Sequencer.cc revision 7823:dac01f14f20f
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "base/str.hh"
30#include "base/misc.hh"
31#include "cpu/testers/rubytest/RubyTester.hh"
32#include "mem/protocol/CacheMsg.hh"
33#include "mem/protocol/Protocol.hh"
34#include "mem/protocol/Protocol.hh"
35#include "mem/ruby/buffers/MessageBuffer.hh"
36#include "mem/ruby/common/Global.hh"
37#include "mem/ruby/common/SubBlock.hh"
38#include "mem/ruby/libruby.hh"
39#include "mem/ruby/profiler/Profiler.hh"
40#include "mem/ruby/recorder/Tracer.hh"
41#include "mem/ruby/slicc_interface/AbstractController.hh"
42#include "mem/ruby/system/CacheMemory.hh"
43#include "mem/ruby/system/Sequencer.hh"
44#include "mem/ruby/system/System.hh"
45#include "mem/packet.hh"
46#include "params/RubySequencer.hh"
47
48using namespace std;
49
50Sequencer *
51RubySequencerParams::create()
52{
53    return new Sequencer(this);
54}
55
56Sequencer::Sequencer(const Params *p)
57    : RubyPort(p), deadlockCheckEvent(this)
58{
59    m_store_waiting_on_load_cycles = 0;
60    m_store_waiting_on_store_cycles = 0;
61    m_load_waiting_on_store_cycles = 0;
62    m_load_waiting_on_load_cycles = 0;
63
64    m_outstanding_count = 0;
65
66    m_max_outstanding_requests = 0;
67    m_deadlock_threshold = 0;
68    m_instCache_ptr = NULL;
69    m_dataCache_ptr = NULL;
70
71    m_instCache_ptr = p->icache;
72    m_dataCache_ptr = p->dcache;
73    m_max_outstanding_requests = p->max_outstanding_requests;
74    m_deadlock_threshold = p->deadlock_threshold;
75    m_usingRubyTester = p->using_ruby_tester;
76
77    assert(m_max_outstanding_requests > 0);
78    assert(m_deadlock_threshold > 0);
79    assert(m_instCache_ptr != NULL);
80    assert(m_dataCache_ptr != NULL);
81}
82
83Sequencer::~Sequencer()
84{
85}
86
87void
88Sequencer::wakeup()
89{
90    // Check for deadlock of any of the requests
91    Time current_time = g_eventQueue_ptr->getTime();
92
93    // Check across all outstanding requests
94    int total_outstanding = 0;
95
96    RequestTable::iterator read = m_readRequestTable.begin();
97    RequestTable::iterator read_end = m_readRequestTable.end();
98    for (; read != read_end; ++read) {
99        SequencerRequest* request = read->second;
100        if (current_time - request->issue_time < m_deadlock_threshold)
101            continue;
102
103        panic("Possible Deadlock detected. Aborting!\n"
104             "version: %d request.paddr: %d m_readRequestTable: %d "
105             "current time: %u issue_time: %d difference: %d\n", m_version,
106             request->ruby_request.paddr, m_readRequestTable.size(),
107             current_time, request->issue_time,
108             current_time - request->issue_time);
109    }
110
111    RequestTable::iterator write = m_writeRequestTable.begin();
112    RequestTable::iterator write_end = m_writeRequestTable.end();
113    for (; write != write_end; ++write) {
114        SequencerRequest* request = write->second;
115        if (current_time - request->issue_time < m_deadlock_threshold)
116            continue;
117
118        panic("Possible Deadlock detected. Aborting!\n"
119             "version: %d request.paddr: %d m_writeRequestTable: %d "
120             "current time: %u issue_time: %d difference: %d\n", m_version,
121             request->ruby_request.paddr, m_writeRequestTable.size(),
122             current_time, request->issue_time,
123             current_time - request->issue_time);
124    }
125
126    total_outstanding += m_writeRequestTable.size();
127    total_outstanding += m_readRequestTable.size();
128
129    assert(m_outstanding_count == total_outstanding);
130
131    if (m_outstanding_count > 0) {
132        // If there are still outstanding requests, keep checking
133        schedule(deadlockCheckEvent,
134                 m_deadlock_threshold * g_eventQueue_ptr->getClock() +
135                 curTick());
136    }
137}
138
139void
140Sequencer::printStats(ostream & out) const
141{
142    out << "Sequencer: " << m_name << endl
143        << "  store_waiting_on_load_cycles: "
144        << m_store_waiting_on_load_cycles << endl
145        << "  store_waiting_on_store_cycles: "
146        << m_store_waiting_on_store_cycles << endl
147        << "  load_waiting_on_load_cycles: "
148        << m_load_waiting_on_load_cycles << endl
149        << "  load_waiting_on_store_cycles: "
150        << m_load_waiting_on_store_cycles << endl;
151}
152
153void
154Sequencer::printProgress(ostream& out) const
155{
156#if 0
157    int total_demand = 0;
158    out << "Sequencer Stats Version " << m_version << endl;
159    out << "Current time = " << g_eventQueue_ptr->getTime() << endl;
160    out << "---------------" << endl;
161    out << "outstanding requests" << endl;
162
163    out << "proc " << m_Read
164        << " version Requests = " << m_readRequestTable.size() << endl;
165
166    // print the request table
167    RequestTable::iterator read = m_readRequestTable.begin();
168    RequestTable::iterator read_end = m_readRequestTable.end();
169    for (; read != read_end; ++read) {
170        SequencerRequest* request = read->second;
171        out << "\tRequest[ " << i << " ] = " << request->type
172            << " Address " << rkeys[i]
173            << " Posted " << request->issue_time
174            << " PF " << PrefetchBit_No << endl;
175        total_demand++;
176    }
177
178    out << "proc " << m_version
179        << " Write Requests = " << m_writeRequestTable.size << endl;
180
181    // print the request table
182    RequestTable::iterator write = m_writeRequestTable.begin();
183    RequestTable::iterator write_end = m_writeRequestTable.end();
184    for (; write != write_end; ++write) {
185        SequencerRequest* request = write->second;
186        out << "\tRequest[ " << i << " ] = " << request.getType()
187            << " Address " << wkeys[i]
188            << " Posted " << request.getTime()
189            << " PF " << request.getPrefetch() << endl;
190        if (request.getPrefetch() == PrefetchBit_No) {
191            total_demand++;
192        }
193    }
194
195    out << endl;
196
197    out << "Total Number Outstanding: " << m_outstanding_count << endl
198        << "Total Number Demand     : " << total_demand << endl
199        << "Total Number Prefetches : " << m_outstanding_count - total_demand
200        << endl << endl << endl;
201#endif
202}
203
204void
205Sequencer::printConfig(ostream& out) const
206{
207    out << "Seqeuncer config: " << m_name << endl
208        << "  controller: " << m_controller->getName() << endl
209        << "  version: " << m_version << endl
210        << "  max_outstanding_requests: " << m_max_outstanding_requests << endl
211        << "  deadlock_threshold: " << m_deadlock_threshold << endl;
212}
213
214// Insert the request on the correct request table.  Return true if
215// the entry was already present.
216bool
217Sequencer::insertRequest(SequencerRequest* request)
218{
219    int total_outstanding =
220        m_writeRequestTable.size() + m_readRequestTable.size();
221
222    assert(m_outstanding_count == total_outstanding);
223
224    // See if we should schedule a deadlock check
225    if (deadlockCheckEvent.scheduled() == false) {
226        schedule(deadlockCheckEvent, m_deadlock_threshold + curTick());
227    }
228
229    Address line_addr(request->ruby_request.paddr);
230    line_addr.makeLineAddress();
231    if ((request->ruby_request.type == RubyRequestType_ST) ||
232        (request->ruby_request.type == RubyRequestType_RMW_Read) ||
233        (request->ruby_request.type == RubyRequestType_RMW_Write) ||
234        (request->ruby_request.type == RubyRequestType_Locked_Read) ||
235        (request->ruby_request.type == RubyRequestType_Locked_Write)) {
236        pair<RequestTable::iterator, bool> r =
237            m_writeRequestTable.insert(RequestTable::value_type(line_addr, 0));
238        bool success = r.second;
239        RequestTable::iterator i = r.first;
240        if (!success) {
241            i->second = request;
242            // return true;
243
244            // drh5: isn't this an error?  do you lose the initial request?
245            assert(0);
246        }
247        i->second = request;
248        m_outstanding_count++;
249    } else {
250        pair<RequestTable::iterator, bool> r =
251            m_readRequestTable.insert(RequestTable::value_type(line_addr, 0));
252        bool success = r.second;
253        RequestTable::iterator i = r.first;
254        if (!success) {
255            i->second = request;
256            // return true;
257
258            // drh5: isn't this an error?  do you lose the initial request?
259            assert(0);
260        }
261        i->second = request;
262        m_outstanding_count++;
263    }
264
265    g_system_ptr->getProfiler()->sequencerRequests(m_outstanding_count);
266
267    total_outstanding = m_writeRequestTable.size() + m_readRequestTable.size();
268    assert(m_outstanding_count == total_outstanding);
269
270    return false;
271}
272
273void
274Sequencer::markRemoved()
275{
276    m_outstanding_count--;
277    assert(m_outstanding_count ==
278           m_writeRequestTable.size() + m_readRequestTable.size());
279}
280
281void
282Sequencer::removeRequest(SequencerRequest* srequest)
283{
284    assert(m_outstanding_count ==
285           m_writeRequestTable.size() + m_readRequestTable.size());
286
287    const RubyRequest & ruby_request = srequest->ruby_request;
288    Address line_addr(ruby_request.paddr);
289    line_addr.makeLineAddress();
290    if ((ruby_request.type == RubyRequestType_ST) ||
291        (ruby_request.type == RubyRequestType_RMW_Read) ||
292        (ruby_request.type == RubyRequestType_RMW_Write) ||
293        (ruby_request.type == RubyRequestType_Locked_Read) ||
294        (ruby_request.type == RubyRequestType_Locked_Write)) {
295        m_writeRequestTable.erase(line_addr);
296    } else {
297        m_readRequestTable.erase(line_addr);
298    }
299
300    markRemoved();
301}
302
303bool
304Sequencer::handleLlsc(const Address& address, SequencerRequest* request)
305{
306    //
307    // The success flag indicates whether the LLSC operation was successful.
308    // LL ops will always succeed, but SC may fail if the cache line is no
309    // longer locked.
310    //
311    bool success = true;
312    if (request->ruby_request.type == RubyRequestType_Locked_Write) {
313        if (!m_dataCache_ptr->isLocked(address, m_version)) {
314            //
315            // For failed SC requests, indicate the failure to the cpu by
316            // setting the extra data to zero.
317            //
318            request->ruby_request.pkt->req->setExtraData(0);
319            success = false;
320        } else {
321            //
322            // For successful SC requests, indicate the success to the cpu by
323            // setting the extra data to one.
324            //
325            request->ruby_request.pkt->req->setExtraData(1);
326        }
327        //
328        // Independent of success, all SC operations must clear the lock
329        //
330        m_dataCache_ptr->clearLocked(address);
331    } else if (request->ruby_request.type == RubyRequestType_Locked_Read) {
332        //
333        // Note: To fully follow Alpha LLSC semantics, should the LL clear any
334        // previously locked cache lines?
335        //
336        m_dataCache_ptr->setLocked(address, m_version);
337    } else if (m_dataCache_ptr->isLocked(address, m_version)) {
338        //
339        // Normal writes should clear the locked address
340        //
341        m_dataCache_ptr->clearLocked(address);
342    }
343    return success;
344}
345
346void
347Sequencer::writeCallback(const Address& address, DataBlock& data)
348{
349    writeCallback(address, GenericMachineType_NULL, data);
350}
351
352void
353Sequencer::writeCallback(const Address& address,
354                         GenericMachineType mach,
355                         DataBlock& data)
356{
357    writeCallback(address, mach, data, 0, 0, 0);
358}
359
360void
361Sequencer::writeCallback(const Address& address,
362                         GenericMachineType mach,
363                         DataBlock& data,
364                         Time initialRequestTime,
365                         Time forwardRequestTime,
366                         Time firstResponseTime)
367{
368    assert(address == line_address(address));
369    assert(m_writeRequestTable.count(line_address(address)));
370
371    RequestTable::iterator i = m_writeRequestTable.find(address);
372    assert(i != m_writeRequestTable.end());
373    SequencerRequest* request = i->second;
374
375    m_writeRequestTable.erase(i);
376    markRemoved();
377
378    assert((request->ruby_request.type == RubyRequestType_ST) ||
379           (request->ruby_request.type == RubyRequestType_RMW_Read) ||
380           (request->ruby_request.type == RubyRequestType_RMW_Write) ||
381           (request->ruby_request.type == RubyRequestType_Locked_Read) ||
382           (request->ruby_request.type == RubyRequestType_Locked_Write));
383
384    //
385    // For Alpha, properly handle LL, SC, and write requests with respect to
386    // locked cache blocks.
387    //
388    bool success = handleLlsc(address, request);
389
390    if (request->ruby_request.type == RubyRequestType_RMW_Read) {
391        m_controller->blockOnQueue(address, m_mandatory_q_ptr);
392    } else if (request->ruby_request.type == RubyRequestType_RMW_Write) {
393        m_controller->unblock(address);
394    }
395
396    hitCallback(request, mach, data, success,
397                initialRequestTime, forwardRequestTime, firstResponseTime);
398}
399
400void
401Sequencer::readCallback(const Address& address, DataBlock& data)
402{
403    readCallback(address, GenericMachineType_NULL, data);
404}
405
406void
407Sequencer::readCallback(const Address& address,
408                        GenericMachineType mach,
409                        DataBlock& data)
410{
411    readCallback(address, mach, data, 0, 0, 0);
412}
413
414void
415Sequencer::readCallback(const Address& address,
416                        GenericMachineType mach,
417                        DataBlock& data,
418                        Time initialRequestTime,
419                        Time forwardRequestTime,
420                        Time firstResponseTime)
421{
422    assert(address == line_address(address));
423    assert(m_readRequestTable.count(line_address(address)));
424
425    RequestTable::iterator i = m_readRequestTable.find(address);
426    assert(i != m_readRequestTable.end());
427    SequencerRequest* request = i->second;
428
429    m_readRequestTable.erase(i);
430    markRemoved();
431
432    assert((request->ruby_request.type == RubyRequestType_LD) ||
433           (request->ruby_request.type == RubyRequestType_RMW_Read) ||
434           (request->ruby_request.type == RubyRequestType_IFETCH));
435
436    hitCallback(request, mach, data, true,
437                initialRequestTime, forwardRequestTime, firstResponseTime);
438}
439
440void
441Sequencer::hitCallback(SequencerRequest* srequest,
442                       GenericMachineType mach,
443                       DataBlock& data,
444                       bool success,
445                       Time initialRequestTime,
446                       Time forwardRequestTime,
447                       Time firstResponseTime)
448{
449    const RubyRequest & ruby_request = srequest->ruby_request;
450    Address request_address(ruby_request.paddr);
451    Address request_line_address(ruby_request.paddr);
452    request_line_address.makeLineAddress();
453    RubyRequestType type = ruby_request.type;
454    Time issued_time = srequest->issue_time;
455
456    // Set this cache entry to the most recently used
457    if (type == RubyRequestType_IFETCH) {
458        if (m_instCache_ptr->isTagPresent(request_line_address))
459            m_instCache_ptr->setMRU(request_line_address);
460    } else {
461        if (m_dataCache_ptr->isTagPresent(request_line_address))
462            m_dataCache_ptr->setMRU(request_line_address);
463    }
464
465    assert(g_eventQueue_ptr->getTime() >= issued_time);
466    Time miss_latency = g_eventQueue_ptr->getTime() - issued_time;
467
468    // Profile the miss latency for all non-zero demand misses
469    if (miss_latency != 0) {
470        g_system_ptr->getProfiler()->missLatency(miss_latency, type, mach);
471
472        if (mach == GenericMachineType_L1Cache_wCC) {
473            g_system_ptr->getProfiler()->missLatencyWcc(issued_time,
474                                                   initialRequestTime,
475                                                   forwardRequestTime,
476                                                   firstResponseTime,
477                                                   g_eventQueue_ptr->getTime());
478        }
479
480        if (mach == GenericMachineType_Directory) {
481            g_system_ptr->getProfiler()->missLatencyDir(issued_time,
482                                                   initialRequestTime,
483                                                   forwardRequestTime,
484                                                   firstResponseTime,
485                                                   g_eventQueue_ptr->getTime());
486        }
487
488        if (Debug::getProtocolTrace()) {
489            if (success) {
490                g_system_ptr->getProfiler()->
491                    profileTransition("Seq", m_version,
492                                      Address(ruby_request.paddr), "", "Done", "",
493                                      csprintf("%d cycles", miss_latency));
494            } else {
495                g_system_ptr->getProfiler()->
496                    profileTransition("Seq", m_version,
497                                      Address(ruby_request.paddr), "", "SC_Failed", "",
498                                      csprintf("%d cycles", miss_latency));
499            }
500        }
501    }
502#if 0
503    if (request.getPrefetch() == PrefetchBit_Yes) {
504        return; // Ignore the prefetch
505    }
506#endif
507
508    // update the data
509    if (ruby_request.data != NULL) {
510        if ((type == RubyRequestType_LD) ||
511            (type == RubyRequestType_IFETCH) ||
512            (type == RubyRequestType_RMW_Read) ||
513            (type == RubyRequestType_Locked_Read)) {
514
515            memcpy(ruby_request.data,
516                   data.getData(request_address.getOffset(), ruby_request.len),
517                   ruby_request.len);
518        } else {
519            data.setData(ruby_request.data, request_address.getOffset(),
520                         ruby_request.len);
521        }
522    } else {
523        DPRINTF(MemoryAccess,
524                "WARNING.  Data not transfered from Ruby to M5 for type %s\n",
525                RubyRequestType_to_string(type));
526    }
527
528    // If using the RubyTester, update the RubyTester sender state's
529    // subBlock with the recieved data.  The tester will later access
530    // this state.
531    // Note: RubyPort will access it's sender state before the
532    // RubyTester.
533    if (m_usingRubyTester) {
534        RubyPort::SenderState *requestSenderState =
535            safe_cast<RubyPort::SenderState*>(ruby_request.pkt->senderState);
536        RubyTester::SenderState* testerSenderState =
537            safe_cast<RubyTester::SenderState*>(requestSenderState->saved);
538        testerSenderState->subBlock->mergeFrom(data);
539    }
540
541    ruby_hit_callback(ruby_request.pkt);
542    delete srequest;
543}
544
545// Returns true if the sequencer already has a load or store outstanding
546RequestStatus
547Sequencer::getRequestStatus(const RubyRequest& request)
548{
549    bool is_outstanding_store =
550        !!m_writeRequestTable.count(line_address(Address(request.paddr)));
551    bool is_outstanding_load =
552        !!m_readRequestTable.count(line_address(Address(request.paddr)));
553    if (is_outstanding_store) {
554        if ((request.type == RubyRequestType_LD) ||
555            (request.type == RubyRequestType_IFETCH) ||
556            (request.type == RubyRequestType_RMW_Read)) {
557            m_store_waiting_on_load_cycles++;
558        } else {
559            m_store_waiting_on_store_cycles++;
560        }
561        return RequestStatus_Aliased;
562    } else if (is_outstanding_load) {
563        if ((request.type == RubyRequestType_ST) ||
564            (request.type == RubyRequestType_RMW_Write)) {
565            m_load_waiting_on_store_cycles++;
566        } else {
567            m_load_waiting_on_load_cycles++;
568        }
569        return RequestStatus_Aliased;
570    }
571
572    if (m_outstanding_count >= m_max_outstanding_requests) {
573        return RequestStatus_BufferFull;
574    }
575
576    return RequestStatus_Ready;
577}
578
579bool
580Sequencer::empty() const
581{
582    return m_writeRequestTable.empty() && m_readRequestTable.empty();
583}
584
585RequestStatus
586Sequencer::makeRequest(const RubyRequest &request)
587{
588    assert(Address(request.paddr).getOffset() + request.len <=
589           RubySystem::getBlockSizeBytes());
590    RequestStatus status = getRequestStatus(request);
591    if (status != RequestStatus_Ready)
592        return status;
593
594    SequencerRequest *srequest =
595        new SequencerRequest(request, g_eventQueue_ptr->getTime());
596    bool found = insertRequest(srequest);
597    if (found) {
598        panic("Sequencer::makeRequest should never be called if the "
599              "request is already outstanding\n");
600        return RequestStatus_NULL;
601    }
602
603    issueRequest(request);
604
605    // TODO: issue hardware prefetches here
606    return RequestStatus_Issued;
607}
608
609void
610Sequencer::issueRequest(const RubyRequest& request)
611{
612    // TODO: get rid of CacheMsg, CacheRequestType, and
613    // AccessModeTYpe, & have SLICC use RubyRequest and subtypes
614    // natively
615    CacheRequestType ctype;
616    switch(request.type) {
617      case RubyRequestType_IFETCH:
618        ctype = CacheRequestType_IFETCH;
619        break;
620      case RubyRequestType_LD:
621        ctype = CacheRequestType_LD;
622        break;
623      case RubyRequestType_ST:
624        ctype = CacheRequestType_ST;
625        break;
626      case RubyRequestType_Locked_Read:
627      case RubyRequestType_Locked_Write:
628        ctype = CacheRequestType_ATOMIC;
629        break;
630      case RubyRequestType_RMW_Read:
631        ctype = CacheRequestType_ATOMIC;
632        break;
633      case RubyRequestType_RMW_Write:
634        ctype = CacheRequestType_ATOMIC;
635        break;
636      default:
637        assert(0);
638    }
639
640    AccessModeType amtype;
641    switch(request.access_mode){
642      case RubyAccessMode_User:
643        amtype = AccessModeType_UserMode;
644        break;
645      case RubyAccessMode_Supervisor:
646        amtype = AccessModeType_SupervisorMode;
647        break;
648      case RubyAccessMode_Device:
649        amtype = AccessModeType_UserMode;
650        break;
651      default:
652        assert(0);
653    }
654
655    Address line_addr(request.paddr);
656    line_addr.makeLineAddress();
657    CacheMsg *msg = new CacheMsg(line_addr, Address(request.paddr), ctype,
658        Address(request.pc), amtype, request.len, PrefetchBit_No,
659        request.proc_id);
660
661    if (Debug::getProtocolTrace()) {
662        g_system_ptr->getProfiler()->
663            profileTransition("Seq", m_version, Address(request.paddr),
664                              "", "Begin", "",
665                              RubyRequestType_to_string(request.type));
666    }
667
668    if (g_system_ptr->getTracer()->traceEnabled()) {
669        g_system_ptr->getTracer()->
670            traceRequest(this, line_addr, Address(request.pc),
671                         request.type, g_eventQueue_ptr->getTime());
672    }
673
674    Time latency = 0;  // initialzed to an null value
675
676    if (request.type == RubyRequestType_IFETCH)
677        latency = m_instCache_ptr->getLatency();
678    else
679        latency = m_dataCache_ptr->getLatency();
680
681    // Send the message to the cache controller
682    assert(latency > 0);
683
684    assert(m_mandatory_q_ptr != NULL);
685    m_mandatory_q_ptr->enqueue(msg, latency);
686}
687
688#if 0
689bool
690Sequencer::tryCacheAccess(const Address& addr, CacheRequestType type,
691                          AccessModeType access_mode,
692                          int size, DataBlock*& data_ptr)
693{
694    CacheMemory *cache =
695        (type == CacheRequestType_IFETCH) ? m_instCache_ptr : m_dataCache_ptr;
696
697    return cache->tryCacheAccess(line_address(addr), type, data_ptr);
698}
699#endif
700
701template <class KEY, class VALUE>
702std::ostream &
703operator<<(ostream &out, const m5::hash_map<KEY, VALUE> &map)
704{
705    typename m5::hash_map<KEY, VALUE>::const_iterator i = map.begin();
706    typename m5::hash_map<KEY, VALUE>::const_iterator end = map.end();
707
708    out << "[";
709    for (; i != end; ++i)
710        out << " " << i->first << "=" << i->second;
711    out << " ]";
712
713    return out;
714}
715
716void
717Sequencer::print(ostream& out) const
718{
719    out << "[Sequencer: " << m_version
720        << ", outstanding requests: " << m_outstanding_count
721        << ", read request table: " << m_readRequestTable
722        << ", write request table: " << m_writeRequestTable
723        << "]";
724}
725
726// this can be called from setState whenever coherence permissions are
727// upgraded when invoked, coherence violations will be checked for the
728// given block
729void
730Sequencer::checkCoherence(const Address& addr)
731{
732#ifdef CHECK_COHERENCE
733    g_system_ptr->checkGlobalCoherenceInvariant(addr);
734#endif
735}
736