstanding_count >= m_max_outstanding_requests) {
572        return RequestStatus_BufferFull;
573    }
574
575    RubyRequestType primary_type = RubyRequestType_NULL;
576    RubyRequestType secondary_type = RubyRequestType_NULL;
577
578    if (pkt->isLLSC()) {
579        //
580        // Alpha LL/SC instructions need to be handled carefully by the cache
581        // coherence protocol to ensure they follow the proper semantics. In
582        // particular, by identifying the operations as atomic, the protocol
583        // should understand that migratory sharing optimizations should not
584        // be performed (i.e. a load between the LL and SC should not steal
585        // away exclusive permission).
586        //
587        if (pkt->isWrite()) {
588            DPRINTF(RubySequencer, "Issuing SC\n");
589            primary_type = RubyRequestType_Store_Conditional;
590        } else {
591            DPRINTF(RubySequencer, "Issuing LL\n");
592            assert(pkt->isRead());
593            primary_type = RubyRequestType_Load_Linked;
594        }
595        secondary_type = RubyRequestType_ATOMIC;
596    } else if (pkt->req->isLocked()) {
597        //
598        // x86 locked instructions are translated to store cache coherence
599        // requests because these requests should always be treated as read
600        // exclusive operations and should leverage any migratory sharing
601        // optimization built into the protocol.
602        //
603        if (pkt->isWrite()) {
604            DPRINTF(RubySequencer, "Issuing Locked RMW Write\n");
605            primary_type = RubyRequestType_Locked_RMW_Write;
606        } else {
607            DPRINTF(RubySequencer, "Issuing Locked RMW Read\n");
608            assert(pkt->isRead());
609            primary_type = RubyRequestType_Locked_RMW_Read;
610        }
611        secondary_type = RubyRequestType_ST;
612    } else {
613        if (pkt->isRead()) {
614            if (pkt->req->isInstFetch()) {
615                primary_type = secondary_type = RubyRequestType_IFETCH;
616            } else {
617#if THE_ISA == X86_ISA
618                uint32_t flags = pkt->req->getFlags();
619                bool storeCheck = flags &
620                        (TheISA::StoreCheck << TheISA::FlagShift);
621#else
622                bool storeCheck = false;
623#endif // X86_ISA
624                if (storeCheck) {
625                    primary_type = RubyRequestType_RMW_Read;
626                    secondary_type = RubyRequestType_ST;
627                } else {
628                    primary_type = secondary_type = RubyRequestType_LD;
629                }
630            }
631        } else if (pkt->isWrite()) {
632            //
633            // Note: M5 packets do not differentiate ST from RMW_Write
634            //
635            primary_type = secondary_type = RubyRequestType_ST;
636        } else if (pkt->isFlush()) {
637          primary_type = secondary_type = RubyRequestType_FLUSH;
638        } else {
639            panic("Unsupported ruby packet type\n");
640        }
641    }
642
643    RequestStatus status = insertRequest(pkt, primary_type);
644    if (status != RequestStatus_Ready)
645        return status;
646
647    issueRequest(pkt, secondary_type);
648
649    // TODO: issue hardware prefetches here
650    return RequestStatus_Issued;
651}
652
653void
654Sequencer::issueRequest(PacketPtr pkt, RubyRequestType secondary_type)
655{
656    int proc_id = -1;
657    if (pkt != NULL && pkt->req->hasContextId()) {
658        proc_id = pkt->req->contextId();
659    }
660
661    // If valid, copy the pc to the ruby request
662    Addr pc = 0;
663    if (pkt->req->hasPC()) {
664        pc = pkt->req->getPC();
665    }
666
667    RubyRequest *msg = new RubyRequest(pkt->getAddr(),
668                                       pkt->getPtr<uint8_t>(true),
669                                       pkt->getSize(), pc, secondary_type,
670                                       RubyAccessMode_Supervisor, pkt,
671                                       PrefetchBit_No, proc_id);
672
673    DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %s\n",
674            curTick(), m_version, "Seq", "Begin", "", "",
675            msg->getPhysicalAddress(),
676            RubyRequestType_to_string(secondary_type));
677
678    Time latency = 0;  // initialzed to an null value
679
680    if (secondary_type == RubyRequestType_IFETCH)
681        latency = m_instCache_ptr->getLatency();
682    else
683        latency = m_dataCache_ptr->getLatency();
684
685    // Send the message to the cache controller
686    assert(latency > 0);
687
688    assert(m_mandatory_q_ptr != NULL);
689    m_mandatory_q_ptr->enqueue(msg, latency);
690}
691
692template <class KEY, class VALUE>
693std::ostream &
694operator<<(ostream &out, const m5::hash_map<KEY, VALUE> &map)
695{
696    typename m5::hash_map<KEY, VALUE>::const_iterator i = map.begin();
697    typename m5::hash_map<KEY, VALUE>::const_iterator end = map.end();
698
699    out << "[";
700    for (; i != end; ++i)
701        out << " " << i->first << "=" << i->second;
702    out << " ]";
703
704    return out;
705}
706
707void
708Sequencer::print(ostream& out) const
709{
710    out << "[Sequencer: " << m_version
711        << ", outstanding requests: " << m_outstanding_count
712        << ", read request table: " << m_readRequestTable
713        << ", write request table: " << m_writeRequestTable
714        << "]";
715}
716
717// this can be called from setState whenever coherence permissions are
718// upgraded when invoked, coherence violations will be checked for the
719// given block
720void
721Sequencer::checkCoherence(const Address& addr)
722{
723#ifdef CHECK_COHERENCE
724    g_system_ptr->checkGlobalCoherenceInvariant(addr);
725#endif
726}
727