Sequencer.cc revision 10089:bc3126a05a7f
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "base/misc.hh"
30#include "base/str.hh"
31#include "config/the_isa.hh"
32#if THE_ISA == X86_ISA
33#include "arch/x86/insts/microldstop.hh"
34#endif // X86_ISA
35#include "cpu/testers/rubytest/RubyTester.hh"
36#include "debug/MemoryAccess.hh"
37#include "debug/ProtocolTrace.hh"
38#include "debug/RubySequencer.hh"
39#include "debug/RubyStats.hh"
40#include "mem/protocol/PrefetchBit.hh"
41#include "mem/protocol/RubyAccessMode.hh"
42#include "mem/ruby/common/Global.hh"
43#include "mem/ruby/profiler/Profiler.hh"
44#include "mem/ruby/slicc_interface/RubyRequest.hh"
45#include "mem/ruby/system/Sequencer.hh"
46#include "mem/ruby/system/System.hh"
47#include "mem/packet.hh"
48
49using namespace std;
50
51Sequencer *
52RubySequencerParams::create()
53{
54    return new Sequencer(this);
55}
56
57Sequencer::Sequencer(const Params *p)
58    : RubyPort(p), m_IncompleteTimes(MachineType_NUM), deadlockCheckEvent(this)
59{
60    m_outstanding_count = 0;
61
62    m_instCache_ptr = p->icache;
63    m_dataCache_ptr = p->dcache;
64    m_max_outstanding_requests = p->max_outstanding_requests;
65    m_deadlock_threshold = p->deadlock_threshold;
66
67    assert(m_max_outstanding_requests > 0);
68    assert(m_deadlock_threshold > 0);
69    assert(m_instCache_ptr != NULL);
70    assert(m_dataCache_ptr != NULL);
71
72    m_usingNetworkTester = p->using_network_tester;
73}
74
75Sequencer::~Sequencer()
76{
77}
78
79void
80Sequencer::wakeup()
81{
82    assert(getDrainState() != Drainable::Draining);
83
84    // Check for deadlock of any of the requests
85    Cycles current_time = curCycle();
86
87    // Check across all outstanding requests
88    int total_outstanding = 0;
89
90    RequestTable::iterator read = m_readRequestTable.begin();
91    RequestTable::iterator read_end = m_readRequestTable.end();
92    for (; read != read_end; ++read) {
93        SequencerRequest* request = read->second;
94        if (current_time - request->issue_time < m_deadlock_threshold)
95            continue;
96
97        panic("Possible Deadlock detected. Aborting!\n"
98             "version: %d request.paddr: 0x%x m_readRequestTable: %d "
99             "current time: %u issue_time: %d difference: %d\n", m_version,
100             Address(request->pkt->getAddr()), m_readRequestTable.size(),
101              current_time * clockPeriod(), request->issue_time * clockPeriod(),
102              (current_time * clockPeriod()) - (request->issue_time * clockPeriod()));
103    }
104
105    RequestTable::iterator write = m_writeRequestTable.begin();
106    RequestTable::iterator write_end = m_writeRequestTable.end();
107    for (; write != write_end; ++write) {
108        SequencerRequest* request = write->second;
109        if (current_time - request->issue_time < m_deadlock_threshold)
110            continue;
111
112        panic("Possible Deadlock detected. Aborting!\n"
113             "version: %d request.paddr: 0x%x m_writeRequestTable: %d "
114             "current time: %u issue_time: %d difference: %d\n", m_version,
115             Address(request->pkt->getAddr()), m_writeRequestTable.size(),
116              current_time * clockPeriod(), request->issue_time * clockPeriod(),
117              (current_time * clockPeriod()) - (request->issue_time * clockPeriod()));
118    }
119
120    total_outstanding += m_writeRequestTable.size();
121    total_outstanding += m_readRequestTable.size();
122
123    assert(m_outstanding_count == total_outstanding);
124
125    if (m_outstanding_count > 0) {
126        // If there are still outstanding requests, keep checking
127        schedule(deadlockCheckEvent, clockEdge(m_deadlock_threshold));
128    }
129}
130
131void Sequencer::resetStats()
132{
133    m_latencyHist.reset();
134    m_hitLatencyHist.reset();
135    m_missLatencyHist.reset();
136    for (int i = 0; i < RubyRequestType_NUM; i++) {
137        m_typeLatencyHist[i]->reset();
138        m_hitTypeLatencyHist[i]->reset();
139        m_missTypeLatencyHist[i]->reset();
140        for (int j = 0; j < MachineType_NUM; j++) {
141            m_hitTypeMachLatencyHist[i][j]->reset();
142            m_missTypeMachLatencyHist[i][j]->reset();
143        }
144    }
145
146    for (int i = 0; i < MachineType_NUM; i++) {
147        m_missMachLatencyHist[i]->reset();
148        m_hitMachLatencyHist[i]->reset();
149
150        m_IssueToInitialDelayHist[i]->reset();
151        m_InitialToForwardDelayHist[i]->reset();
152        m_ForwardToFirstResponseDelayHist[i]->reset();
153        m_FirstResponseToCompletionDelayHist[i]->reset();
154
155        m_IncompleteTimes[i] = 0;
156    }
157}
158
159void
160Sequencer::printProgress(ostream& out) const
161{
162#if 0
163    int total_demand = 0;
164    out << "Sequencer Stats Version " << m_version << endl;
165    out << "Current time = " << g_system_ptr->getTime() << endl;
166    out << "---------------" << endl;
167    out << "outstanding requests" << endl;
168
169    out << "proc " << m_Read
170        << " version Requests = " << m_readRequestTable.size() << endl;
171
172    // print the request table
173    RequestTable::iterator read = m_readRequestTable.begin();
174    RequestTable::iterator read_end = m_readRequestTable.end();
175    for (; read != read_end; ++read) {
176        SequencerRequest* request = read->second;
177        out << "\tRequest[ " << i << " ] = " << request->type
178            << " Address " << rkeys[i]
179            << " Posted " << request->issue_time
180            << " PF " << PrefetchBit_No << endl;
181        total_demand++;
182    }
183
184    out << "proc " << m_version
185        << " Write Requests = " << m_writeRequestTable.size << endl;
186
187    // print the request table
188    RequestTable::iterator write = m_writeRequestTable.begin();
189    RequestTable::iterator write_end = m_writeRequestTable.end();
190    for (; write != write_end; ++write) {
191        SequencerRequest* request = write->second;
192        out << "\tRequest[ " << i << " ] = " << request.getType()
193            << " Address " << wkeys[i]
194            << " Posted " << request.getTime()
195            << " PF " << request.getPrefetch() << endl;
196        if (request.getPrefetch() == PrefetchBit_No) {
197            total_demand++;
198        }
199    }
200
201    out << endl;
202
203    out << "Total Number Outstanding: " << m_outstanding_count << endl
204        << "Total Number Demand     : " << total_demand << endl
205        << "Total Number Prefetches : " << m_outstanding_count - total_demand
206        << endl << endl << endl;
207#endif
208}
209
210// Insert the request on the correct request table.  Return true if
211// the entry was already present.
212RequestStatus
213Sequencer::insertRequest(PacketPtr pkt, RubyRequestType request_type)
214{
215    assert(m_outstanding_count ==
216        (m_writeRequestTable.size() + m_readRequestTable.size()));
217
218    // See if we should schedule a deadlock check
219    if (!deadlockCheckEvent.scheduled() &&
220        getDrainState() != Drainable::Draining) {
221        schedule(deadlockCheckEvent, clockEdge(m_deadlock_threshold));
222    }
223
224    Address line_addr(pkt->getAddr());
225    line_addr.makeLineAddress();
226    // Create a default entry, mapping the address to NULL, the cast is
227    // there to make gcc 4.4 happy
228    RequestTable::value_type default_entry(line_addr,
229                                           (SequencerRequest*) NULL);
230
231    if ((request_type == RubyRequestType_ST) ||
232        (request_type == RubyRequestType_RMW_Read) ||
233        (request_type == RubyRequestType_RMW_Write) ||
234        (request_type == RubyRequestType_Load_Linked) ||
235        (request_type == RubyRequestType_Store_Conditional) ||
236        (request_type == RubyRequestType_Locked_RMW_Read) ||
237        (request_type == RubyRequestType_Locked_RMW_Write) ||
238        (request_type == RubyRequestType_FLUSH)) {
239
240        // Check if there is any outstanding read request for the same
241        // cache line.
242        if (m_readRequestTable.count(line_addr) > 0) {
243            m_store_waiting_on_load++;
244            return RequestStatus_Aliased;
245        }
246
247        pair<RequestTable::iterator, bool> r =
248            m_writeRequestTable.insert(default_entry);
249        if (r.second) {
250            RequestTable::iterator i = r.first;
251            i->second = new SequencerRequest(pkt, request_type, curCycle());
252            m_outstanding_count++;
253        } else {
254          // There is an outstanding write request for the cache line
255          m_store_waiting_on_store++;
256          return RequestStatus_Aliased;
257        }
258    } else {
259        // Check if there is any outstanding write request for the same
260        // cache line.
261        if (m_writeRequestTable.count(line_addr) > 0) {
262            m_load_waiting_on_store++;
263            return RequestStatus_Aliased;
264        }
265
266        pair<RequestTable::iterator, bool> r =
267            m_readRequestTable.insert(default_entry);
268
269        if (r.second) {
270            RequestTable::iterator i = r.first;
271            i->second = new SequencerRequest(pkt, request_type, curCycle());
272            m_outstanding_count++;
273        } else {
274            // There is an outstanding read request for the cache line
275            m_load_waiting_on_load++;
276            return RequestStatus_Aliased;
277        }
278    }
279
280    m_outstandReqHist.sample(m_outstanding_count);
281    assert(m_outstanding_count ==
282        (m_writeRequestTable.size() + m_readRequestTable.size()));
283
284    return RequestStatus_Ready;
285}
286
287void
288Sequencer::markRemoved()
289{
290    m_outstanding_count--;
291    assert(m_outstanding_count ==
292           m_writeRequestTable.size() + m_readRequestTable.size());
293}
294
295void
296Sequencer::removeRequest(SequencerRequest* srequest)
297{
298    assert(m_outstanding_count ==
299           m_writeRequestTable.size() + m_readRequestTable.size());
300
301    Address line_addr(srequest->pkt->getAddr());
302    line_addr.makeLineAddress();
303    if ((srequest->m_type == RubyRequestType_ST) ||
304        (srequest->m_type == RubyRequestType_RMW_Read) ||
305        (srequest->m_type == RubyRequestType_RMW_Write) ||
306        (srequest->m_type == RubyRequestType_Load_Linked) ||
307        (srequest->m_type == RubyRequestType_Store_Conditional) ||
308        (srequest->m_type == RubyRequestType_Locked_RMW_Read) ||
309        (srequest->m_type == RubyRequestType_Locked_RMW_Write)) {
310        m_writeRequestTable.erase(line_addr);
311    } else {
312        m_readRequestTable.erase(line_addr);
313    }
314
315    markRemoved();
316}
317
318void
319Sequencer::invalidateSC(const Address& address)
320{
321    RequestTable::iterator i = m_writeRequestTable.find(address);
322    if (i != m_writeRequestTable.end()) {
323        SequencerRequest* request = i->second;
324        // The controller has lost the coherence permissions, hence the lock
325        // on the cache line maintained by the cache should be cleared.
326        if (request->m_type == RubyRequestType_Store_Conditional) {
327            m_dataCache_ptr->clearLocked(address);
328        }
329    }
330}
331
332bool
333Sequencer::handleLlsc(const Address& address, SequencerRequest* request)
334{
335    //
336    // The success flag indicates whether the LLSC operation was successful.
337    // LL ops will always succeed, but SC may fail if the cache line is no
338    // longer locked.
339    //
340    bool success = true;
341    if (request->m_type == RubyRequestType_Store_Conditional) {
342        if (!m_dataCache_ptr->isLocked(address, m_version)) {
343            //
344            // For failed SC requests, indicate the failure to the cpu by
345            // setting the extra data to zero.
346            //
347            request->pkt->req->setExtraData(0);
348            success = false;
349        } else {
350            //
351            // For successful SC requests, indicate the success to the cpu by
352            // setting the extra data to one.
353            //
354            request->pkt->req->setExtraData(1);
355        }
356        //
357        // Independent of success, all SC operations must clear the lock
358        //
359        m_dataCache_ptr->clearLocked(address);
360    } else if (request->m_type == RubyRequestType_Load_Linked) {
361        //
362        // Note: To fully follow Alpha LLSC semantics, should the LL clear any
363        // previously locked cache lines?
364        //
365        m_dataCache_ptr->setLocked(address, m_version);
366    } else if ((m_dataCache_ptr->isTagPresent(address)) &&
367               (m_dataCache_ptr->isLocked(address, m_version))) {
368        //
369        // Normal writes should clear the locked address
370        //
371        m_dataCache_ptr->clearLocked(address);
372    }
373    return success;
374}
375
376void
377Sequencer::recordMissLatency(const Cycles cycles, const RubyRequestType type,
378                             const MachineType respondingMach,
379                             bool isExternalHit, Cycles issuedTime,
380                             Cycles initialRequestTime,
381                             Cycles forwardRequestTime,
382                             Cycles firstResponseTime, Cycles completionTime)
383{
384    m_latencyHist.sample(cycles);
385    m_typeLatencyHist[type]->sample(cycles);
386
387    if (isExternalHit) {
388        m_missLatencyHist.sample(cycles);
389        m_missTypeLatencyHist[type]->sample(cycles);
390
391        if (respondingMach != MachineType_NUM) {
392            m_missMachLatencyHist[respondingMach]->sample(cycles);
393            m_missTypeMachLatencyHist[type][respondingMach]->sample(cycles);
394
395            if ((issuedTime <= initialRequestTime) &&
396                (initialRequestTime <= forwardRequestTime) &&
397                (forwardRequestTime <= firstResponseTime) &&
398                (firstResponseTime <= completionTime)) {
399
400                m_IssueToInitialDelayHist[respondingMach]->sample(
401                    initialRequestTime - issuedTime);
402                m_InitialToForwardDelayHist[respondingMach]->sample(
403                    forwardRequestTime - initialRequestTime);
404                m_ForwardToFirstResponseDelayHist[respondingMach]->sample(
405                    firstResponseTime - forwardRequestTime);
406                m_FirstResponseToCompletionDelayHist[respondingMach]->sample(
407                    completionTime - firstResponseTime);
408            } else {
409                m_IncompleteTimes[respondingMach]++;
410            }
411        }
412    } else {
413        m_hitLatencyHist.sample(cycles);
414        m_hitTypeLatencyHist[type]->sample(cycles);
415
416        if (respondingMach != MachineType_NUM) {
417            m_hitMachLatencyHist[respondingMach]->sample(cycles);
418            m_hitTypeMachLatencyHist[type][respondingMach]->sample(cycles);
419        }
420    }
421}
422
423void
424Sequencer::writeCallback(const Address& address, DataBlock& data,
425                         const bool externalHit, const MachineType mach,
426                         const Cycles initialRequestTime,
427                         const Cycles forwardRequestTime,
428                         const Cycles firstResponseTime)
429{
430    assert(address == line_address(address));
431    assert(m_writeRequestTable.count(line_address(address)));
432
433    RequestTable::iterator i = m_writeRequestTable.find(address);
434    assert(i != m_writeRequestTable.end());
435    SequencerRequest* request = i->second;
436
437    m_writeRequestTable.erase(i);
438    markRemoved();
439
440    assert((request->m_type == RubyRequestType_ST) ||
441           (request->m_type == RubyRequestType_ATOMIC) ||
442           (request->m_type == RubyRequestType_RMW_Read) ||
443           (request->m_type == RubyRequestType_RMW_Write) ||
444           (request->m_type == RubyRequestType_Load_Linked) ||
445           (request->m_type == RubyRequestType_Store_Conditional) ||
446           (request->m_type == RubyRequestType_Locked_RMW_Read) ||
447           (request->m_type == RubyRequestType_Locked_RMW_Write) ||
448           (request->m_type == RubyRequestType_FLUSH));
449
450    //
451    // For Alpha, properly handle LL, SC, and write requests with respect to
452    // locked cache blocks.
453    //
454    // Not valid for Network_test protocl
455    //
456    bool success = true;
457    if(!m_usingNetworkTester)
458        success = handleLlsc(address, request);
459
460    if (request->m_type == RubyRequestType_Locked_RMW_Read) {
461        m_controller->blockOnQueue(address, m_mandatory_q_ptr);
462    } else if (request->m_type == RubyRequestType_Locked_RMW_Write) {
463        m_controller->unblock(address);
464    }
465
466    hitCallback(request, data, success, mach, externalHit,
467                initialRequestTime, forwardRequestTime, firstResponseTime);
468}
469
470void
471Sequencer::readCallback(const Address& address, DataBlock& data,
472                        bool externalHit, const MachineType mach,
473                        Cycles initialRequestTime,
474                        Cycles forwardRequestTime,
475                        Cycles firstResponseTime)
476{
477    assert(address == line_address(address));
478    assert(m_readRequestTable.count(line_address(address)));
479
480    RequestTable::iterator i = m_readRequestTable.find(address);
481    assert(i != m_readRequestTable.end());
482    SequencerRequest* request = i->second;
483
484    m_readRequestTable.erase(i);
485    markRemoved();
486
487    assert((request->m_type == RubyRequestType_LD) ||
488           (request->m_type == RubyRequestType_IFETCH));
489
490    hitCallback(request, data, true, mach, externalHit,
491                initialRequestTime, forwardRequestTime, firstResponseTime);
492}
493
494void
495Sequencer::hitCallback(SequencerRequest* srequest, DataBlock& data,
496                       bool llscSuccess,
497                       const MachineType mach, const bool externalHit,
498                       const Cycles initialRequestTime,
499                       const Cycles forwardRequestTime,
500                       const Cycles firstResponseTime)
501{
502    PacketPtr pkt = srequest->pkt;
503    Address request_address(pkt->getAddr());
504    Address request_line_address(pkt->getAddr());
505    request_line_address.makeLineAddress();
506    RubyRequestType type = srequest->m_type;
507    Cycles issued_time = srequest->issue_time;
508
509    // Set this cache entry to the most recently used
510    if (type == RubyRequestType_IFETCH) {
511        m_instCache_ptr->setMRU(request_line_address);
512    } else {
513        m_dataCache_ptr->setMRU(request_line_address);
514    }
515
516    assert(curCycle() >= issued_time);
517    Cycles total_latency = curCycle() - issued_time;
518
519    // Profile the latency for all demand accesses.
520    recordMissLatency(total_latency, type, mach, externalHit, issued_time,
521                      initialRequestTime, forwardRequestTime,
522                      firstResponseTime, curCycle());
523
524    DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %d cycles\n",
525             curTick(), m_version, "Seq",
526             llscSuccess ? "Done" : "SC_Failed", "", "",
527             request_address, total_latency);
528
529    // update the data
530    if (g_system_ptr->m_warmup_enabled) {
531        assert(pkt->getPtr<uint8_t>(false) != NULL);
532        data.setData(pkt->getPtr<uint8_t>(false),
533                     request_address.getOffset(), pkt->getSize());
534    } else if (pkt->getPtr<uint8_t>(true) != NULL) {
535        if ((type == RubyRequestType_LD) ||
536            (type == RubyRequestType_IFETCH) ||
537            (type == RubyRequestType_RMW_Read) ||
538            (type == RubyRequestType_Locked_RMW_Read) ||
539            (type == RubyRequestType_Load_Linked)) {
540            memcpy(pkt->getPtr<uint8_t>(true),
541                   data.getData(request_address.getOffset(), pkt->getSize()),
542                   pkt->getSize());
543        } else {
544            data.setData(pkt->getPtr<uint8_t>(true),
545                         request_address.getOffset(), pkt->getSize());
546        }
547    } else {
548        DPRINTF(MemoryAccess,
549                "WARNING.  Data not transfered from Ruby to M5 for type %s\n",
550                RubyRequestType_to_string(type));
551    }
552
553    // If using the RubyTester, update the RubyTester sender state's
554    // subBlock with the recieved data.  The tester will later access
555    // this state.
556    if (m_usingRubyTester) {
557        RubyTester::SenderState* testerSenderState =
558            pkt->findNextSenderState<RubyTester::SenderState>();
559        assert(testerSenderState);
560        testerSenderState->subBlock.mergeFrom(data);
561    }
562
563    delete srequest;
564
565    if (g_system_ptr->m_warmup_enabled) {
566        assert(pkt->req);
567        delete pkt->req;
568        delete pkt;
569        g_system_ptr->m_cache_recorder->enqueueNextFetchRequest();
570    } else if (g_system_ptr->m_cooldown_enabled) {
571        delete pkt;
572        g_system_ptr->m_cache_recorder->enqueueNextFlushRequest();
573    } else {
574        ruby_hit_callback(pkt);
575    }
576}
577
578bool
579Sequencer::empty() const
580{
581    return m_writeRequestTable.empty() && m_readRequestTable.empty();
582}
583
584RequestStatus
585Sequencer::makeRequest(PacketPtr pkt)
586{
587    if (m_outstanding_count >= m_max_outstanding_requests) {
588        return RequestStatus_BufferFull;
589    }
590
591    RubyRequestType primary_type = RubyRequestType_NULL;
592    RubyRequestType secondary_type = RubyRequestType_NULL;
593
594    if (pkt->isLLSC()) {
595        //
596        // Alpha LL/SC instructions need to be handled carefully by the cache
597        // coherence protocol to ensure they follow the proper semantics. In
598        // particular, by identifying the operations as atomic, the protocol
599        // should understand that migratory sharing optimizations should not
600        // be performed (i.e. a load between the LL and SC should not steal
601        // away exclusive permission).
602        //
603        if (pkt->isWrite()) {
604            DPRINTF(RubySequencer, "Issuing SC\n");
605            primary_type = RubyRequestType_Store_Conditional;
606        } else {
607            DPRINTF(RubySequencer, "Issuing LL\n");
608            assert(pkt->isRead());
609            primary_type = RubyRequestType_Load_Linked;
610        }
611        secondary_type = RubyRequestType_ATOMIC;
612    } else if (pkt->req->isLocked()) {
613        //
614        // x86 locked instructions are translated to store cache coherence
615        // requests because these requests should always be treated as read
616        // exclusive operations and should leverage any migratory sharing
617        // optimization built into the protocol.
618        //
619        if (pkt->isWrite()) {
620            DPRINTF(RubySequencer, "Issuing Locked RMW Write\n");
621            primary_type = RubyRequestType_Locked_RMW_Write;
622        } else {
623            DPRINTF(RubySequencer, "Issuing Locked RMW Read\n");
624            assert(pkt->isRead());
625            primary_type = RubyRequestType_Locked_RMW_Read;
626        }
627        secondary_type = RubyRequestType_ST;
628    } else {
629        if (pkt->isRead()) {
630            if (pkt->req->isInstFetch()) {
631                primary_type = secondary_type = RubyRequestType_IFETCH;
632            } else {
633#if THE_ISA == X86_ISA
634                uint32_t flags = pkt->req->getFlags();
635                bool storeCheck = flags &
636                        (TheISA::StoreCheck << TheISA::FlagShift);
637#else
638                bool storeCheck = false;
639#endif // X86_ISA
640                if (storeCheck) {
641                    primary_type = RubyRequestType_RMW_Read;
642                    secondary_type = RubyRequestType_ST;
643                } else {
644                    primary_type = secondary_type = RubyRequestType_LD;
645                }
646            }
647        } else if (pkt->isWrite()) {
648            //
649            // Note: M5 packets do not differentiate ST from RMW_Write
650            //
651            primary_type = secondary_type = RubyRequestType_ST;
652        } else if (pkt->isFlush()) {
653          primary_type = secondary_type = RubyRequestType_FLUSH;
654        } else {
655            panic("Unsupported ruby packet type\n");
656        }
657    }
658
659    RequestStatus status = insertRequest(pkt, primary_type);
660    if (status != RequestStatus_Ready)
661        return status;
662
663    issueRequest(pkt, secondary_type);
664
665    // TODO: issue hardware prefetches here
666    return RequestStatus_Issued;
667}
668
669void
670Sequencer::issueRequest(PacketPtr pkt, RubyRequestType secondary_type)
671{
672    assert(pkt != NULL);
673    int proc_id = -1;
674    if (pkt->req->hasContextId()) {
675        proc_id = pkt->req->contextId();
676    }
677
678    // If valid, copy the pc to the ruby request
679    Addr pc = 0;
680    if (pkt->req->hasPC()) {
681        pc = pkt->req->getPC();
682    }
683
684    RubyRequest *msg = new RubyRequest(clockEdge(), pkt->getAddr(),
685                                       pkt->getPtr<uint8_t>(true),
686                                       pkt->getSize(), pc, secondary_type,
687                                       RubyAccessMode_Supervisor, pkt,
688                                       PrefetchBit_No, proc_id);
689
690    DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %s\n",
691            curTick(), m_version, "Seq", "Begin", "", "",
692            msg->getPhysicalAddress(),
693            RubyRequestType_to_string(secondary_type));
694
695    Cycles latency(0);  // initialzed to an null value
696
697    if (secondary_type == RubyRequestType_IFETCH)
698        latency = m_instCache_ptr->getLatency();
699    else
700        latency = m_dataCache_ptr->getLatency();
701
702    // Send the message to the cache controller
703    assert(latency > 0);
704
705    assert(m_mandatory_q_ptr != NULL);
706    m_mandatory_q_ptr->enqueue(msg, latency);
707}
708
709template <class KEY, class VALUE>
710std::ostream &
711operator<<(ostream &out, const m5::hash_map<KEY, VALUE> &map)
712{
713    typename m5::hash_map<KEY, VALUE>::const_iterator i = map.begin();
714    typename m5::hash_map<KEY, VALUE>::const_iterator end = map.end();
715
716    out << "[";
717    for (; i != end; ++i)
718        out << " " << i->first << "=" << i->second;
719    out << " ]";
720
721    return out;
722}
723
724void
725Sequencer::print(ostream& out) const
726{
727    out << "[Sequencer: " << m_version
728        << ", outstanding requests: " << m_outstanding_count
729        << ", read request table: " << m_readRequestTable
730        << ", write request table: " << m_writeRequestTable
731        << "]";
732}
733
734// this can be called from setState whenever coherence permissions are
735// upgraded when invoked, coherence violations will be checked for the
736// given block
737void
738Sequencer::checkCoherence(const Address& addr)
739{
740#ifdef CHECK_COHERENCE
741    g_system_ptr->checkGlobalCoherenceInvariant(addr);
742#endif
743}
744
745void
746Sequencer::recordRequestType(SequencerRequestType requestType) {
747    DPRINTF(RubyStats, "Recorded statistic: %s\n",
748            SequencerRequestType_to_string(requestType));
749}
750
751
752void
753Sequencer::evictionCallback(const Address& address)
754{
755    ruby_eviction_callback(address);
756}
757
758void
759Sequencer::regStats()
760{
761    m_store_waiting_on_load
762        .name(name() + ".store_waiting_on_load")
763        .desc("Number of times a store aliased with a pending load")
764        .flags(Stats::nozero);
765    m_store_waiting_on_store
766        .name(name() + ".store_waiting_on_store")
767        .desc("Number of times a store aliased with a pending store")
768        .flags(Stats::nozero);
769    m_load_waiting_on_load
770        .name(name() + ".load_waiting_on_load")
771        .desc("Number of times a load aliased with a pending load")
772        .flags(Stats::nozero);
773    m_load_waiting_on_store
774        .name(name() + ".load_waiting_on_store")
775        .desc("Number of times a load aliased with a pending store")
776        .flags(Stats::nozero);
777
778    // These statistical variables are not for display.
779    // The profiler will collate these across different
780    // sequencers and display those collated statistics.
781    m_outstandReqHist.init(10);
782    m_latencyHist.init(10);
783    m_hitLatencyHist.init(10);
784    m_missLatencyHist.init(10);
785
786    for (int i = 0; i < RubyRequestType_NUM; i++) {
787        m_typeLatencyHist.push_back(new Stats::Histogram());
788        m_typeLatencyHist[i]->init(10);
789
790        m_hitTypeLatencyHist.push_back(new Stats::Histogram());
791        m_hitTypeLatencyHist[i]->init(10);
792
793        m_missTypeLatencyHist.push_back(new Stats::Histogram());
794        m_missTypeLatencyHist[i]->init(10);
795    }
796
797    for (int i = 0; i < MachineType_NUM; i++) {
798        m_hitMachLatencyHist.push_back(new Stats::Histogram());
799        m_hitMachLatencyHist[i]->init(10);
800
801        m_missMachLatencyHist.push_back(new Stats::Histogram());
802        m_missMachLatencyHist[i]->init(10);
803
804        m_IssueToInitialDelayHist.push_back(new Stats::Histogram());
805        m_IssueToInitialDelayHist[i]->init(10);
806
807        m_InitialToForwardDelayHist.push_back(new Stats::Histogram());
808        m_InitialToForwardDelayHist[i]->init(10);
809
810        m_ForwardToFirstResponseDelayHist.push_back(new Stats::Histogram());
811        m_ForwardToFirstResponseDelayHist[i]->init(10);
812
813        m_FirstResponseToCompletionDelayHist.push_back(new Stats::Histogram());
814        m_FirstResponseToCompletionDelayHist[i]->init(10);
815    }
816
817    for (int i = 0; i < RubyRequestType_NUM; i++) {
818        m_hitTypeMachLatencyHist.push_back(std::vector<Stats::Histogram *>());
819        m_missTypeMachLatencyHist.push_back(std::vector<Stats::Histogram *>());
820
821        for (int j = 0; j < MachineType_NUM; j++) {
822            m_hitTypeMachLatencyHist[i].push_back(new Stats::Histogram());
823            m_hitTypeMachLatencyHist[i][j]->init(10);
824
825            m_missTypeMachLatencyHist[i].push_back(new Stats::Histogram());
826            m_missTypeMachLatencyHist[i][j]->init(10);
827        }
828    }
829}
830