Sequencer.cc revision 11033:9a0022457323
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "arch/x86/ldstflags.hh"
30#include "base/misc.hh"
31#include "base/str.hh"
32#include "cpu/testers/rubytest/RubyTester.hh"
33#include "debug/MemoryAccess.hh"
34#include "debug/ProtocolTrace.hh"
35#include "debug/RubySequencer.hh"
36#include "debug/RubyStats.hh"
37#include "mem/protocol/PrefetchBit.hh"
38#include "mem/protocol/RubyAccessMode.hh"
39#include "mem/ruby/profiler/Profiler.hh"
40#include "mem/ruby/slicc_interface/RubyRequest.hh"
41#include "mem/ruby/system/Sequencer.hh"
42#include "mem/ruby/system/System.hh"
43#include "mem/packet.hh"
44#include "sim/system.hh"
45
46using namespace std;
47
48Sequencer *
49RubySequencerParams::create()
50{
51    return new Sequencer(this);
52}
53
54Sequencer::Sequencer(const Params *p)
55    : RubyPort(p), m_IncompleteTimes(MachineType_NUM), deadlockCheckEvent(this)
56{
57    m_outstanding_count = 0;
58
59    m_instCache_ptr = p->icache;
60    m_dataCache_ptr = p->dcache;
61    m_data_cache_hit_latency = p->dcache_hit_latency;
62    m_inst_cache_hit_latency = p->icache_hit_latency;
63    m_max_outstanding_requests = p->max_outstanding_requests;
64    m_deadlock_threshold = p->deadlock_threshold;
65
66    assert(m_max_outstanding_requests > 0);
67    assert(m_deadlock_threshold > 0);
68    assert(m_instCache_ptr != NULL);
69    assert(m_dataCache_ptr != NULL);
70    assert(m_data_cache_hit_latency > 0);
71    assert(m_inst_cache_hit_latency > 0);
72
73    m_usingNetworkTester = p->using_network_tester;
74}
75
76Sequencer::~Sequencer()
77{
78}
79
80void
81Sequencer::wakeup()
82{
83    assert(drainState() != DrainState::Draining);
84
85    // Check for deadlock of any of the requests
86    Cycles current_time = curCycle();
87
88    // Check across all outstanding requests
89    int total_outstanding = 0;
90
91    RequestTable::iterator read = m_readRequestTable.begin();
92    RequestTable::iterator read_end = m_readRequestTable.end();
93    for (; read != read_end; ++read) {
94        SequencerRequest* request = read->second;
95        if (current_time - request->issue_time < m_deadlock_threshold)
96            continue;
97
98        panic("Possible Deadlock detected. Aborting!\n"
99              "version: %d request.paddr: 0x%x m_readRequestTable: %d "
100              "current time: %u issue_time: %d difference: %d\n", m_version,
101              request->pkt->getAddr(), m_readRequestTable.size(),
102              current_time * clockPeriod(), request->issue_time * clockPeriod(),
103              (current_time * clockPeriod()) - (request->issue_time * clockPeriod()));
104    }
105
106    RequestTable::iterator write = m_writeRequestTable.begin();
107    RequestTable::iterator write_end = m_writeRequestTable.end();
108    for (; write != write_end; ++write) {
109        SequencerRequest* request = write->second;
110        if (current_time - request->issue_time < m_deadlock_threshold)
111            continue;
112
113        panic("Possible Deadlock detected. Aborting!\n"
114              "version: %d request.paddr: 0x%x m_writeRequestTable: %d "
115              "current time: %u issue_time: %d difference: %d\n", m_version,
116              request->pkt->getAddr(), m_writeRequestTable.size(),
117              current_time * clockPeriod(), request->issue_time * clockPeriod(),
118              (current_time * clockPeriod()) - (request->issue_time * clockPeriod()));
119    }
120
121    total_outstanding += m_writeRequestTable.size();
122    total_outstanding += m_readRequestTable.size();
123
124    assert(m_outstanding_count == total_outstanding);
125
126    if (m_outstanding_count > 0) {
127        // If there are still outstanding requests, keep checking
128        schedule(deadlockCheckEvent, clockEdge(m_deadlock_threshold));
129    }
130}
131
132void Sequencer::resetStats()
133{
134    m_latencyHist.reset();
135    m_hitLatencyHist.reset();
136    m_missLatencyHist.reset();
137    for (int i = 0; i < RubyRequestType_NUM; i++) {
138        m_typeLatencyHist[i]->reset();
139        m_hitTypeLatencyHist[i]->reset();
140        m_missTypeLatencyHist[i]->reset();
141        for (int j = 0; j < MachineType_NUM; j++) {
142            m_hitTypeMachLatencyHist[i][j]->reset();
143            m_missTypeMachLatencyHist[i][j]->reset();
144        }
145    }
146
147    for (int i = 0; i < MachineType_NUM; i++) {
148        m_missMachLatencyHist[i]->reset();
149        m_hitMachLatencyHist[i]->reset();
150
151        m_IssueToInitialDelayHist[i]->reset();
152        m_InitialToForwardDelayHist[i]->reset();
153        m_ForwardToFirstResponseDelayHist[i]->reset();
154        m_FirstResponseToCompletionDelayHist[i]->reset();
155
156        m_IncompleteTimes[i] = 0;
157    }
158}
159
160void
161Sequencer::printProgress(ostream& out) const
162{
163#if 0
164    int total_demand = 0;
165    out << "Sequencer Stats Version " << m_version << endl;
166    out << "Current time = " << m_ruby_system->getTime() << endl;
167    out << "---------------" << endl;
168    out << "outstanding requests" << endl;
169
170    out << "proc " << m_Read
171        << " version Requests = " << m_readRequestTable.size() << endl;
172
173    // print the request table
174    RequestTable::iterator read = m_readRequestTable.begin();
175    RequestTable::iterator read_end = m_readRequestTable.end();
176    for (; read != read_end; ++read) {
177        SequencerRequest* request = read->second;
178        out << "\tRequest[ " << i << " ] = " << request->type
179            << " Address " << rkeys[i]
180            << " Posted " << request->issue_time
181            << " PF " << PrefetchBit_No << endl;
182        total_demand++;
183    }
184
185    out << "proc " << m_version
186        << " Write Requests = " << m_writeRequestTable.size << endl;
187
188    // print the request table
189    RequestTable::iterator write = m_writeRequestTable.begin();
190    RequestTable::iterator write_end = m_writeRequestTable.end();
191    for (; write != write_end; ++write) {
192        SequencerRequest* request = write->second;
193        out << "\tRequest[ " << i << " ] = " << request.getType()
194            << " Address " << wkeys[i]
195            << " Posted " << request.getTime()
196            << " PF " << request.getPrefetch() << endl;
197        if (request.getPrefetch() == PrefetchBit_No) {
198            total_demand++;
199        }
200    }
201
202    out << endl;
203
204    out << "Total Number Outstanding: " << m_outstanding_count << endl
205        << "Total Number Demand     : " << total_demand << endl
206        << "Total Number Prefetches : " << m_outstanding_count - total_demand
207        << endl << endl << endl;
208#endif
209}
210
211// Insert the request on the correct request table.  Return true if
212// the entry was already present.
213RequestStatus
214Sequencer::insertRequest(PacketPtr pkt, RubyRequestType request_type)
215{
216    assert(m_outstanding_count ==
217        (m_writeRequestTable.size() + m_readRequestTable.size()));
218
219    // See if we should schedule a deadlock check
220    if (!deadlockCheckEvent.scheduled() &&
221        drainState() != DrainState::Draining) {
222        schedule(deadlockCheckEvent, clockEdge(m_deadlock_threshold));
223    }
224
225    Addr line_addr = makeLineAddress(pkt->getAddr());
226    // Create a default entry, mapping the address to NULL, the cast is
227    // there to make gcc 4.4 happy
228    RequestTable::value_type default_entry(line_addr,
229                                           (SequencerRequest*) NULL);
230
231    if ((request_type == RubyRequestType_ST) ||
232        (request_type == RubyRequestType_RMW_Read) ||
233        (request_type == RubyRequestType_RMW_Write) ||
234        (request_type == RubyRequestType_Load_Linked) ||
235        (request_type == RubyRequestType_Store_Conditional) ||
236        (request_type == RubyRequestType_Locked_RMW_Read) ||
237        (request_type == RubyRequestType_Locked_RMW_Write) ||
238        (request_type == RubyRequestType_FLUSH)) {
239
240        // Check if there is any outstanding read request for the same
241        // cache line.
242        if (m_readRequestTable.count(line_addr) > 0) {
243            m_store_waiting_on_load++;
244            return RequestStatus_Aliased;
245        }
246
247        pair<RequestTable::iterator, bool> r =
248            m_writeRequestTable.insert(default_entry);
249        if (r.second) {
250            RequestTable::iterator i = r.first;
251            i->second = new SequencerRequest(pkt, request_type, curCycle());
252            m_outstanding_count++;
253        } else {
254          // There is an outstanding write request for the cache line
255          m_store_waiting_on_store++;
256          return RequestStatus_Aliased;
257        }
258    } else {
259        // Check if there is any outstanding write request for the same
260        // cache line.
261        if (m_writeRequestTable.count(line_addr) > 0) {
262            m_load_waiting_on_store++;
263            return RequestStatus_Aliased;
264        }
265
266        pair<RequestTable::iterator, bool> r =
267            m_readRequestTable.insert(default_entry);
268
269        if (r.second) {
270            RequestTable::iterator i = r.first;
271            i->second = new SequencerRequest(pkt, request_type, curCycle());
272            m_outstanding_count++;
273        } else {
274            // There is an outstanding read request for the cache line
275            m_load_waiting_on_load++;
276            return RequestStatus_Aliased;
277        }
278    }
279
280    m_outstandReqHist.sample(m_outstanding_count);
281    assert(m_outstanding_count ==
282        (m_writeRequestTable.size() + m_readRequestTable.size()));
283
284    return RequestStatus_Ready;
285}
286
287void
288Sequencer::markRemoved()
289{
290    m_outstanding_count--;
291    assert(m_outstanding_count ==
292           m_writeRequestTable.size() + m_readRequestTable.size());
293}
294
295void
296Sequencer::removeRequest(SequencerRequest* srequest)
297{
298    assert(m_outstanding_count ==
299           m_writeRequestTable.size() + m_readRequestTable.size());
300
301    Addr line_addr = makeLineAddress(srequest->pkt->getAddr());
302    if ((srequest->m_type == RubyRequestType_ST) ||
303        (srequest->m_type == RubyRequestType_RMW_Read) ||
304        (srequest->m_type == RubyRequestType_RMW_Write) ||
305        (srequest->m_type == RubyRequestType_Load_Linked) ||
306        (srequest->m_type == RubyRequestType_Store_Conditional) ||
307        (srequest->m_type == RubyRequestType_Locked_RMW_Read) ||
308        (srequest->m_type == RubyRequestType_Locked_RMW_Write)) {
309        m_writeRequestTable.erase(line_addr);
310    } else {
311        m_readRequestTable.erase(line_addr);
312    }
313
314    markRemoved();
315}
316
317void
318Sequencer::invalidateSC(Addr address)
319{
320    AbstractCacheEntry *e = m_dataCache_ptr->lookup(address);
321    // The controller has lost the coherence permissions, hence the lock
322    // on the cache line maintained by the cache should be cleared.
323    if (e && e->isLocked(m_version)) {
324        e->clearLocked();
325    }
326}
327
328bool
329Sequencer::handleLlsc(Addr address, SequencerRequest* request)
330{
331    AbstractCacheEntry *e = m_dataCache_ptr->lookup(address);
332    if (!e)
333        return true;
334
335    // The success flag indicates whether the LLSC operation was successful.
336    // LL ops will always succeed, but SC may fail if the cache line is no
337    // longer locked.
338    bool success = true;
339    if (request->m_type == RubyRequestType_Store_Conditional) {
340        if (!e->isLocked(m_version)) {
341            //
342            // For failed SC requests, indicate the failure to the cpu by
343            // setting the extra data to zero.
344            //
345            request->pkt->req->setExtraData(0);
346            success = false;
347        } else {
348            //
349            // For successful SC requests, indicate the success to the cpu by
350            // setting the extra data to one.
351            //
352            request->pkt->req->setExtraData(1);
353        }
354        //
355        // Independent of success, all SC operations must clear the lock
356        //
357        e->clearLocked();
358    } else if (request->m_type == RubyRequestType_Load_Linked) {
359        //
360        // Note: To fully follow Alpha LLSC semantics, should the LL clear any
361        // previously locked cache lines?
362        //
363        e->setLocked(m_version);
364    } else if (e->isLocked(m_version)) {
365        //
366        // Normal writes should clear the locked address
367        //
368        e->clearLocked();
369    }
370    return success;
371}
372
373void
374Sequencer::recordMissLatency(const Cycles cycles, const RubyRequestType type,
375                             const MachineType respondingMach,
376                             bool isExternalHit, Cycles issuedTime,
377                             Cycles initialRequestTime,
378                             Cycles forwardRequestTime,
379                             Cycles firstResponseTime, Cycles completionTime)
380{
381    m_latencyHist.sample(cycles);
382    m_typeLatencyHist[type]->sample(cycles);
383
384    if (isExternalHit) {
385        m_missLatencyHist.sample(cycles);
386        m_missTypeLatencyHist[type]->sample(cycles);
387
388        if (respondingMach != MachineType_NUM) {
389            m_missMachLatencyHist[respondingMach]->sample(cycles);
390            m_missTypeMachLatencyHist[type][respondingMach]->sample(cycles);
391
392            if ((issuedTime <= initialRequestTime) &&
393                (initialRequestTime <= forwardRequestTime) &&
394                (forwardRequestTime <= firstResponseTime) &&
395                (firstResponseTime <= completionTime)) {
396
397                m_IssueToInitialDelayHist[respondingMach]->sample(
398                    initialRequestTime - issuedTime);
399                m_InitialToForwardDelayHist[respondingMach]->sample(
400                    forwardRequestTime - initialRequestTime);
401                m_ForwardToFirstResponseDelayHist[respondingMach]->sample(
402                    firstResponseTime - forwardRequestTime);
403                m_FirstResponseToCompletionDelayHist[respondingMach]->sample(
404                    completionTime - firstResponseTime);
405            } else {
406                m_IncompleteTimes[respondingMach]++;
407            }
408        }
409    } else {
410        m_hitLatencyHist.sample(cycles);
411        m_hitTypeLatencyHist[type]->sample(cycles);
412
413        if (respondingMach != MachineType_NUM) {
414            m_hitMachLatencyHist[respondingMach]->sample(cycles);
415            m_hitTypeMachLatencyHist[type][respondingMach]->sample(cycles);
416        }
417    }
418}
419
420void
421Sequencer::writeCallback(Addr address, DataBlock& data,
422                         const bool externalHit, const MachineType mach,
423                         const Cycles initialRequestTime,
424                         const Cycles forwardRequestTime,
425                         const Cycles firstResponseTime)
426{
427    assert(address == makeLineAddress(address));
428    assert(m_writeRequestTable.count(makeLineAddress(address)));
429
430    RequestTable::iterator i = m_writeRequestTable.find(address);
431    assert(i != m_writeRequestTable.end());
432    SequencerRequest* request = i->second;
433
434    m_writeRequestTable.erase(i);
435    markRemoved();
436
437    assert((request->m_type == RubyRequestType_ST) ||
438           (request->m_type == RubyRequestType_ATOMIC) ||
439           (request->m_type == RubyRequestType_RMW_Read) ||
440           (request->m_type == RubyRequestType_RMW_Write) ||
441           (request->m_type == RubyRequestType_Load_Linked) ||
442           (request->m_type == RubyRequestType_Store_Conditional) ||
443           (request->m_type == RubyRequestType_Locked_RMW_Read) ||
444           (request->m_type == RubyRequestType_Locked_RMW_Write) ||
445           (request->m_type == RubyRequestType_FLUSH));
446
447    //
448    // For Alpha, properly handle LL, SC, and write requests with respect to
449    // locked cache blocks.
450    //
451    // Not valid for Network_test protocl
452    //
453    bool success = true;
454    if(!m_usingNetworkTester)
455        success = handleLlsc(address, request);
456
457    if (request->m_type == RubyRequestType_Locked_RMW_Read) {
458        m_controller->blockOnQueue(address, m_mandatory_q_ptr);
459    } else if (request->m_type == RubyRequestType_Locked_RMW_Write) {
460        m_controller->unblock(address);
461    }
462
463    hitCallback(request, data, success, mach, externalHit,
464                initialRequestTime, forwardRequestTime, firstResponseTime);
465}
466
467void
468Sequencer::readCallback(Addr address, DataBlock& data,
469                        bool externalHit, const MachineType mach,
470                        Cycles initialRequestTime,
471                        Cycles forwardRequestTime,
472                        Cycles firstResponseTime)
473{
474    assert(address == makeLineAddress(address));
475    assert(m_readRequestTable.count(makeLineAddress(address)));
476
477    RequestTable::iterator i = m_readRequestTable.find(address);
478    assert(i != m_readRequestTable.end());
479    SequencerRequest* request = i->second;
480
481    m_readRequestTable.erase(i);
482    markRemoved();
483
484    assert((request->m_type == RubyRequestType_LD) ||
485           (request->m_type == RubyRequestType_IFETCH));
486
487    hitCallback(request, data, true, mach, externalHit,
488                initialRequestTime, forwardRequestTime, firstResponseTime);
489}
490
491void
492Sequencer::hitCallback(SequencerRequest* srequest, DataBlock& data,
493                       bool llscSuccess,
494                       const MachineType mach, const bool externalHit,
495                       const Cycles initialRequestTime,
496                       const Cycles forwardRequestTime,
497                       const Cycles firstResponseTime)
498{
499    warn_once("Replacement policy updates recently became the responsibility "
500              "of SLICC state machines. Make sure to setMRU() near callbacks "
501              "in .sm files!");
502
503    PacketPtr pkt = srequest->pkt;
504    Addr request_address(pkt->getAddr());
505    RubyRequestType type = srequest->m_type;
506    Cycles issued_time = srequest->issue_time;
507
508    assert(curCycle() >= issued_time);
509    Cycles total_latency = curCycle() - issued_time;
510
511    // Profile the latency for all demand accesses.
512    recordMissLatency(total_latency, type, mach, externalHit, issued_time,
513                      initialRequestTime, forwardRequestTime,
514                      firstResponseTime, curCycle());
515
516    DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %#x %d cycles\n",
517             curTick(), m_version, "Seq",
518             llscSuccess ? "Done" : "SC_Failed", "", "",
519             request_address, total_latency);
520
521    // update the data unless it is a non-data-carrying flush
522    if (RubySystem::getWarmupEnabled()) {
523        data.setData(pkt->getConstPtr<uint8_t>(),
524                     getOffset(request_address), pkt->getSize());
525    } else if (!pkt->isFlush()) {
526        if ((type == RubyRequestType_LD) ||
527            (type == RubyRequestType_IFETCH) ||
528            (type == RubyRequestType_RMW_Read) ||
529            (type == RubyRequestType_Locked_RMW_Read) ||
530            (type == RubyRequestType_Load_Linked)) {
531            memcpy(pkt->getPtr<uint8_t>(),
532                   data.getData(getOffset(request_address), pkt->getSize()),
533                   pkt->getSize());
534            DPRINTF(RubySequencer, "read data %s\n", data);
535        } else {
536            data.setData(pkt->getConstPtr<uint8_t>(),
537                         getOffset(request_address), pkt->getSize());
538            DPRINTF(RubySequencer, "set data %s\n", data);
539        }
540    }
541
542    // If using the RubyTester, update the RubyTester sender state's
543    // subBlock with the recieved data.  The tester will later access
544    // this state.
545    if (m_usingRubyTester) {
546        DPRINTF(RubySequencer, "hitCallback %s 0x%x using RubyTester\n",
547                pkt->cmdString(), pkt->getAddr());
548        RubyTester::SenderState* testerSenderState =
549            pkt->findNextSenderState<RubyTester::SenderState>();
550        assert(testerSenderState);
551        testerSenderState->subBlock.mergeFrom(data);
552    }
553
554    delete srequest;
555
556    RubySystem *rs = m_ruby_system;
557    if (RubySystem::getWarmupEnabled()) {
558        assert(pkt->req);
559        delete pkt->req;
560        delete pkt;
561        rs->m_cache_recorder->enqueueNextFetchRequest();
562    } else if (RubySystem::getCooldownEnabled()) {
563        delete pkt;
564        rs->m_cache_recorder->enqueueNextFlushRequest();
565    } else {
566        ruby_hit_callback(pkt);
567    }
568}
569
570bool
571Sequencer::empty() const
572{
573    return m_writeRequestTable.empty() && m_readRequestTable.empty();
574}
575
576RequestStatus
577Sequencer::makeRequest(PacketPtr pkt)
578{
579    if (m_outstanding_count >= m_max_outstanding_requests) {
580        return RequestStatus_BufferFull;
581    }
582
583    RubyRequestType primary_type = RubyRequestType_NULL;
584    RubyRequestType secondary_type = RubyRequestType_NULL;
585
586    if (pkt->isLLSC()) {
587        //
588        // Alpha LL/SC instructions need to be handled carefully by the cache
589        // coherence protocol to ensure they follow the proper semantics. In
590        // particular, by identifying the operations as atomic, the protocol
591        // should understand that migratory sharing optimizations should not
592        // be performed (i.e. a load between the LL and SC should not steal
593        // away exclusive permission).
594        //
595        if (pkt->isWrite()) {
596            DPRINTF(RubySequencer, "Issuing SC\n");
597            primary_type = RubyRequestType_Store_Conditional;
598        } else {
599            DPRINTF(RubySequencer, "Issuing LL\n");
600            assert(pkt->isRead());
601            primary_type = RubyRequestType_Load_Linked;
602        }
603        secondary_type = RubyRequestType_ATOMIC;
604    } else if (pkt->req->isLockedRMW()) {
605        //
606        // x86 locked instructions are translated to store cache coherence
607        // requests because these requests should always be treated as read
608        // exclusive operations and should leverage any migratory sharing
609        // optimization built into the protocol.
610        //
611        if (pkt->isWrite()) {
612            DPRINTF(RubySequencer, "Issuing Locked RMW Write\n");
613            primary_type = RubyRequestType_Locked_RMW_Write;
614        } else {
615            DPRINTF(RubySequencer, "Issuing Locked RMW Read\n");
616            assert(pkt->isRead());
617            primary_type = RubyRequestType_Locked_RMW_Read;
618        }
619        secondary_type = RubyRequestType_ST;
620    } else {
621        if (pkt->isRead()) {
622            if (pkt->req->isInstFetch()) {
623                primary_type = secondary_type = RubyRequestType_IFETCH;
624            } else {
625                bool storeCheck = false;
626                // only X86 need the store check
627                if (system->getArch() == Arch::X86ISA) {
628                    uint32_t flags = pkt->req->getFlags();
629                    storeCheck = flags &
630                        (X86ISA::StoreCheck << X86ISA::FlagShift);
631                }
632                if (storeCheck) {
633                    primary_type = RubyRequestType_RMW_Read;
634                    secondary_type = RubyRequestType_ST;
635                } else {
636                    primary_type = secondary_type = RubyRequestType_LD;
637                }
638            }
639        } else if (pkt->isWrite()) {
640            //
641            // Note: M5 packets do not differentiate ST from RMW_Write
642            //
643            primary_type = secondary_type = RubyRequestType_ST;
644        } else if (pkt->isFlush()) {
645          primary_type = secondary_type = RubyRequestType_FLUSH;
646        } else {
647            panic("Unsupported ruby packet type\n");
648        }
649    }
650
651    RequestStatus status = insertRequest(pkt, primary_type);
652    if (status != RequestStatus_Ready)
653        return status;
654
655    issueRequest(pkt, secondary_type);
656
657    // TODO: issue hardware prefetches here
658    return RequestStatus_Issued;
659}
660
661void
662Sequencer::issueRequest(PacketPtr pkt, RubyRequestType secondary_type)
663{
664    assert(pkt != NULL);
665    ContextID proc_id = pkt->req->hasContextId() ?
666        pkt->req->contextId() : InvalidContextID;
667
668    // If valid, copy the pc to the ruby request
669    Addr pc = 0;
670    if (pkt->req->hasPC()) {
671        pc = pkt->req->getPC();
672    }
673
674    // check if the packet has data as for example prefetch and flush
675    // requests do not
676    std::shared_ptr<RubyRequest> msg =
677        std::make_shared<RubyRequest>(clockEdge(), pkt->getAddr(),
678                                      pkt->isFlush() ?
679                                      nullptr : pkt->getPtr<uint8_t>(),
680                                      pkt->getSize(), pc, secondary_type,
681                                      RubyAccessMode_Supervisor, pkt,
682                                      PrefetchBit_No, proc_id);
683
684    DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %#x %s\n",
685            curTick(), m_version, "Seq", "Begin", "", "",
686            msg->getPhysicalAddress(),
687            RubyRequestType_to_string(secondary_type));
688
689    // The Sequencer currently assesses instruction and data cache hit latency
690    // for the top-level caches at the beginning of a memory access.
691    // TODO: Eventually, this latency should be moved to represent the actual
692    // cache access latency portion of the memory access. This will require
693    // changing cache controller protocol files to assess the latency on the
694    // access response path.
695    Cycles latency(0);  // Initialize to zero to catch misconfigured latency
696    if (secondary_type == RubyRequestType_IFETCH)
697        latency = m_inst_cache_hit_latency;
698    else
699        latency = m_data_cache_hit_latency;
700
701    // Send the message to the cache controller
702    assert(latency > 0);
703
704    assert(m_mandatory_q_ptr != NULL);
705    m_mandatory_q_ptr->enqueue(msg, latency);
706}
707
708template <class KEY, class VALUE>
709std::ostream &
710operator<<(ostream &out, const m5::hash_map<KEY, VALUE> &map)
711{
712    typename m5::hash_map<KEY, VALUE>::const_iterator i = map.begin();
713    typename m5::hash_map<KEY, VALUE>::const_iterator end = map.end();
714
715    out << "[";
716    for (; i != end; ++i)
717        out << " " << i->first << "=" << i->second;
718    out << " ]";
719
720    return out;
721}
722
723void
724Sequencer::print(ostream& out) const
725{
726    out << "[Sequencer: " << m_version
727        << ", outstanding requests: " << m_outstanding_count
728        << ", read request table: " << m_readRequestTable
729        << ", write request table: " << m_writeRequestTable
730        << "]";
731}
732
733// this can be called from setState whenever coherence permissions are
734// upgraded when invoked, coherence violations will be checked for the
735// given block
736void
737Sequencer::checkCoherence(Addr addr)
738{
739#ifdef CHECK_COHERENCE
740    m_ruby_system->checkGlobalCoherenceInvariant(addr);
741#endif
742}
743
744void
745Sequencer::recordRequestType(SequencerRequestType requestType) {
746    DPRINTF(RubyStats, "Recorded statistic: %s\n",
747            SequencerRequestType_to_string(requestType));
748}
749
750
751void
752Sequencer::evictionCallback(Addr address)
753{
754    ruby_eviction_callback(address);
755}
756
757void
758Sequencer::regStats()
759{
760    m_store_waiting_on_load
761        .name(name() + ".store_waiting_on_load")
762        .desc("Number of times a store aliased with a pending load")
763        .flags(Stats::nozero);
764    m_store_waiting_on_store
765        .name(name() + ".store_waiting_on_store")
766        .desc("Number of times a store aliased with a pending store")
767        .flags(Stats::nozero);
768    m_load_waiting_on_load
769        .name(name() + ".load_waiting_on_load")
770        .desc("Number of times a load aliased with a pending load")
771        .flags(Stats::nozero);
772    m_load_waiting_on_store
773        .name(name() + ".load_waiting_on_store")
774        .desc("Number of times a load aliased with a pending store")
775        .flags(Stats::nozero);
776
777    // These statistical variables are not for display.
778    // The profiler will collate these across different
779    // sequencers and display those collated statistics.
780    m_outstandReqHist.init(10);
781    m_latencyHist.init(10);
782    m_hitLatencyHist.init(10);
783    m_missLatencyHist.init(10);
784
785    for (int i = 0; i < RubyRequestType_NUM; i++) {
786        m_typeLatencyHist.push_back(new Stats::Histogram());
787        m_typeLatencyHist[i]->init(10);
788
789        m_hitTypeLatencyHist.push_back(new Stats::Histogram());
790        m_hitTypeLatencyHist[i]->init(10);
791
792        m_missTypeLatencyHist.push_back(new Stats::Histogram());
793        m_missTypeLatencyHist[i]->init(10);
794    }
795
796    for (int i = 0; i < MachineType_NUM; i++) {
797        m_hitMachLatencyHist.push_back(new Stats::Histogram());
798        m_hitMachLatencyHist[i]->init(10);
799
800        m_missMachLatencyHist.push_back(new Stats::Histogram());
801        m_missMachLatencyHist[i]->init(10);
802
803        m_IssueToInitialDelayHist.push_back(new Stats::Histogram());
804        m_IssueToInitialDelayHist[i]->init(10);
805
806        m_InitialToForwardDelayHist.push_back(new Stats::Histogram());
807        m_InitialToForwardDelayHist[i]->init(10);
808
809        m_ForwardToFirstResponseDelayHist.push_back(new Stats::Histogram());
810        m_ForwardToFirstResponseDelayHist[i]->init(10);
811
812        m_FirstResponseToCompletionDelayHist.push_back(new Stats::Histogram());
813        m_FirstResponseToCompletionDelayHist[i]->init(10);
814    }
815
816    for (int i = 0; i < RubyRequestType_NUM; i++) {
817        m_hitTypeMachLatencyHist.push_back(std::vector<Stats::Histogram *>());
818        m_missTypeMachLatencyHist.push_back(std::vector<Stats::Histogram *>());
819
820        for (int j = 0; j < MachineType_NUM; j++) {
821            m_hitTypeMachLatencyHist[i].push_back(new Stats::Histogram());
822            m_hitTypeMachLatencyHist[i][j]->init(10);
823
824            m_missTypeMachLatencyHist[i].push_back(new Stats::Histogram());
825            m_missTypeMachLatencyHist[i][j]->init(10);
826        }
827    }
828}
829