Sequencer.cc revision 9467
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "base/misc.hh"
30#include "base/str.hh"
31#include "config/the_isa.hh"
32#if THE_ISA == X86_ISA
33#include "arch/x86/insts/microldstop.hh"
34#endif // X86_ISA
35#include "cpu/testers/rubytest/RubyTester.hh"
36#include "debug/MemoryAccess.hh"
37#include "debug/ProtocolTrace.hh"
38#include "debug/RubySequencer.hh"
39#include "debug/RubyStats.hh"
40#include "mem/protocol/PrefetchBit.hh"
41#include "mem/protocol/RubyAccessMode.hh"
42#include "mem/ruby/buffers/MessageBuffer.hh"
43#include "mem/ruby/common/Global.hh"
44#include "mem/ruby/profiler/Profiler.hh"
45#include "mem/ruby/slicc_interface/RubyRequest.hh"
46#include "mem/ruby/system/Sequencer.hh"
47#include "mem/ruby/system/System.hh"
48#include "mem/packet.hh"
49
50using namespace std;
51
52Sequencer *
53RubySequencerParams::create()
54{
55    return new Sequencer(this);
56}
57
58Sequencer::Sequencer(const Params *p)
59    : RubyPort(p), deadlockCheckEvent(this)
60{
61    m_store_waiting_on_load_cycles = 0;
62    m_store_waiting_on_store_cycles = 0;
63    m_load_waiting_on_store_cycles = 0;
64    m_load_waiting_on_load_cycles = 0;
65
66    m_outstanding_count = 0;
67
68    m_instCache_ptr = p->icache;
69    m_dataCache_ptr = p->dcache;
70    m_max_outstanding_requests = p->max_outstanding_requests;
71    m_deadlock_threshold = p->deadlock_threshold;
72
73    assert(m_max_outstanding_requests > 0);
74    assert(m_deadlock_threshold > 0);
75    assert(m_instCache_ptr != NULL);
76    assert(m_dataCache_ptr != NULL);
77
78    m_usingNetworkTester = p->using_network_tester;
79}
80
81Sequencer::~Sequencer()
82{
83}
84
85void
86Sequencer::wakeup()
87{
88    assert(getDrainState() != Drainable::Draining);
89
90    // Check for deadlock of any of the requests
91    Time current_time = curCycle();
92
93    // Check across all outstanding requests
94    int total_outstanding = 0;
95
96    RequestTable::iterator read = m_readRequestTable.begin();
97    RequestTable::iterator read_end = m_readRequestTable.end();
98    for (; read != read_end; ++read) {
99        SequencerRequest* request = read->second;
100        if (current_time - request->issue_time < m_deadlock_threshold)
101            continue;
102
103        panic("Possible Deadlock detected. Aborting!\n"
104             "version: %d request.paddr: 0x%x m_readRequestTable: %d "
105             "current time: %u issue_time: %d difference: %d\n", m_version,
106             Address(request->pkt->getAddr()), m_readRequestTable.size(),
107              current_time * clockPeriod(), request->issue_time * clockPeriod(),
108              (current_time * clockPeriod()) - (request->issue_time * clockPeriod()));
109    }
110
111    RequestTable::iterator write = m_writeRequestTable.begin();
112    RequestTable::iterator write_end = m_writeRequestTable.end();
113    for (; write != write_end; ++write) {
114        SequencerRequest* request = write->second;
115        if (current_time - request->issue_time < m_deadlock_threshold)
116            continue;
117
118        panic("Possible Deadlock detected. Aborting!\n"
119             "version: %d request.paddr: 0x%x m_writeRequestTable: %d "
120             "current time: %u issue_time: %d difference: %d\n", m_version,
121             Address(request->pkt->getAddr()), m_writeRequestTable.size(),
122              current_time * clockPeriod(), request->issue_time * clockPeriod(),
123              (current_time * clockPeriod()) - (request->issue_time * clockPeriod()));
124    }
125
126    total_outstanding += m_writeRequestTable.size();
127    total_outstanding += m_readRequestTable.size();
128
129    assert(m_outstanding_count == total_outstanding);
130
131    if (m_outstanding_count > 0) {
132        // If there are still outstanding requests, keep checking
133        schedule(deadlockCheckEvent, clockEdge(m_deadlock_threshold));
134    }
135}
136
137void
138Sequencer::printStats(ostream & out) const
139{
140    out << "Sequencer: " << m_name << endl
141        << "  store_waiting_on_load_cycles: "
142        << m_store_waiting_on_load_cycles << endl
143        << "  store_waiting_on_store_cycles: "
144        << m_store_waiting_on_store_cycles << endl
145        << "  load_waiting_on_load_cycles: "
146        << m_load_waiting_on_load_cycles << endl
147        << "  load_waiting_on_store_cycles: "
148        << m_load_waiting_on_store_cycles << endl;
149}
150
151void
152Sequencer::printProgress(ostream& out) const
153{
154#if 0
155    int total_demand = 0;
156    out << "Sequencer Stats Version " << m_version << endl;
157    out << "Current time = " << g_system_ptr->getTime() << endl;
158    out << "---------------" << endl;
159    out << "outstanding requests" << endl;
160
161    out << "proc " << m_Read
162        << " version Requests = " << m_readRequestTable.size() << endl;
163
164    // print the request table
165    RequestTable::iterator read = m_readRequestTable.begin();
166    RequestTable::iterator read_end = m_readRequestTable.end();
167    for (; read != read_end; ++read) {
168        SequencerRequest* request = read->second;
169        out << "\tRequest[ " << i << " ] = " << request->type
170            << " Address " << rkeys[i]
171            << " Posted " << request->issue_time
172            << " PF " << PrefetchBit_No << endl;
173        total_demand++;
174    }
175
176    out << "proc " << m_version
177        << " Write Requests = " << m_writeRequestTable.size << endl;
178
179    // print the request table
180    RequestTable::iterator write = m_writeRequestTable.begin();
181    RequestTable::iterator write_end = m_writeRequestTable.end();
182    for (; write != write_end; ++write) {
183        SequencerRequest* request = write->second;
184        out << "\tRequest[ " << i << " ] = " << request.getType()
185            << " Address " << wkeys[i]
186            << " Posted " << request.getTime()
187            << " PF " << request.getPrefetch() << endl;
188        if (request.getPrefetch() == PrefetchBit_No) {
189            total_demand++;
190        }
191    }
192
193    out << endl;
194
195    out << "Total Number Outstanding: " << m_outstanding_count << endl
196        << "Total Number Demand     : " << total_demand << endl
197        << "Total Number Prefetches : " << m_outstanding_count - total_demand
198        << endl << endl << endl;
199#endif
200}
201
202// Insert the request on the correct request table.  Return true if
203// the entry was already present.
204RequestStatus
205Sequencer::insertRequest(PacketPtr pkt, RubyRequestType request_type)
206{
207    assert(m_outstanding_count ==
208        (m_writeRequestTable.size() + m_readRequestTable.size()));
209
210    // See if we should schedule a deadlock check
211    if (!deadlockCheckEvent.scheduled() &&
212        getDrainState() != Drainable::Draining) {
213        schedule(deadlockCheckEvent, clockEdge(m_deadlock_threshold));
214    }
215
216    Address line_addr(pkt->getAddr());
217    line_addr.makeLineAddress();
218    // Create a default entry, mapping the address to NULL, the cast is
219    // there to make gcc 4.4 happy
220    RequestTable::value_type default_entry(line_addr,
221                                           (SequencerRequest*) NULL);
222
223    if ((request_type == RubyRequestType_ST) ||
224        (request_type == RubyRequestType_RMW_Read) ||
225        (request_type == RubyRequestType_RMW_Write) ||
226        (request_type == RubyRequestType_Load_Linked) ||
227        (request_type == RubyRequestType_Store_Conditional) ||
228        (request_type == RubyRequestType_Locked_RMW_Read) ||
229        (request_type == RubyRequestType_Locked_RMW_Write) ||
230        (request_type == RubyRequestType_FLUSH)) {
231
232        // Check if there is any outstanding read request for the same
233        // cache line.
234        if (m_readRequestTable.count(line_addr) > 0) {
235            m_store_waiting_on_load_cycles++;
236            return RequestStatus_Aliased;
237        }
238
239        pair<RequestTable::iterator, bool> r =
240            m_writeRequestTable.insert(default_entry);
241        if (r.second) {
242            RequestTable::iterator i = r.first;
243            i->second = new SequencerRequest(pkt, request_type, curCycle());
244            m_outstanding_count++;
245        } else {
246          // There is an outstanding write request for the cache line
247          m_store_waiting_on_store_cycles++;
248          return RequestStatus_Aliased;
249        }
250    } else {
251        // Check if there is any outstanding write request for the same
252        // cache line.
253        if (m_writeRequestTable.count(line_addr) > 0) {
254            m_load_waiting_on_store_cycles++;
255            return RequestStatus_Aliased;
256        }
257
258        pair<RequestTable::iterator, bool> r =
259            m_readRequestTable.insert(default_entry);
260
261        if (r.second) {
262            RequestTable::iterator i = r.first;
263            i->second = new SequencerRequest(pkt, request_type, curCycle());
264            m_outstanding_count++;
265        } else {
266            // There is an outstanding read request for the cache line
267            m_load_waiting_on_load_cycles++;
268            return RequestStatus_Aliased;
269        }
270    }
271
272    g_system_ptr->getProfiler()->sequencerRequests(m_outstanding_count);
273    assert(m_outstanding_count ==
274        (m_writeRequestTable.size() + m_readRequestTable.size()));
275
276    return RequestStatus_Ready;
277}
278
279void
280Sequencer::markRemoved()
281{
282    m_outstanding_count--;
283    assert(m_outstanding_count ==
284           m_writeRequestTable.size() + m_readRequestTable.size());
285}
286
287void
288Sequencer::removeRequest(SequencerRequest* srequest)
289{
290    assert(m_outstanding_count ==
291           m_writeRequestTable.size() + m_readRequestTable.size());
292
293    Address line_addr(srequest->pkt->getAddr());
294    line_addr.makeLineAddress();
295    if ((srequest->m_type == RubyRequestType_ST) ||
296        (srequest->m_type == RubyRequestType_RMW_Read) ||
297        (srequest->m_type == RubyRequestType_RMW_Write) ||
298        (srequest->m_type == RubyRequestType_Load_Linked) ||
299        (srequest->m_type == RubyRequestType_Store_Conditional) ||
300        (srequest->m_type == RubyRequestType_Locked_RMW_Read) ||
301        (srequest->m_type == RubyRequestType_Locked_RMW_Write)) {
302        m_writeRequestTable.erase(line_addr);
303    } else {
304        m_readRequestTable.erase(line_addr);
305    }
306
307    markRemoved();
308}
309
310bool
311Sequencer::handleLlsc(const Address& address, SequencerRequest* request)
312{
313    //
314    // The success flag indicates whether the LLSC operation was successful.
315    // LL ops will always succeed, but SC may fail if the cache line is no
316    // longer locked.
317    //
318    bool success = true;
319    if (request->m_type == RubyRequestType_Store_Conditional) {
320        if (!m_dataCache_ptr->isLocked(address, m_version)) {
321            //
322            // For failed SC requests, indicate the failure to the cpu by
323            // setting the extra data to zero.
324            //
325            request->pkt->req->setExtraData(0);
326            success = false;
327        } else {
328            //
329            // For successful SC requests, indicate the success to the cpu by
330            // setting the extra data to one.
331            //
332            request->pkt->req->setExtraData(1);
333        }
334        //
335        // Independent of success, all SC operations must clear the lock
336        //
337        m_dataCache_ptr->clearLocked(address);
338    } else if (request->m_type == RubyRequestType_Load_Linked) {
339        //
340        // Note: To fully follow Alpha LLSC semantics, should the LL clear any
341        // previously locked cache lines?
342        //
343        m_dataCache_ptr->setLocked(address, m_version);
344    } else if ((m_dataCache_ptr->isTagPresent(address)) &&
345               (m_dataCache_ptr->isLocked(address, m_version))) {
346        //
347        // Normal writes should clear the locked address
348        //
349        m_dataCache_ptr->clearLocked(address);
350    }
351    return success;
352}
353
354void
355Sequencer::writeCallback(const Address& address, DataBlock& data)
356{
357    writeCallback(address, GenericMachineType_NULL, data);
358}
359
360void
361Sequencer::writeCallback(const Address& address,
362                         GenericMachineType mach,
363                         DataBlock& data)
364{
365    writeCallback(address, mach, data, 0, 0, 0);
366}
367
368void
369Sequencer::writeCallback(const Address& address,
370                         GenericMachineType mach,
371                         DataBlock& data,
372                         Time initialRequestTime,
373                         Time forwardRequestTime,
374                         Time firstResponseTime)
375{
376    assert(address == line_address(address));
377    assert(m_writeRequestTable.count(line_address(address)));
378
379    RequestTable::iterator i = m_writeRequestTable.find(address);
380    assert(i != m_writeRequestTable.end());
381    SequencerRequest* request = i->second;
382
383    m_writeRequestTable.erase(i);
384    markRemoved();
385
386    assert((request->m_type == RubyRequestType_ST) ||
387           (request->m_type == RubyRequestType_ATOMIC) ||
388           (request->m_type == RubyRequestType_RMW_Read) ||
389           (request->m_type == RubyRequestType_RMW_Write) ||
390           (request->m_type == RubyRequestType_Load_Linked) ||
391           (request->m_type == RubyRequestType_Store_Conditional) ||
392           (request->m_type == RubyRequestType_Locked_RMW_Read) ||
393           (request->m_type == RubyRequestType_Locked_RMW_Write) ||
394           (request->m_type == RubyRequestType_FLUSH));
395
396
397    //
398    // For Alpha, properly handle LL, SC, and write requests with respect to
399    // locked cache blocks.
400    //
401    // Not valid for Network_test protocl
402    //
403    bool success = true;
404    if(!m_usingNetworkTester)
405        success = handleLlsc(address, request);
406
407    if (request->m_type == RubyRequestType_Locked_RMW_Read) {
408        m_controller->blockOnQueue(address, m_mandatory_q_ptr);
409    } else if (request->m_type == RubyRequestType_Locked_RMW_Write) {
410        m_controller->unblock(address);
411    }
412
413    hitCallback(request, mach, data, success,
414                initialRequestTime, forwardRequestTime, firstResponseTime);
415}
416
417void
418Sequencer::readCallback(const Address& address, DataBlock& data)
419{
420    readCallback(address, GenericMachineType_NULL, data);
421}
422
423void
424Sequencer::readCallback(const Address& address,
425                        GenericMachineType mach,
426                        DataBlock& data)
427{
428    readCallback(address, mach, data, 0, 0, 0);
429}
430
431void
432Sequencer::readCallback(const Address& address,
433                        GenericMachineType mach,
434                        DataBlock& data,
435                        Time initialRequestTime,
436                        Time forwardRequestTime,
437                        Time firstResponseTime)
438{
439    assert(address == line_address(address));
440    assert(m_readRequestTable.count(line_address(address)));
441
442    RequestTable::iterator i = m_readRequestTable.find(address);
443    assert(i != m_readRequestTable.end());
444    SequencerRequest* request = i->second;
445
446    m_readRequestTable.erase(i);
447    markRemoved();
448
449    assert((request->m_type == RubyRequestType_LD) ||
450           (request->m_type == RubyRequestType_IFETCH));
451
452    hitCallback(request, mach, data, true,
453                initialRequestTime, forwardRequestTime, firstResponseTime);
454}
455
456void
457Sequencer::hitCallback(SequencerRequest* srequest,
458                       GenericMachineType mach,
459                       DataBlock& data,
460                       bool success,
461                       Time initialRequestTime,
462                       Time forwardRequestTime,
463                       Time firstResponseTime)
464{
465    PacketPtr pkt = srequest->pkt;
466    Address request_address(pkt->getAddr());
467    Address request_line_address(pkt->getAddr());
468    request_line_address.makeLineAddress();
469    RubyRequestType type = srequest->m_type;
470    Time issued_time = srequest->issue_time;
471
472    // Set this cache entry to the most recently used
473    if (type == RubyRequestType_IFETCH) {
474        m_instCache_ptr->setMRU(request_line_address);
475    } else {
476        m_dataCache_ptr->setMRU(request_line_address);
477    }
478
479    assert(curCycle() >= issued_time);
480    Time miss_latency = curCycle() - issued_time;
481
482    // Profile the miss latency for all non-zero demand misses
483    if (miss_latency != 0) {
484        g_system_ptr->getProfiler()->missLatency(miss_latency, type, mach);
485
486        if (mach == GenericMachineType_L1Cache_wCC) {
487            g_system_ptr->getProfiler()->missLatencyWcc(issued_time,
488                initialRequestTime, forwardRequestTime,
489                firstResponseTime, curCycle());
490        }
491
492        if (mach == GenericMachineType_Directory) {
493            g_system_ptr->getProfiler()->missLatencyDir(issued_time,
494                initialRequestTime, forwardRequestTime,
495                firstResponseTime, curCycle());
496        }
497
498        DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %d cycles\n",
499                 curTick(), m_version, "Seq",
500                 success ? "Done" : "SC_Failed", "", "",
501                 request_address, miss_latency);
502    }
503
504    // update the data
505    if (g_system_ptr->m_warmup_enabled) {
506        assert(pkt->getPtr<uint8_t>(false) != NULL);
507        data.setData(pkt->getPtr<uint8_t>(false),
508                     request_address.getOffset(), pkt->getSize());
509    } else if (pkt->getPtr<uint8_t>(true) != NULL) {
510        if ((type == RubyRequestType_LD) ||
511            (type == RubyRequestType_IFETCH) ||
512            (type == RubyRequestType_RMW_Read) ||
513            (type == RubyRequestType_Locked_RMW_Read) ||
514            (type == RubyRequestType_Load_Linked)) {
515            memcpy(pkt->getPtr<uint8_t>(true),
516                   data.getData(request_address.getOffset(), pkt->getSize()),
517                   pkt->getSize());
518        } else {
519            data.setData(pkt->getPtr<uint8_t>(true),
520                         request_address.getOffset(), pkt->getSize());
521        }
522    } else {
523        DPRINTF(MemoryAccess,
524                "WARNING.  Data not transfered from Ruby to M5 for type %s\n",
525                RubyRequestType_to_string(type));
526    }
527
528    // If using the RubyTester, update the RubyTester sender state's
529    // subBlock with the recieved data.  The tester will later access
530    // this state.
531    // Note: RubyPort will access it's sender state before the
532    // RubyTester.
533    if (m_usingRubyTester) {
534        RubyPort::SenderState *requestSenderState =
535            safe_cast<RubyPort::SenderState*>(pkt->senderState);
536        RubyTester::SenderState* testerSenderState =
537            safe_cast<RubyTester::SenderState*>(requestSenderState->saved);
538        testerSenderState->subBlock->mergeFrom(data);
539    }
540
541    delete srequest;
542
543    if (g_system_ptr->m_warmup_enabled) {
544        delete pkt;
545        g_system_ptr->m_cache_recorder->enqueueNextFetchRequest();
546    } else if (g_system_ptr->m_cooldown_enabled) {
547        delete pkt;
548        g_system_ptr->m_cache_recorder->enqueueNextFlushRequest();
549    } else {
550        ruby_hit_callback(pkt);
551    }
552}
553
554bool
555Sequencer::empty() const
556{
557    return m_writeRequestTable.empty() && m_readRequestTable.empty();
558}
559
560RequestStatus
561Sequencer::makeRequest(PacketPtr pkt)
562{
563    if (m_outstanding_count >= m_max_outstanding_requests) {
564        return RequestStatus_BufferFull;
565    }
566
567    RubyRequestType primary_type = RubyRequestType_NULL;
568    RubyRequestType secondary_type = RubyRequestType_NULL;
569
570    if (pkt->isLLSC()) {
571        //
572        // Alpha LL/SC instructions need to be handled carefully by the cache
573        // coherence protocol to ensure they follow the proper semantics. In
574        // particular, by identifying the operations as atomic, the protocol
575        // should understand that migratory sharing optimizations should not
576        // be performed (i.e. a load between the LL and SC should not steal
577        // away exclusive permission).
578        //
579        if (pkt->isWrite()) {
580            DPRINTF(RubySequencer, "Issuing SC\n");
581            primary_type = RubyRequestType_Store_Conditional;
582        } else {
583            DPRINTF(RubySequencer, "Issuing LL\n");
584            assert(pkt->isRead());
585            primary_type = RubyRequestType_Load_Linked;
586        }
587        secondary_type = RubyRequestType_ATOMIC;
588    } else if (pkt->req->isLocked()) {
589        //
590        // x86 locked instructions are translated to store cache coherence
591        // requests because these requests should always be treated as read
592        // exclusive operations and should leverage any migratory sharing
593        // optimization built into the protocol.
594        //
595        if (pkt->isWrite()) {
596            DPRINTF(RubySequencer, "Issuing Locked RMW Write\n");
597            primary_type = RubyRequestType_Locked_RMW_Write;
598        } else {
599            DPRINTF(RubySequencer, "Issuing Locked RMW Read\n");
600            assert(pkt->isRead());
601            primary_type = RubyRequestType_Locked_RMW_Read;
602        }
603        secondary_type = RubyRequestType_ST;
604    } else {
605        if (pkt->isRead()) {
606            if (pkt->req->isInstFetch()) {
607                primary_type = secondary_type = RubyRequestType_IFETCH;
608            } else {
609#if THE_ISA == X86_ISA
610                uint32_t flags = pkt->req->getFlags();
611                bool storeCheck = flags &
612                        (TheISA::StoreCheck << TheISA::FlagShift);
613#else
614                bool storeCheck = false;
615#endif // X86_ISA
616                if (storeCheck) {
617                    primary_type = RubyRequestType_RMW_Read;
618                    secondary_type = RubyRequestType_ST;
619                } else {
620                    primary_type = secondary_type = RubyRequestType_LD;
621                }
622            }
623        } else if (pkt->isWrite()) {
624            //
625            // Note: M5 packets do not differentiate ST from RMW_Write
626            //
627            primary_type = secondary_type = RubyRequestType_ST;
628        } else if (pkt->isFlush()) {
629          primary_type = secondary_type = RubyRequestType_FLUSH;
630        } else {
631            panic("Unsupported ruby packet type\n");
632        }
633    }
634
635    RequestStatus status = insertRequest(pkt, primary_type);
636    if (status != RequestStatus_Ready)
637        return status;
638
639    issueRequest(pkt, secondary_type);
640
641    // TODO: issue hardware prefetches here
642    return RequestStatus_Issued;
643}
644
645void
646Sequencer::issueRequest(PacketPtr pkt, RubyRequestType secondary_type)
647{
648    assert(pkt != NULL);
649    int proc_id = -1;
650    if (pkt->req->hasContextId()) {
651        proc_id = pkt->req->contextId();
652    }
653
654    // If valid, copy the pc to the ruby request
655    Addr pc = 0;
656    if (pkt->req->hasPC()) {
657        pc = pkt->req->getPC();
658    }
659
660    RubyRequest *msg = new RubyRequest(curCycle(), pkt->getAddr(),
661                                       pkt->getPtr<uint8_t>(true),
662                                       pkt->getSize(), pc, secondary_type,
663                                       RubyAccessMode_Supervisor, pkt,
664                                       PrefetchBit_No, proc_id);
665
666    DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %s\n",
667            curTick(), m_version, "Seq", "Begin", "", "",
668            msg->getPhysicalAddress(),
669            RubyRequestType_to_string(secondary_type));
670
671    Time latency = 0;  // initialzed to an null value
672
673    if (secondary_type == RubyRequestType_IFETCH)
674        latency = m_instCache_ptr->getLatency();
675    else
676        latency = m_dataCache_ptr->getLatency();
677
678    // Send the message to the cache controller
679    assert(latency > 0);
680
681    assert(m_mandatory_q_ptr != NULL);
682    m_mandatory_q_ptr->enqueue(msg, latency);
683}
684
685template <class KEY, class VALUE>
686std::ostream &
687operator<<(ostream &out, const m5::hash_map<KEY, VALUE> &map)
688{
689    typename m5::hash_map<KEY, VALUE>::const_iterator i = map.begin();
690    typename m5::hash_map<KEY, VALUE>::const_iterator end = map.end();
691
692    out << "[";
693    for (; i != end; ++i)
694        out << " " << i->first << "=" << i->second;
695    out << " ]";
696
697    return out;
698}
699
700void
701Sequencer::print(ostream& out) const
702{
703    out << "[Sequencer: " << m_version
704        << ", outstanding requests: " << m_outstanding_count
705        << ", read request table: " << m_readRequestTable
706        << ", write request table: " << m_writeRequestTable
707        << "]";
708}
709
710// this can be called from setState whenever coherence permissions are
711// upgraded when invoked, coherence violations will be checked for the
712// given block
713void
714Sequencer::checkCoherence(const Address& addr)
715{
716#ifdef CHECK_COHERENCE
717    g_system_ptr->checkGlobalCoherenceInvariant(addr);
718#endif
719}
720
721void
722Sequencer::recordRequestType(SequencerRequestType requestType) {
723    DPRINTF(RubyStats, "Recorded statistic: %s\n",
724            SequencerRequestType_to_string(requestType));
725}
726
727
728void
729Sequencer::evictionCallback(const Address& address)
730{
731    ruby_eviction_callback(address);
732}
733