Profiler.cc revision 6433
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30   This file has been modified by Kevin Moore and Dan Nussbaum of the
31   Scalable Systems Research Group at Sun Microsystems Laboratories
32   (http://research.sun.com/scalable/) to support the Adaptive
33   Transactional Memory Test Platform (ATMTP).
34
35   Please send email to atmtp-interest@sun.com with feedback, questions, or
36   to request future announcements about ATMTP.
37
38   ----------------------------------------------------------------------
39
40   File modification date: 2008-02-23
41
42   ----------------------------------------------------------------------
43*/
44
45/*
46 * Profiler.cc
47 *
48 * Description: See Profiler.hh
49 *
50 * $Id$
51 *
52 */
53
54#include "mem/ruby/profiler/Profiler.hh"
55#include "mem/ruby/profiler/AddressProfiler.hh"
56#include "mem/ruby/system/System.hh"
57#include "mem/ruby/network/Network.hh"
58#include "mem/gems_common/PrioHeap.hh"
59#include "mem/protocol/CacheMsg.hh"
60#include "mem/protocol/Protocol.hh"
61#include "mem/gems_common/util.hh"
62#include "mem/gems_common/Map.hh"
63#include "mem/ruby/common/Debug.hh"
64#include "mem/protocol/MachineType.hh"
65
66// Allows use of times() library call, which determines virtual runtime
67#include <sys/times.h>
68
69extern std::ostream * debug_cout_ptr;
70
71static double process_memory_total();
72static double process_memory_resident();
73
74Profiler::Profiler(const string & name)
75{
76  m_name = name;
77  m_requestProfileMap_ptr = new Map<string, int>;
78
79  m_inst_profiler_ptr = NULL;
80  m_address_profiler_ptr = NULL;
81
82  m_real_time_start_time = time(NULL); // Not reset in clearStats()
83  m_stats_period = 1000000; // Default
84  m_periodic_output_file_ptr = &cerr;
85
86}
87
88Profiler::~Profiler()
89{
90  if (m_periodic_output_file_ptr != &cerr) {
91    delete m_periodic_output_file_ptr;
92  }
93  delete m_requestProfileMap_ptr;
94}
95
96void Profiler::init(const vector<string> & argv, vector<string> memory_control_names)
97{
98  // added by SS
99  vector<string>::iterator it;
100  memory_control_profiler* mcp;
101  m_memory_control_names = memory_control_names;
102//  printf ( "Here in Profiler::init \n");
103  for ( it=memory_control_names.begin() ; it < memory_control_names.end(); it++ ){
104//    printf ( "Here in Profiler::init memory control name %s \n", (*it).c_str());
105    mcp = new memory_control_profiler;
106    mcp->m_memReq = 0;
107    mcp->m_memBankBusy = 0;
108    mcp->m_memBusBusy = 0;
109    mcp->m_memReadWriteBusy = 0;
110    mcp->m_memDataBusBusy = 0;
111    mcp->m_memTfawBusy = 0;
112    mcp->m_memRefresh = 0;
113    mcp->m_memRead = 0;
114    mcp->m_memWrite = 0;
115    mcp->m_memWaitCycles = 0;
116    mcp->m_memInputQ = 0;
117    mcp->m_memBankQ = 0;
118    mcp->m_memArbWait = 0;
119    mcp->m_memRandBusy = 0;
120    mcp->m_memNotOld = 0;
121
122    mcp->m_banks_per_rank = RubySystem::getMemoryControl((*it).c_str())->getBanksPerRank();
123    mcp->m_ranks_per_dimm = RubySystem::getMemoryControl((*it).c_str())->getRanksPerDimm();
124    mcp->m_dimms_per_channel = RubySystem::getMemoryControl((*it).c_str())->getDimmsPerChannel();
125
126    int totalBanks = mcp->m_banks_per_rank
127                 * mcp->m_ranks_per_dimm
128                 * mcp->m_dimms_per_channel;
129
130    mcp->m_memBankCount.setSize(totalBanks);
131
132    m_memory_control_profilers [(*it).c_str()] = mcp;
133  }
134
135  clearStats();
136  m_hot_lines = false;
137  m_all_instructions = false;
138
139  for (size_t i=0; i<argv.size(); i+=2) {
140    if ( argv[i] == "hot_lines") {
141      m_hot_lines = (argv[i+1]=="true");
142    } else if ( argv[i] == "all_instructions") {
143      m_all_instructions = (argv[i+1]=="true");
144    }else {
145      cerr << "WARNING: Profiler: Unkown configuration parameter: " << argv[i] << endl;
146      assert(false);
147    }
148  }
149
150  m_address_profiler_ptr = new AddressProfiler;
151  m_address_profiler_ptr -> setHotLines(m_hot_lines);
152  m_address_profiler_ptr -> setAllInstructions(m_all_instructions);
153
154  if (m_all_instructions) {
155    m_inst_profiler_ptr = new AddressProfiler;
156    m_inst_profiler_ptr -> setHotLines(m_hot_lines);
157    m_inst_profiler_ptr -> setAllInstructions(m_all_instructions);
158  }
159}
160
161void Profiler::wakeup()
162{
163  // FIXME - avoid the repeated code
164
165  Vector<integer_t> perProcCycleCount;
166  perProcCycleCount.setSize(RubySystem::getNumberOfSequencers());
167
168  for(int i=0; i < RubySystem::getNumberOfSequencers(); i++) {
169    perProcCycleCount[i] = g_system_ptr->getCycleCount(i) - m_cycles_executed_at_start[i] + 1;
170    // The +1 allows us to avoid division by zero
171  }
172
173  integer_t total_misses = m_perProcTotalMisses.sum();
174  integer_t simics_cycles_executed = perProcCycleCount.sum();
175  integer_t transactions_started = m_perProcStartTransaction.sum();
176  integer_t transactions_ended = m_perProcEndTransaction.sum();
177
178  (*m_periodic_output_file_ptr) << "ruby_cycles: " << g_eventQueue_ptr->getTime()-m_ruby_start << endl;
179  (*m_periodic_output_file_ptr) << "total_misses: " << total_misses << " " << m_perProcTotalMisses << endl;
180  (*m_periodic_output_file_ptr) << "simics_cycles_executed: " << simics_cycles_executed << " " << perProcCycleCount << endl;
181  (*m_periodic_output_file_ptr) << "transactions_started: " << transactions_started << " " << m_perProcStartTransaction << endl;
182  (*m_periodic_output_file_ptr) << "transactions_ended: " << transactions_ended << " " << m_perProcEndTransaction << endl;
183  (*m_periodic_output_file_ptr) << "mbytes_resident: " << process_memory_resident() << endl;
184  (*m_periodic_output_file_ptr) << "mbytes_total: " << process_memory_total() << endl;
185  if (process_memory_total() > 0) {
186    (*m_periodic_output_file_ptr) << "resident_ratio: " << process_memory_resident()/process_memory_total() << endl;
187  }
188  (*m_periodic_output_file_ptr) << "miss_latency: " << m_allMissLatencyHistogram << endl;
189
190  *m_periodic_output_file_ptr << endl;
191
192  if (m_all_instructions) {
193    m_inst_profiler_ptr->printStats(*m_periodic_output_file_ptr);
194  }
195
196  //g_system_ptr->getNetwork()->printStats(*m_periodic_output_file_ptr);
197  g_eventQueue_ptr->scheduleEvent(this, m_stats_period);
198}
199
200void Profiler::setPeriodicStatsFile(const string& filename)
201{
202  cout << "Recording periodic statistics to file '" << filename << "' every "
203       << m_stats_period << " Ruby cycles" << endl;
204
205  if (m_periodic_output_file_ptr != &cerr) {
206    delete m_periodic_output_file_ptr;
207  }
208
209  m_periodic_output_file_ptr = new ofstream(filename.c_str());
210  g_eventQueue_ptr->scheduleEvent(this, 1);
211}
212
213void Profiler::setPeriodicStatsInterval(integer_t period)
214{
215  cout << "Recording periodic statistics every " << m_stats_period << " Ruby cycles" << endl;
216  m_stats_period = period;
217  g_eventQueue_ptr->scheduleEvent(this, 1);
218}
219
220void Profiler::printConfig(ostream& out) const
221{
222  out << endl;
223  out << "Profiler Configuration" << endl;
224  out << "----------------------" << endl;
225  out << "periodic_stats_period: " << m_stats_period << endl;
226}
227
228void Profiler::print(ostream& out) const
229{
230  out << "[Profiler]";
231}
232
233void Profiler::printStats(ostream& out, bool short_stats)
234{
235  out << endl;
236  if (short_stats) {
237    out << "SHORT ";
238  }
239  out << "Profiler Stats" << endl;
240  out << "--------------" << endl;
241
242  time_t real_time_current = time(NULL);
243  double seconds = difftime(real_time_current, m_real_time_start_time);
244  double minutes = seconds/60.0;
245  double hours = minutes/60.0;
246  double days = hours/24.0;
247  Time ruby_cycles = g_eventQueue_ptr->getTime()-m_ruby_start;
248
249  if (!short_stats) {
250    out << "Elapsed_time_in_seconds: " << seconds << endl;
251    out << "Elapsed_time_in_minutes: " << minutes << endl;
252    out << "Elapsed_time_in_hours: " << hours << endl;
253    out << "Elapsed_time_in_days: " << days << endl;
254    out << endl;
255  }
256
257  // print the virtual runtimes as well
258  struct tms vtime;
259  times(&vtime);
260  seconds = (vtime.tms_utime + vtime.tms_stime) / 100.0;
261  minutes = seconds / 60.0;
262  hours = minutes / 60.0;
263  days = hours / 24.0;
264  out << "Virtual_time_in_seconds: " << seconds << endl;
265  out << "Virtual_time_in_minutes: " << minutes << endl;
266  out << "Virtual_time_in_hours:   " << hours << endl;
267  out << "Virtual_time_in_days:    " << days << endl;
268  out << endl;
269
270  out << "Ruby_current_time: " << g_eventQueue_ptr->getTime() << endl;
271  out << "Ruby_start_time: " << m_ruby_start << endl;
272  out << "Ruby_cycles: " << ruby_cycles << endl;
273  out << endl;
274
275  if (!short_stats) {
276    out << "mbytes_resident: " << process_memory_resident() << endl;
277    out << "mbytes_total: " << process_memory_total() << endl;
278    if (process_memory_total() > 0) {
279      out << "resident_ratio: " << process_memory_resident()/process_memory_total() << endl;
280    }
281    out << endl;
282
283  }
284
285  Vector<integer_t> perProcCycleCount;
286  Vector<double> perProcCyclesPerTrans;
287  Vector<double> perProcMissesPerTrans;
288
289
290  perProcCycleCount.setSize(RubySystem::getNumberOfSequencers());
291  perProcCyclesPerTrans.setSize(RubySystem::getNumberOfSequencers());
292  perProcMissesPerTrans.setSize(RubySystem::getNumberOfSequencers());
293
294  for(int i=0; i < RubySystem::getNumberOfSequencers(); i++) {
295    perProcCycleCount[i] = g_system_ptr->getCycleCount(i) - m_cycles_executed_at_start[i] + 1;
296    // The +1 allows us to avoid division by zero
297
298    int trans = m_perProcEndTransaction[i];
299    if (trans == 0) {
300      perProcCyclesPerTrans[i] = 0;
301      perProcMissesPerTrans[i] = 0;
302    } else {
303      perProcCyclesPerTrans[i] = ruby_cycles / double(trans);
304      perProcMissesPerTrans[i] = m_perProcTotalMisses[i] / double(trans);
305    }
306  }
307
308  integer_t total_misses = m_perProcTotalMisses.sum();
309  integer_t user_misses = m_perProcUserMisses.sum();
310  integer_t supervisor_misses = m_perProcSupervisorMisses.sum();
311  integer_t simics_cycles_executed = perProcCycleCount.sum();
312  integer_t transactions_started = m_perProcStartTransaction.sum();
313  integer_t transactions_ended = m_perProcEndTransaction.sum();
314
315  double cycles_per_transaction = (transactions_ended != 0) ? (RubySystem::getNumberOfSequencers() * double(ruby_cycles)) / double(transactions_ended) : 0;
316  double misses_per_transaction = (transactions_ended != 0) ? double(total_misses) / double(transactions_ended) : 0;
317
318  out << "Total_misses: " << total_misses << endl;
319  out << "total_misses: " << total_misses << " " << m_perProcTotalMisses << endl;
320  out << "user_misses: " << user_misses << " " << m_perProcUserMisses << endl;
321  out << "supervisor_misses: " << supervisor_misses << " " << m_perProcSupervisorMisses << endl;
322  out << endl;
323  out << "ruby_cycles_executed: " << simics_cycles_executed << " " << perProcCycleCount << endl;
324  out << endl;
325  out << "transactions_started: " << transactions_started << " " << m_perProcStartTransaction << endl;
326  out << "transactions_ended: " << transactions_ended << " " << m_perProcEndTransaction << endl;
327  out << "cycles_per_transaction: " << cycles_per_transaction  << " " << perProcCyclesPerTrans << endl;
328  out << "misses_per_transaction: " << misses_per_transaction << " " << perProcMissesPerTrans << endl;
329
330  out << endl;
331
332  out << endl;
333
334  vector<string>::iterator it;
335
336  for ( it=m_memory_control_names.begin() ; it < m_memory_control_names.end(); it++ ){
337    long long int m_memReq = m_memory_control_profilers[(*it).c_str()] -> m_memReq;
338    long long int m_memRefresh = m_memory_control_profilers[(*it).c_str()] -> m_memRefresh;
339    long long int m_memInputQ = m_memory_control_profilers[(*it).c_str()] -> m_memInputQ;
340    long long int m_memBankQ = m_memory_control_profilers[(*it).c_str()] -> m_memBankQ;
341    long long int m_memWaitCycles = m_memory_control_profilers[(*it).c_str()] -> m_memWaitCycles;
342    long long int m_memRead = m_memory_control_profilers[(*it).c_str()] -> m_memRead;
343    long long int m_memWrite = m_memory_control_profilers[(*it).c_str()] -> m_memWrite;
344    long long int m_memBankBusy = m_memory_control_profilers[(*it).c_str()] -> m_memBankBusy;
345    long long int m_memRandBusy = m_memory_control_profilers[(*it).c_str()] -> m_memRandBusy;
346    long long int m_memNotOld = m_memory_control_profilers[(*it).c_str()] -> m_memNotOld;
347    long long int m_memArbWait = m_memory_control_profilers[(*it).c_str()] -> m_memArbWait;
348    long long int m_memBusBusy = m_memory_control_profilers[(*it).c_str()] -> m_memBusBusy;
349    long long int m_memTfawBusy = m_memory_control_profilers[(*it).c_str()] -> m_memTfawBusy;
350    long long int m_memReadWriteBusy = m_memory_control_profilers[(*it).c_str()] -> m_memReadWriteBusy;
351    long long int m_memDataBusBusy = m_memory_control_profilers[(*it).c_str()] -> m_memDataBusBusy;
352    Vector<long long int> m_memBankCount = m_memory_control_profilers[(*it).c_str()] -> m_memBankCount;
353
354    if (m_memReq || m_memRefresh) {    // if there's a memory controller at all
355      long long int total_stalls = m_memInputQ + m_memBankQ + m_memWaitCycles;
356      double stallsPerReq = total_stalls * 1.0 / m_memReq;
357      out << "Memory control " << (*it) << ":" << endl;
358      out << "  memory_total_requests: " << m_memReq << endl;  // does not include refreshes
359      out << "  memory_reads: " << m_memRead << endl;
360      out << "  memory_writes: " << m_memWrite << endl;
361      out << "  memory_refreshes: " << m_memRefresh << endl;
362      out << "  memory_total_request_delays: " << total_stalls << endl;
363      out << "  memory_delays_per_request: " << stallsPerReq << endl;
364      out << "  memory_delays_in_input_queue: " << m_memInputQ << endl;
365      out << "  memory_delays_behind_head_of_bank_queue: " << m_memBankQ << endl;
366      out << "  memory_delays_stalled_at_head_of_bank_queue: " << m_memWaitCycles << endl;
367      // Note:  The following "memory stalls" entries are a breakdown of the
368      // cycles which already showed up in m_memWaitCycles.  The order is
369      // significant; it is the priority of attributing the cycles.
370      // For example, bank_busy is before arbitration because if the bank was
371      // busy, we didn't even check arbitration.
372      // Note:  "not old enough" means that since we grouped waiting heads-of-queues
373      // into batches to avoid starvation, a request in a newer batch
374      // didn't try to arbitrate yet because there are older requests waiting.
375      out << "  memory_stalls_for_bank_busy: " << m_memBankBusy << endl;
376      out << "  memory_stalls_for_random_busy: " << m_memRandBusy << endl;
377      out << "  memory_stalls_for_anti_starvation: " << m_memNotOld << endl;
378      out << "  memory_stalls_for_arbitration: " << m_memArbWait << endl;
379      out << "  memory_stalls_for_bus: " << m_memBusBusy << endl;
380      out << "  memory_stalls_for_tfaw: " << m_memTfawBusy << endl;
381      out << "  memory_stalls_for_read_write_turnaround: " << m_memReadWriteBusy << endl;
382      out << "  memory_stalls_for_read_read_turnaround: " << m_memDataBusBusy << endl;
383      out << "  accesses_per_bank: ";
384      for (int bank=0; bank < m_memBankCount.size(); bank++) {
385        out << m_memBankCount[bank] << "  ";
386        //if ((bank % 8) == 7) out << "                     " << endl;
387      }
388      out << endl;
389      out << endl;
390    }
391  }
392  if (!short_stats) {
393    out << "Busy Controller Counts:" << endl;
394    for(int i=0; i < MachineType_NUM; i++) {
395      for(int j=0; j < MachineType_base_count((MachineType)i); j++) {
396        MachineID machID;
397        machID.type = (MachineType)i;
398        machID.num = j;
399        out << machID << ":" << m_busyControllerCount[i][j] << "  ";
400        if ((j+1)%8 == 0) {
401          out << endl;
402        }
403      }
404      out << endl;
405    }
406    out << endl;
407
408    out << "Busy Bank Count:" << m_busyBankCount << endl;
409    out << endl;
410
411    out << "sequencer_requests_outstanding: " << m_sequencer_requests << endl;
412    out << endl;
413  }
414
415  if (!short_stats) {
416    out << "All Non-Zero Cycle Demand Cache Accesses" << endl;
417    out << "----------------------------------------" << endl;
418    out << "miss_latency: " << m_allMissLatencyHistogram << endl;
419    for(int i=0; i<m_missLatencyHistograms.size(); i++) {
420      if (m_missLatencyHistograms[i].size() > 0) {
421        out << "miss_latency_" << RubyRequestType(i) << ": " << m_missLatencyHistograms[i] << endl;
422      }
423    }
424    for(int i=0; i<m_machLatencyHistograms.size(); i++) {
425      if (m_machLatencyHistograms[i].size() > 0) {
426        out << "miss_latency_" << GenericMachineType(i) << ": " << m_machLatencyHistograms[i] << endl;
427      }
428    }
429
430    out << endl;
431
432    out << "All Non-Zero Cycle SW Prefetch Requests" << endl;
433    out << "------------------------------------" << endl;
434    out << "prefetch_latency: " << m_allSWPrefetchLatencyHistogram << endl;
435    for(int i=0; i<m_SWPrefetchLatencyHistograms.size(); i++) {
436      if (m_SWPrefetchLatencyHistograms[i].size() > 0) {
437        out << "prefetch_latency_" << CacheRequestType(i) << ": " << m_SWPrefetchLatencyHistograms[i] << endl;
438      }
439    }
440    for(int i=0; i<m_SWPrefetchMachLatencyHistograms.size(); i++) {
441      if (m_SWPrefetchMachLatencyHistograms[i].size() > 0) {
442        out << "prefetch_latency_" << GenericMachineType(i) << ": " << m_SWPrefetchMachLatencyHistograms[i] << endl;
443      }
444    }
445    out << "prefetch_latency_L2Miss:" << m_SWPrefetchL2MissLatencyHistogram << endl;
446
447    if (m_all_sharing_histogram.size() > 0) {
448      out << "all_sharing: " << m_all_sharing_histogram << endl;
449      out << "read_sharing: " << m_read_sharing_histogram << endl;
450      out << "write_sharing: " << m_write_sharing_histogram << endl;
451
452      out << "all_sharing_percent: "; m_all_sharing_histogram.printPercent(out); out << endl;
453      out << "read_sharing_percent: "; m_read_sharing_histogram.printPercent(out); out << endl;
454      out << "write_sharing_percent: "; m_write_sharing_histogram.printPercent(out); out << endl;
455
456      int64 total_miss = m_cache_to_cache +  m_memory_to_cache;
457      out << "all_misses: " << total_miss << endl;
458      out << "cache_to_cache_misses: " << m_cache_to_cache << endl;
459      out << "memory_to_cache_misses: " << m_memory_to_cache << endl;
460      out << "cache_to_cache_percent: " << 100.0 * (double(m_cache_to_cache) / double(total_miss)) << endl;
461      out << "memory_to_cache_percent: " << 100.0 * (double(m_memory_to_cache) / double(total_miss)) << endl;
462      out << endl;
463    }
464
465    if (m_outstanding_requests.size() > 0) {
466      out << "outstanding_requests: "; m_outstanding_requests.printPercent(out); out << endl;
467      out << endl;
468    }
469  }
470
471  if (!short_stats) {
472    out << "Request vs. RubySystem State Profile" << endl;
473    out << "--------------------------------" << endl;
474    out << endl;
475
476    Vector<string> requestProfileKeys = m_requestProfileMap_ptr->keys();
477    requestProfileKeys.sortVector();
478
479    for(int i=0; i<requestProfileKeys.size(); i++) {
480      int temp_int = m_requestProfileMap_ptr->lookup(requestProfileKeys[i]);
481      double percent = (100.0*double(temp_int))/double(m_requests);
482      while (requestProfileKeys[i] != "") {
483        out << setw(10) << string_split(requestProfileKeys[i], ':');
484      }
485      out << setw(11) << temp_int;
486      out << setw(14) << percent << endl;
487    }
488    out << endl;
489
490    out << "filter_action: " << m_filter_action_histogram << endl;
491
492    if (!m_all_instructions) {
493      m_address_profiler_ptr->printStats(out);
494    }
495
496    if (m_all_instructions) {
497      m_inst_profiler_ptr->printStats(out);
498    }
499
500    out << endl;
501    out << "Message Delayed Cycles" << endl;
502    out << "----------------------" << endl;
503    out << "Total_delay_cycles: " <<   m_delayedCyclesHistogram << endl;
504    out << "Total_nonPF_delay_cycles: " << m_delayedCyclesNonPFHistogram << endl;
505    for (int i = 0; i < m_delayedCyclesVCHistograms.size(); i++) {
506      out << "  virtual_network_" << i << "_delay_cycles: " << m_delayedCyclesVCHistograms[i] << endl;
507    }
508
509    printResourceUsage(out);
510  }
511
512}
513
514void Profiler::printResourceUsage(ostream& out) const
515{
516  out << endl;
517  out << "Resource Usage" << endl;
518  out << "--------------" << endl;
519
520  integer_t pagesize = getpagesize(); // page size in bytes
521  out << "page_size: " << pagesize << endl;
522
523  rusage usage;
524  getrusage (RUSAGE_SELF, &usage);
525
526  out << "user_time: " << usage.ru_utime.tv_sec << endl;
527  out << "system_time: " << usage.ru_stime.tv_sec << endl;
528  out << "page_reclaims: " << usage.ru_minflt << endl;
529  out << "page_faults: " << usage.ru_majflt << endl;
530  out << "swaps: " << usage.ru_nswap << endl;
531  out << "block_inputs: " << usage.ru_inblock << endl;
532  out << "block_outputs: " << usage.ru_oublock << endl;
533}
534
535void Profiler::clearStats()
536{
537  m_ruby_start = g_eventQueue_ptr->getTime();
538
539  m_cycles_executed_at_start.setSize(RubySystem::getNumberOfSequencers());
540  for (int i=0; i < RubySystem::getNumberOfSequencers(); i++) {
541    if (g_system_ptr == NULL) {
542      m_cycles_executed_at_start[i] = 0;
543    } else {
544      m_cycles_executed_at_start[i] = g_system_ptr->getCycleCount(i);
545    }
546  }
547
548  m_perProcTotalMisses.setSize(RubySystem::getNumberOfSequencers());
549  m_perProcUserMisses.setSize(RubySystem::getNumberOfSequencers());
550  m_perProcSupervisorMisses.setSize(RubySystem::getNumberOfSequencers());
551  m_perProcStartTransaction.setSize(RubySystem::getNumberOfSequencers());
552  m_perProcEndTransaction.setSize(RubySystem::getNumberOfSequencers());
553
554  for(int i=0; i < RubySystem::getNumberOfSequencers(); i++) {
555    m_perProcTotalMisses[i] = 0;
556    m_perProcUserMisses[i] = 0;
557    m_perProcSupervisorMisses[i] = 0;
558    m_perProcStartTransaction[i] = 0;
559    m_perProcEndTransaction[i] = 0;
560  }
561
562  m_busyControllerCount.setSize(MachineType_NUM); // all machines
563  for(int i=0; i < MachineType_NUM; i++) {
564    m_busyControllerCount[i].setSize(MachineType_base_count((MachineType)i));
565    for(int j=0; j < MachineType_base_count((MachineType)i); j++) {
566      m_busyControllerCount[i][j] = 0;
567    }
568  }
569  m_busyBankCount = 0;
570
571  m_delayedCyclesHistogram.clear();
572  m_delayedCyclesNonPFHistogram.clear();
573  m_delayedCyclesVCHistograms.setSize(RubySystem::getNetwork()->getNumberOfVirtualNetworks());
574  for (int i = 0; i < RubySystem::getNetwork()->getNumberOfVirtualNetworks(); i++) {
575    m_delayedCyclesVCHistograms[i].clear();
576  }
577
578  m_missLatencyHistograms.setSize(RubyRequestType_NUM);
579  for(int i=0; i<m_missLatencyHistograms.size(); i++) {
580    m_missLatencyHistograms[i].clear(200);
581  }
582  m_machLatencyHistograms.setSize(GenericMachineType_NUM+1);
583  for(int i=0; i<m_machLatencyHistograms.size(); i++) {
584    m_machLatencyHistograms[i].clear(200);
585  }
586  m_allMissLatencyHistogram.clear(200);
587
588  m_SWPrefetchLatencyHistograms.setSize(CacheRequestType_NUM);
589  for(int i=0; i<m_SWPrefetchLatencyHistograms.size(); i++) {
590    m_SWPrefetchLatencyHistograms[i].clear(200);
591  }
592  m_SWPrefetchMachLatencyHistograms.setSize(GenericMachineType_NUM+1);
593  for(int i=0; i<m_SWPrefetchMachLatencyHistograms.size(); i++) {
594    m_SWPrefetchMachLatencyHistograms[i].clear(200);
595  }
596  m_allSWPrefetchLatencyHistogram.clear(200);
597
598  m_sequencer_requests.clear();
599  m_read_sharing_histogram.clear();
600  m_write_sharing_histogram.clear();
601  m_all_sharing_histogram.clear();
602  m_cache_to_cache = 0;
603  m_memory_to_cache = 0;
604
605  // clear HashMaps
606  m_requestProfileMap_ptr->clear();
607
608  // count requests profiled
609  m_requests = 0;
610
611  m_outstanding_requests.clear();
612  m_outstanding_persistent_requests.clear();
613
614//added by SS
615  vector<string>::iterator it;
616
617  for ( it=m_memory_control_names.begin() ; it < m_memory_control_names.end(); it++ ){
618    m_memory_control_profilers[(*it).c_str()] -> m_memReq = 0;
619    m_memory_control_profilers[(*it).c_str()] -> m_memBankBusy = 0;
620    m_memory_control_profilers[(*it).c_str()] -> m_memBusBusy = 0;
621    m_memory_control_profilers[(*it).c_str()] -> m_memTfawBusy = 0;
622    m_memory_control_profilers[(*it).c_str()] -> m_memReadWriteBusy = 0;
623    m_memory_control_profilers[(*it).c_str()] -> m_memDataBusBusy = 0;
624    m_memory_control_profilers[(*it).c_str()] -> m_memRefresh = 0;
625    m_memory_control_profilers[(*it).c_str()] -> m_memRead = 0;
626    m_memory_control_profilers[(*it).c_str()] -> m_memWrite = 0;
627    m_memory_control_profilers[(*it).c_str()] -> m_memWaitCycles = 0;
628    m_memory_control_profilers[(*it).c_str()] -> m_memInputQ = 0;
629    m_memory_control_profilers[(*it).c_str()] -> m_memBankQ = 0;
630    m_memory_control_profilers[(*it).c_str()] -> m_memArbWait = 0;
631    m_memory_control_profilers[(*it).c_str()] -> m_memRandBusy = 0;
632    m_memory_control_profilers[(*it).c_str()] -> m_memNotOld = 0;
633
634    for (int bank=0; bank < m_memory_control_profilers[(*it).c_str()] -> m_memBankCount.size(); bank++) {
635        m_memory_control_profilers[(*it).c_str()] -> m_memBankCount[bank] = 0;
636    }
637  }
638  // Flush the prefetches through the system - used so that there are no outstanding requests after stats are cleared
639  //g_eventQueue_ptr->triggerAllEvents();
640
641  // update the start time
642  m_ruby_start = g_eventQueue_ptr->getTime();
643}
644
645void Profiler::addAddressTraceSample(const CacheMsg& msg, NodeID id)
646{
647  if (msg.getType() != CacheRequestType_IFETCH) {
648
649    // Note: The following line should be commented out if you want to
650    // use the special profiling that is part of the GS320 protocol
651
652    // NOTE: Unless PROFILE_HOT_LINES is enabled, nothing will be profiled by the AddressProfiler
653    m_address_profiler_ptr->addTraceSample(msg.getLineAddress(), msg.getProgramCounter(), msg.getType(), msg.getAccessMode(), id, false);
654  }
655}
656
657void Profiler::profileSharing(const Address& addr, AccessType type, NodeID requestor, const Set& sharers, const Set& owner)
658{
659  Set set_contacted(owner);
660  if (type == AccessType_Write) {
661    set_contacted.addSet(sharers);
662  }
663  set_contacted.remove(requestor);
664  int number_contacted = set_contacted.count();
665
666  if (type == AccessType_Write) {
667    m_write_sharing_histogram.add(number_contacted);
668  } else {
669    m_read_sharing_histogram.add(number_contacted);
670  }
671  m_all_sharing_histogram.add(number_contacted);
672
673  if (number_contacted == 0) {
674    m_memory_to_cache++;
675  } else {
676    m_cache_to_cache++;
677  }
678
679}
680
681void Profiler::profileMsgDelay(int virtualNetwork, int delayCycles) {
682  assert(virtualNetwork < m_delayedCyclesVCHistograms.size());
683  m_delayedCyclesHistogram.add(delayCycles);
684  m_delayedCyclesVCHistograms[virtualNetwork].add(delayCycles);
685  if (virtualNetwork != 0) {
686    m_delayedCyclesNonPFHistogram.add(delayCycles);
687  }
688}
689
690// profiles original cache requests including PUTs
691void Profiler::profileRequest(const string& requestStr)
692{
693  m_requests++;
694
695  if (m_requestProfileMap_ptr->exist(requestStr)) {
696    (m_requestProfileMap_ptr->lookup(requestStr))++;
697  } else {
698    m_requestProfileMap_ptr->add(requestStr, 1);
699  }
700}
701
702void Profiler::startTransaction(int cpu)
703{
704  m_perProcStartTransaction[cpu]++;
705}
706
707void Profiler::endTransaction(int cpu)
708{
709  m_perProcEndTransaction[cpu]++;
710}
711
712void Profiler::controllerBusy(MachineID machID)
713{
714  m_busyControllerCount[(int)machID.type][(int)machID.num]++;
715}
716
717void Profiler::profilePFWait(Time waitTime)
718{
719  m_prefetchWaitHistogram.add(waitTime);
720}
721
722void Profiler::bankBusy()
723{
724  m_busyBankCount++;
725}
726
727// non-zero cycle demand request
728void Profiler::missLatency(Time t, RubyRequestType type)
729{
730  m_allMissLatencyHistogram.add(t);
731  m_missLatencyHistograms[type].add(t);
732}
733
734// non-zero cycle prefetch request
735void Profiler::swPrefetchLatency(Time t, CacheRequestType type, GenericMachineType respondingMach)
736{
737  m_allSWPrefetchLatencyHistogram.add(t);
738  m_SWPrefetchLatencyHistograms[type].add(t);
739  m_SWPrefetchMachLatencyHistograms[respondingMach].add(t);
740  if(respondingMach == GenericMachineType_Directory || respondingMach == GenericMachineType_NUM) {
741    m_SWPrefetchL2MissLatencyHistogram.add(t);
742  }
743}
744
745void Profiler::profileTransition(const string& component, NodeID version, Address addr,
746                                 const string& state, const string& event,
747                                 const string& next_state, const string& note)
748{
749  const int EVENT_SPACES = 20;
750  const int ID_SPACES = 3;
751  const int TIME_SPACES = 7;
752  const int COMP_SPACES = 10;
753  const int STATE_SPACES = 6;
754
755  if ((g_debug_ptr->getDebugTime() > 0) &&
756      (g_eventQueue_ptr->getTime() >= g_debug_ptr->getDebugTime())) {
757    (* debug_cout_ptr).flags(ios::right);
758    (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " ";
759    (* debug_cout_ptr) << setw(ID_SPACES) << version << " ";
760    (* debug_cout_ptr) << setw(COMP_SPACES) << component;
761    (* debug_cout_ptr) << setw(EVENT_SPACES) << event << " ";
762
763    (* debug_cout_ptr).flags(ios::right);
764    (* debug_cout_ptr) << setw(STATE_SPACES) << state;
765    (* debug_cout_ptr) << ">";
766    (* debug_cout_ptr).flags(ios::left);
767    (* debug_cout_ptr) << setw(STATE_SPACES) << next_state;
768
769    (* debug_cout_ptr) << " " << addr << " " << note;
770
771    (* debug_cout_ptr) << endl;
772  }
773}
774
775// Helper function
776static double process_memory_total()
777{
778  const double MULTIPLIER = 4096.0/(1024.0*1024.0); // 4kB page size, 1024*1024 bytes per MB,
779  ifstream proc_file;
780  proc_file.open("/proc/self/statm");
781  int total_size_in_pages = 0;
782  int res_size_in_pages = 0;
783  proc_file >> total_size_in_pages;
784  proc_file >> res_size_in_pages;
785  return double(total_size_in_pages)*MULTIPLIER; // size in megabytes
786}
787
788static double process_memory_resident()
789{
790  const double MULTIPLIER = 4096.0/(1024.0*1024.0); // 4kB page size, 1024*1024 bytes per MB,
791  ifstream proc_file;
792  proc_file.open("/proc/self/statm");
793  int total_size_in_pages = 0;
794  int res_size_in_pages = 0;
795  proc_file >> total_size_in_pages;
796  proc_file >> res_size_in_pages;
797  return double(res_size_in_pages)*MULTIPLIER; // size in megabytes
798}
799
800void Profiler::rubyWatch(int id){
801    //int rn_g1 = 0;//SIMICS_get_register_number(id, "g1");
802  uint64 tr = 0;//SIMICS_read_register(id, rn_g1);
803    Address watch_address = Address(tr);
804    const int ID_SPACES = 3;
805    const int TIME_SPACES = 7;
806
807    (* debug_cout_ptr).flags(ios::right);
808    (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " ";
809    (* debug_cout_ptr) << setw(ID_SPACES) << id << " "
810                       << "RUBY WATCH "
811                       << watch_address
812                       << endl;
813
814    if(!m_watch_address_list_ptr->exist(watch_address)){
815      m_watch_address_list_ptr->add(watch_address, 1);
816    }
817}
818
819bool Profiler::watchAddress(Address addr){
820    if (m_watch_address_list_ptr->exist(addr))
821      return true;
822    else
823      return false;
824}
825
826int64 Profiler::getTotalTransactionsExecuted() const {
827  return m_perProcEndTransaction.sum();
828}
829
830// For MemoryControl:
831void Profiler::profileMemReq(string name, int bank) {
832//  printf("name is %s", name.c_str());
833  assert(m_memory_control_profilers.count(name) == 1);
834  m_memory_control_profilers[name] -> m_memReq++;
835  m_memory_control_profilers[name] -> m_memBankCount[bank]++;
836}
837void Profiler::profileMemBankBusy(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memBankBusy++; }
838void Profiler::profileMemBusBusy(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memBusBusy++; }
839void Profiler::profileMemReadWriteBusy(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memReadWriteBusy++; }
840void Profiler::profileMemDataBusBusy(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memDataBusBusy++; }
841void Profiler::profileMemTfawBusy(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memTfawBusy++; }
842void Profiler::profileMemRefresh(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memRefresh++; }
843void Profiler::profileMemRead(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memRead++; }
844void Profiler::profileMemWrite(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memWrite++; }
845void Profiler::profileMemWaitCycles(string name, int cycles) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memWaitCycles += cycles; }
846void Profiler::profileMemInputQ(string name, int cycles) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memInputQ += cycles; }
847void Profiler::profileMemBankQ(string name, int cycles) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memBankQ += cycles; }
848void Profiler::profileMemArbWait(string name, int cycles) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memArbWait += cycles; }
849void Profiler::profileMemRandBusy(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memRandBusy++; }
850void Profiler::profileMemNotOld(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memNotOld++; }
851
852