DMASequencer.cc revision 11111:6da33e720481
1/*
2 * Copyright (c) 2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <memory>
30
31#include "debug/Config.hh"
32#include "debug/Drain.hh"
33#include "debug/RubyDma.hh"
34#include "debug/RubyStats.hh"
35#include "mem/protocol/SequencerMsg.hh"
36#include "mem/ruby/system/DMASequencer.hh"
37#include "mem/ruby/system/RubySystem.hh"
38#include "sim/system.hh"
39
40DMASequencer::DMASequencer(const Params *p)
41    : MemObject(p), m_ruby_system(p->ruby_system), m_version(p->version),
42      m_controller(NULL), m_mandatory_q_ptr(NULL),
43      m_usingRubyTester(p->using_ruby_tester),
44      slave_port(csprintf("%s.slave", name()), this, 0, p->ruby_system,
45                 p->ruby_system->getAccessBackingStore()),
46      system(p->system), retry(false)
47{
48    assert(m_version != -1);
49}
50
51void
52DMASequencer::init()
53{
54    MemObject::init();
55    assert(m_controller != NULL);
56    m_mandatory_q_ptr = m_controller->getMandatoryQueue();
57    m_is_busy = false;
58    m_data_block_mask = ~ (~0 << RubySystem::getBlockSizeBits());
59
60    slave_port.sendRangeChange();
61}
62
63BaseSlavePort &
64DMASequencer::getSlavePort(const std::string &if_name, PortID idx)
65{
66    // used by the CPUs to connect the caches to the interconnect, and
67    // for the x86 case also the interrupt master
68    if (if_name != "slave") {
69        // pass it along to our super class
70        return MemObject::getSlavePort(if_name, idx);
71    } else {
72        return slave_port;
73    }
74}
75
76DMASequencer::MemSlavePort::MemSlavePort(const std::string &_name,
77    DMASequencer *_port, PortID id, RubySystem* _ruby_system,
78    bool _access_backing_store)
79    : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this),
80      m_ruby_system(_ruby_system), access_backing_store(_access_backing_store)
81{
82    DPRINTF(RubyDma, "Created slave memport on ruby sequencer %s\n", _name);
83}
84
85bool
86DMASequencer::MemSlavePort::recvTimingReq(PacketPtr pkt)
87{
88    DPRINTF(RubyDma, "Timing request for address %#x on port %d\n",
89            pkt->getAddr(), id);
90    DMASequencer *seq = static_cast<DMASequencer *>(&owner);
91
92    if (pkt->memInhibitAsserted())
93        panic("DMASequencer should never see an inhibited request\n");
94
95    assert(isPhysMemAddress(pkt->getAddr()));
96    assert(getOffset(pkt->getAddr()) + pkt->getSize() <=
97           RubySystem::getBlockSizeBytes());
98
99    // Submit the ruby request
100    RequestStatus requestStatus = seq->makeRequest(pkt);
101
102    // If the request successfully issued then we should return true.
103    // Otherwise, we need to tell the port to retry at a later point
104    // and return false.
105    if (requestStatus == RequestStatus_Issued) {
106        DPRINTF(RubyDma, "Request %s 0x%x issued\n", pkt->cmdString(),
107                pkt->getAddr());
108        return true;
109    }
110
111    // Unless one is using the ruby tester, record the stalled M5 port for
112    // later retry when the sequencer becomes free.
113    if (!seq->m_usingRubyTester) {
114        seq->retry = true;
115    }
116
117    DPRINTF(RubyDma, "Request for address %#x did not issued because %s\n",
118            pkt->getAddr(), RequestStatus_to_string(requestStatus));
119
120    return false;
121}
122
123void
124DMASequencer::ruby_hit_callback(PacketPtr pkt)
125{
126    DPRINTF(RubyDma, "Hit callback for %s 0x%x\n", pkt->cmdString(),
127            pkt->getAddr());
128
129    // The packet was destined for memory and has not yet been turned
130    // into a response
131    assert(system->isMemAddr(pkt->getAddr()));
132    assert(pkt->isRequest());
133    slave_port.hitCallback(pkt);
134
135    // If we had to stall the slave ports, wake it up because
136    // the sequencer likely has free resources now.
137    if (retry) {
138        retry = false;
139        DPRINTF(RubyDma,"Sequencer may now be free.  SendRetry to port %s\n",
140                slave_port.name());
141        slave_port.sendRetryReq();
142    }
143
144    testDrainComplete();
145}
146
147void
148DMASequencer::testDrainComplete()
149{
150    //If we weren't able to drain before, we might be able to now.
151    if (drainState() == DrainState::Draining) {
152        unsigned int drainCount = outstandingCount();
153        DPRINTF(Drain, "Drain count: %u\n", drainCount);
154        if (drainCount == 0) {
155            DPRINTF(Drain, "DMASequencer done draining, signaling drain done\n");
156            signalDrainDone();
157        }
158    }
159}
160
161DrainState
162DMASequencer::drain()
163{
164    if (isDeadlockEventScheduled()) {
165        descheduleDeadlockEvent();
166    }
167
168    // If the DMASequencer is not empty, then it needs to clear all outstanding
169    // requests before it should call signalDrainDone()
170    DPRINTF(Config, "outstanding count %d\n", outstandingCount());
171
172    // Set status
173    if (outstandingCount() > 0) {
174        DPRINTF(Drain, "DMASequencer not drained\n");
175        return DrainState::Draining;
176    } else {
177        return DrainState::Drained;
178    }
179}
180
181void
182DMASequencer::MemSlavePort::hitCallback(PacketPtr pkt)
183{
184    bool needsResponse = pkt->needsResponse();
185    assert(!pkt->isLLSC());
186    assert(!pkt->isFlush());
187
188    DPRINTF(RubyDma, "Hit callback needs response %d\n", needsResponse);
189
190    // turn packet around to go back to requester if response expected
191
192    if (access_backing_store) {
193        m_ruby_system->getPhysMem()->access(pkt);
194    } else if (needsResponse) {
195        pkt->makeResponse();
196    }
197
198    if (needsResponse) {
199        DPRINTF(RubyDma, "Sending packet back over port\n");
200        // send next cycle
201        DMASequencer *seq = static_cast<DMASequencer *>(&owner);
202        RubySystem *rs = seq->m_ruby_system;
203        schedTimingResp(pkt, curTick() + rs->clockPeriod());
204    } else {
205        delete pkt;
206    }
207
208    DPRINTF(RubyDma, "Hit callback done!\n");
209}
210
211bool
212DMASequencer::MemSlavePort::isPhysMemAddress(Addr addr) const
213{
214    DMASequencer *seq = static_cast<DMASequencer *>(&owner);
215    return seq->system->isMemAddr(addr);
216}
217
218RequestStatus
219DMASequencer::makeRequest(PacketPtr pkt)
220{
221    if (m_is_busy) {
222        return RequestStatus_BufferFull;
223    }
224
225    Addr paddr = pkt->getAddr();
226    uint8_t* data =  pkt->getPtr<uint8_t>();
227    int len = pkt->getSize();
228    bool write = pkt->isWrite();
229
230    assert(!m_is_busy);  // only support one outstanding DMA request
231    m_is_busy = true;
232
233    active_request.start_paddr = paddr;
234    active_request.write = write;
235    active_request.data = data;
236    active_request.len = len;
237    active_request.bytes_completed = 0;
238    active_request.bytes_issued = 0;
239    active_request.pkt = pkt;
240
241    std::shared_ptr<SequencerMsg> msg =
242        std::make_shared<SequencerMsg>(clockEdge());
243    msg->getPhysicalAddress() = paddr;
244    msg->getLineAddress() = makeLineAddress(msg->getPhysicalAddress());
245    msg->getType() = write ? SequencerRequestType_ST : SequencerRequestType_LD;
246    int offset = paddr & m_data_block_mask;
247
248    msg->getLen() = (offset + len) <= RubySystem::getBlockSizeBytes() ?
249        len : RubySystem::getBlockSizeBytes() - offset;
250
251    if (write && (data != NULL)) {
252        if (active_request.data != NULL) {
253            msg->getDataBlk().setData(data, offset, msg->getLen());
254        }
255    }
256
257    assert(m_mandatory_q_ptr != NULL);
258    m_mandatory_q_ptr->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1)));
259    active_request.bytes_issued += msg->getLen();
260
261    return RequestStatus_Issued;
262}
263
264void
265DMASequencer::issueNext()
266{
267    assert(m_is_busy);
268    active_request.bytes_completed = active_request.bytes_issued;
269    if (active_request.len == active_request.bytes_completed) {
270        //
271        // Must unset the busy flag before calling back the dma port because
272        // the callback may cause a previously nacked request to be reissued
273        //
274        DPRINTF(RubyDma, "DMA request completed\n");
275        m_is_busy = false;
276        ruby_hit_callback(active_request.pkt);
277        return;
278    }
279
280    std::shared_ptr<SequencerMsg> msg =
281        std::make_shared<SequencerMsg>(clockEdge());
282    msg->getPhysicalAddress() = active_request.start_paddr +
283                                active_request.bytes_completed;
284
285    assert((msg->getPhysicalAddress() & m_data_block_mask) == 0);
286    msg->getLineAddress() = makeLineAddress(msg->getPhysicalAddress());
287
288    msg->getType() = (active_request.write ? SequencerRequestType_ST :
289                     SequencerRequestType_LD);
290
291    msg->getLen() =
292        (active_request.len -
293         active_request.bytes_completed < RubySystem::getBlockSizeBytes() ?
294         active_request.len - active_request.bytes_completed :
295         RubySystem::getBlockSizeBytes());
296
297    if (active_request.write) {
298        msg->getDataBlk().
299            setData(&active_request.data[active_request.bytes_completed],
300                    0, msg->getLen());
301    }
302
303    assert(m_mandatory_q_ptr != NULL);
304    m_mandatory_q_ptr->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1)));
305    active_request.bytes_issued += msg->getLen();
306    DPRINTF(RubyDma,
307            "DMA request bytes issued %d, bytes completed %d, total len %d\n",
308            active_request.bytes_issued, active_request.bytes_completed,
309            active_request.len);
310}
311
312void
313DMASequencer::dataCallback(const DataBlock & dblk)
314{
315    assert(m_is_busy);
316    int len = active_request.bytes_issued - active_request.bytes_completed;
317    int offset = 0;
318    if (active_request.bytes_completed == 0)
319        offset = active_request.start_paddr & m_data_block_mask;
320    assert(!active_request.write);
321    if (active_request.data != NULL) {
322        memcpy(&active_request.data[active_request.bytes_completed],
323               dblk.getData(offset, len), len);
324    }
325    issueNext();
326}
327
328void
329DMASequencer::ackCallback()
330{
331    issueNext();
332}
333
334void
335DMASequencer::recordRequestType(DMASequencerRequestType requestType)
336{
337    DPRINTF(RubyStats, "Recorded statistic: %s\n",
338            DMASequencerRequestType_to_string(requestType));
339}
340
341DMASequencer *
342DMASequencerParams::create()
343{
344    return new DMASequencer(this);
345}
346