Profiler.cc revision 6372:f1a41ea3bbab
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30   This file has been modified by Kevin Moore and Dan Nussbaum of the
31   Scalable Systems Research Group at Sun Microsystems Laboratories
32   (http://research.sun.com/scalable/) to support the Adaptive
33   Transactional Memory Test Platform (ATMTP).
34
35   Please send email to atmtp-interest@sun.com with feedback, questions, or
36   to request future announcements about ATMTP.
37
38   ----------------------------------------------------------------------
39
40   File modification date: 2008-02-23
41
42   ----------------------------------------------------------------------
43*/
44
45/*
46 * Profiler.cc
47 *
48 * Description: See Profiler.hh
49 *
50 * $Id$
51 *
52 */
53
54#include "mem/ruby/profiler/Profiler.hh"
55#include "mem/ruby/profiler/CacheProfiler.hh"
56#include "mem/ruby/profiler/AddressProfiler.hh"
57#include "mem/ruby/system/System.hh"
58#include "mem/ruby/network/Network.hh"
59#include "mem/gems_common/PrioHeap.hh"
60#include "mem/protocol/CacheMsg.hh"
61#include "mem/protocol/Protocol.hh"
62#include "mem/gems_common/util.hh"
63#include "mem/gems_common/Map.hh"
64#include "mem/ruby/common/Debug.hh"
65#include "mem/protocol/MachineType.hh"
66
67// Allows use of times() library call, which determines virtual runtime
68#include <sys/times.h>
69
70extern std::ostream * debug_cout_ptr;
71
72static double process_memory_total();
73static double process_memory_resident();
74
75Profiler::Profiler(const string & name)
76  : m_conflicting_histogram(-1)
77{
78  m_name = name;
79  m_requestProfileMap_ptr = new Map<string, int>;
80  m_L1D_cache_profiler_ptr = new CacheProfiler("L1D_cache");
81  m_L1I_cache_profiler_ptr = new CacheProfiler("L1I_cache");
82
83  m_L2_cache_profiler_ptr = new CacheProfiler("L2_cache");
84
85  m_inst_profiler_ptr = NULL;
86  m_address_profiler_ptr = NULL;
87
88/*
89  m_address_profiler_ptr = new AddressProfiler;
90  m_inst_profiler_ptr = NULL;
91  if (m_all_instructions) {
92    m_inst_profiler_ptr = new AddressProfiler;
93  }
94*/
95  m_conflicting_map_ptr = new Map<Address, Time>;
96
97  m_real_time_start_time = time(NULL); // Not reset in clearStats()
98  m_stats_period = 1000000; // Default
99  m_periodic_output_file_ptr = &cerr;
100
101}
102
103Profiler::~Profiler()
104{
105  if (m_periodic_output_file_ptr != &cerr) {
106    delete m_periodic_output_file_ptr;
107  }
108  delete m_address_profiler_ptr;
109  delete m_L1D_cache_profiler_ptr;
110  delete m_L1I_cache_profiler_ptr;
111  delete m_L2_cache_profiler_ptr;
112  delete m_requestProfileMap_ptr;
113  delete m_conflicting_map_ptr;
114}
115
116void Profiler::init(const vector<string> & argv, vector<string> memory_control_names)
117{
118  // added by SS
119  vector<string>::iterator it;
120  memory_control_profiler* mcp;
121  m_memory_control_names = memory_control_names;
122//  printf ( "Here in Profiler::init \n");
123  for ( it=memory_control_names.begin() ; it < memory_control_names.end(); it++ ){
124//    printf ( "Here in Profiler::init memory control name %s \n", (*it).c_str());
125    mcp = new memory_control_profiler;
126    mcp->m_memReq = 0;
127    mcp->m_memBankBusy = 0;
128    mcp->m_memBusBusy = 0;
129    mcp->m_memReadWriteBusy = 0;
130    mcp->m_memDataBusBusy = 0;
131    mcp->m_memTfawBusy = 0;
132    mcp->m_memRefresh = 0;
133    mcp->m_memRead = 0;
134    mcp->m_memWrite = 0;
135    mcp->m_memWaitCycles = 0;
136    mcp->m_memInputQ = 0;
137    mcp->m_memBankQ = 0;
138    mcp->m_memArbWait = 0;
139    mcp->m_memRandBusy = 0;
140    mcp->m_memNotOld = 0;
141
142    mcp->m_banks_per_rank = RubySystem::getMemoryControl((*it).c_str())->getBanksPerRank();
143    mcp->m_ranks_per_dimm = RubySystem::getMemoryControl((*it).c_str())->getRanksPerDimm();
144    mcp->m_dimms_per_channel = RubySystem::getMemoryControl((*it).c_str())->getDimmsPerChannel();
145
146    int totalBanks = mcp->m_banks_per_rank
147                 * mcp->m_ranks_per_dimm
148                 * mcp->m_dimms_per_channel;
149
150    mcp->m_memBankCount.setSize(totalBanks);
151
152    m_memory_control_profilers [(*it).c_str()] = mcp;
153  }
154
155  clearStats();
156  m_hot_lines = false;
157  m_all_instructions = false;
158
159  for (size_t i=0; i<argv.size(); i+=2) {
160    if ( argv[i] == "hot_lines") {
161      m_hot_lines = (argv[i+1]=="true");
162    } else if ( argv[i] == "all_instructions") {
163      m_all_instructions = (argv[i+1]=="true");
164    }else {
165      cerr << "WARNING: Profiler: Unkown configuration parameter: " << argv[i] << endl;
166      assert(false);
167    }
168  }
169
170  m_address_profiler_ptr = new AddressProfiler;
171  m_address_profiler_ptr -> setHotLines(m_hot_lines);
172  m_address_profiler_ptr -> setAllInstructions(m_all_instructions);
173
174  if (m_all_instructions) {
175    m_inst_profiler_ptr = new AddressProfiler;
176    m_inst_profiler_ptr -> setHotLines(m_hot_lines);
177    m_inst_profiler_ptr -> setAllInstructions(m_all_instructions);
178  }
179}
180
181void Profiler::wakeup()
182{
183  // FIXME - avoid the repeated code
184
185  Vector<integer_t> perProcInstructionCount;
186  perProcInstructionCount.setSize(RubySystem::getNumberOfSequencers());
187
188  Vector<integer_t> perProcCycleCount;
189  perProcCycleCount.setSize(RubySystem::getNumberOfSequencers());
190
191  for(int i=0; i < RubySystem::getNumberOfSequencers(); i++) {
192    perProcInstructionCount[i] = g_system_ptr->getInstructionCount(i) - m_instructions_executed_at_start[i] + 1;
193    perProcCycleCount[i] = g_system_ptr->getCycleCount(i) - m_cycles_executed_at_start[i] + 1;
194    // The +1 allows us to avoid division by zero
195  }
196
197  integer_t total_misses = m_perProcTotalMisses.sum();
198  integer_t instruction_executed = perProcInstructionCount.sum();
199  integer_t simics_cycles_executed = perProcCycleCount.sum();
200  integer_t transactions_started = m_perProcStartTransaction.sum();
201  integer_t transactions_ended = m_perProcEndTransaction.sum();
202
203  (*m_periodic_output_file_ptr) << "ruby_cycles: " << g_eventQueue_ptr->getTime()-m_ruby_start << endl;
204  (*m_periodic_output_file_ptr) << "total_misses: " << total_misses << " " << m_perProcTotalMisses << endl;
205  (*m_periodic_output_file_ptr) << "instruction_executed: " << instruction_executed << " " << perProcInstructionCount << endl;
206  (*m_periodic_output_file_ptr) << "simics_cycles_executed: " << simics_cycles_executed << " " << perProcCycleCount << endl;
207  (*m_periodic_output_file_ptr) << "transactions_started: " << transactions_started << " " << m_perProcStartTransaction << endl;
208  (*m_periodic_output_file_ptr) << "transactions_ended: " << transactions_ended << " " << m_perProcEndTransaction << endl;
209  (*m_periodic_output_file_ptr) << "L1TBE_usage: " << m_L1tbeProfile << endl;
210  (*m_periodic_output_file_ptr) << "L2TBE_usage: " << m_L2tbeProfile << endl;
211  (*m_periodic_output_file_ptr) << "mbytes_resident: " << process_memory_resident() << endl;
212  (*m_periodic_output_file_ptr) << "mbytes_total: " << process_memory_total() << endl;
213  if (process_memory_total() > 0) {
214    (*m_periodic_output_file_ptr) << "resident_ratio: " << process_memory_resident()/process_memory_total() << endl;
215  }
216  (*m_periodic_output_file_ptr) << "miss_latency: " << m_allMissLatencyHistogram << endl;
217
218  *m_periodic_output_file_ptr << endl;
219
220  if (m_all_instructions) {
221    m_inst_profiler_ptr->printStats(*m_periodic_output_file_ptr);
222  }
223
224  //g_system_ptr->getNetwork()->printStats(*m_periodic_output_file_ptr);
225  g_eventQueue_ptr->scheduleEvent(this, m_stats_period);
226}
227
228void Profiler::setPeriodicStatsFile(const string& filename)
229{
230  cout << "Recording periodic statistics to file '" << filename << "' every "
231       << m_stats_period << " Ruby cycles" << endl;
232
233  if (m_periodic_output_file_ptr != &cerr) {
234    delete m_periodic_output_file_ptr;
235  }
236
237  m_periodic_output_file_ptr = new ofstream(filename.c_str());
238  g_eventQueue_ptr->scheduleEvent(this, 1);
239}
240
241void Profiler::setPeriodicStatsInterval(integer_t period)
242{
243  cout << "Recording periodic statistics every " << m_stats_period << " Ruby cycles" << endl;
244  m_stats_period = period;
245  g_eventQueue_ptr->scheduleEvent(this, 1);
246}
247
248void Profiler::printConfig(ostream& out) const
249{
250  out << endl;
251  out << "Profiler Configuration" << endl;
252  out << "----------------------" << endl;
253  out << "periodic_stats_period: " << m_stats_period << endl;
254}
255
256void Profiler::print(ostream& out) const
257{
258  out << "[Profiler]";
259}
260
261void Profiler::printStats(ostream& out, bool short_stats)
262{
263  out << endl;
264  if (short_stats) {
265    out << "SHORT ";
266  }
267  out << "Profiler Stats" << endl;
268  out << "--------------" << endl;
269
270  time_t real_time_current = time(NULL);
271  double seconds = difftime(real_time_current, m_real_time_start_time);
272  double minutes = seconds/60.0;
273  double hours = minutes/60.0;
274  double days = hours/24.0;
275  Time ruby_cycles = g_eventQueue_ptr->getTime()-m_ruby_start;
276
277  if (!short_stats) {
278    out << "Elapsed_time_in_seconds: " << seconds << endl;
279    out << "Elapsed_time_in_minutes: " << minutes << endl;
280    out << "Elapsed_time_in_hours: " << hours << endl;
281    out << "Elapsed_time_in_days: " << days << endl;
282    out << endl;
283  }
284
285  // print the virtual runtimes as well
286  struct tms vtime;
287  times(&vtime);
288  seconds = (vtime.tms_utime + vtime.tms_stime) / 100.0;
289  minutes = seconds / 60.0;
290  hours = minutes / 60.0;
291  days = hours / 24.0;
292  out << "Virtual_time_in_seconds: " << seconds << endl;
293  out << "Virtual_time_in_minutes: " << minutes << endl;
294  out << "Virtual_time_in_hours:   " << hours << endl;
295  out << "Virtual_time_in_days:    " << hours << endl;
296  out << endl;
297
298  out << "Ruby_current_time: " << g_eventQueue_ptr->getTime() << endl;
299  out << "Ruby_start_time: " << m_ruby_start << endl;
300  out << "Ruby_cycles: " << ruby_cycles << endl;
301  out << endl;
302
303  if (!short_stats) {
304    out << "mbytes_resident: " << process_memory_resident() << endl;
305    out << "mbytes_total: " << process_memory_total() << endl;
306    if (process_memory_total() > 0) {
307      out << "resident_ratio: " << process_memory_resident()/process_memory_total() << endl;
308    }
309    out << endl;
310
311    if(m_num_BA_broadcasts + m_num_BA_unicasts != 0){
312      out << endl;
313      out << "Broadcast_percent: " << (float)m_num_BA_broadcasts/(m_num_BA_broadcasts+m_num_BA_unicasts) << endl;
314    }
315  }
316
317  Vector<integer_t> perProcInstructionCount;
318  Vector<integer_t> perProcCycleCount;
319  Vector<double> perProcCPI;
320  Vector<double> perProcMissesPerInsn;
321  Vector<double> perProcInsnPerTrans;
322  Vector<double> perProcCyclesPerTrans;
323  Vector<double> perProcMissesPerTrans;
324
325  perProcInstructionCount.setSize(RubySystem::getNumberOfSequencers());
326  perProcCycleCount.setSize(RubySystem::getNumberOfSequencers());
327  perProcCPI.setSize(RubySystem::getNumberOfSequencers());
328  perProcMissesPerInsn.setSize(RubySystem::getNumberOfSequencers());
329
330  perProcInsnPerTrans.setSize(RubySystem::getNumberOfSequencers());
331  perProcCyclesPerTrans.setSize(RubySystem::getNumberOfSequencers());
332  perProcMissesPerTrans.setSize(RubySystem::getNumberOfSequencers());
333
334  for(int i=0; i < RubySystem::getNumberOfSequencers(); i++) {
335    perProcInstructionCount[i] = g_system_ptr->getInstructionCount(i) - m_instructions_executed_at_start[i] + 1;
336    perProcCycleCount[i] = g_system_ptr->getCycleCount(i) - m_cycles_executed_at_start[i] + 1;
337    // The +1 allows us to avoid division by zero
338    perProcCPI[i] = double(ruby_cycles)/perProcInstructionCount[i];
339    perProcMissesPerInsn[i] = 1000.0 * (double(m_perProcTotalMisses[i]) / double(perProcInstructionCount[i]));
340
341    int trans = m_perProcEndTransaction[i];
342    if (trans == 0) {
343      perProcInsnPerTrans[i] = 0;
344      perProcCyclesPerTrans[i] = 0;
345      perProcMissesPerTrans[i] = 0;
346    } else {
347      perProcInsnPerTrans[i] = perProcInstructionCount[i] / double(trans);
348      perProcCyclesPerTrans[i] = ruby_cycles / double(trans);
349      perProcMissesPerTrans[i] = m_perProcTotalMisses[i] / double(trans);
350    }
351  }
352
353  integer_t total_misses = m_perProcTotalMisses.sum();
354  integer_t user_misses = m_perProcUserMisses.sum();
355  integer_t supervisor_misses = m_perProcSupervisorMisses.sum();
356  integer_t instruction_executed = perProcInstructionCount.sum();
357  integer_t simics_cycles_executed = perProcCycleCount.sum();
358  integer_t transactions_started = m_perProcStartTransaction.sum();
359  integer_t transactions_ended = m_perProcEndTransaction.sum();
360
361  double instructions_per_transaction = (transactions_ended != 0) ? double(instruction_executed) / double(transactions_ended) : 0;
362  double cycles_per_transaction = (transactions_ended != 0) ? (RubySystem::getNumberOfSequencers() * double(ruby_cycles)) / double(transactions_ended) : 0;
363  double misses_per_transaction = (transactions_ended != 0) ? double(total_misses) / double(transactions_ended) : 0;
364
365  out << "Total_misses: " << total_misses << endl;
366  out << "total_misses: " << total_misses << " " << m_perProcTotalMisses << endl;
367  out << "user_misses: " << user_misses << " " << m_perProcUserMisses << endl;
368  out << "supervisor_misses: " << supervisor_misses << " " << m_perProcSupervisorMisses << endl;
369  out << endl;
370  out << "instruction_executed: " << instruction_executed << " " << perProcInstructionCount << endl;
371  out << "ruby_cycles_executed: " << simics_cycles_executed << " " << perProcCycleCount << endl;
372  out << "cycles_per_instruction: " << (RubySystem::getNumberOfSequencers()*double(ruby_cycles))/double(instruction_executed) << " " << perProcCPI << endl;
373  out << "misses_per_thousand_instructions: " << 1000.0 * (double(total_misses) / double(instruction_executed)) << " " << perProcMissesPerInsn << endl;
374  out << endl;
375  out << "transactions_started: " << transactions_started << " " << m_perProcStartTransaction << endl;
376  out << "transactions_ended: " << transactions_ended << " " << m_perProcEndTransaction << endl;
377  out << "instructions_per_transaction: " << instructions_per_transaction << " " << perProcInsnPerTrans << endl;
378  out << "cycles_per_transaction: " << cycles_per_transaction  << " " << perProcCyclesPerTrans << endl;
379  out << "misses_per_transaction: " << misses_per_transaction << " " << perProcMissesPerTrans << endl;
380
381  out << endl;
382
383  m_L1D_cache_profiler_ptr->printStats(out);
384  m_L1I_cache_profiler_ptr->printStats(out);
385  m_L2_cache_profiler_ptr->printStats(out);
386
387  out << endl;
388
389  vector<string>::iterator it;
390
391  for ( it=m_memory_control_names.begin() ; it < m_memory_control_names.end(); it++ ){
392    long long int m_memReq = m_memory_control_profilers[(*it).c_str()] -> m_memReq;
393    long long int m_memRefresh = m_memory_control_profilers[(*it).c_str()] -> m_memRefresh;
394    long long int m_memInputQ = m_memory_control_profilers[(*it).c_str()] -> m_memInputQ;
395    long long int m_memBankQ = m_memory_control_profilers[(*it).c_str()] -> m_memBankQ;
396    long long int m_memWaitCycles = m_memory_control_profilers[(*it).c_str()] -> m_memWaitCycles;
397    long long int m_memRead = m_memory_control_profilers[(*it).c_str()] -> m_memRead;
398    long long int m_memWrite = m_memory_control_profilers[(*it).c_str()] -> m_memWrite;
399    long long int m_memBankBusy = m_memory_control_profilers[(*it).c_str()] -> m_memBankBusy;
400    long long int m_memRandBusy = m_memory_control_profilers[(*it).c_str()] -> m_memRandBusy;
401    long long int m_memNotOld = m_memory_control_profilers[(*it).c_str()] -> m_memNotOld;
402    long long int m_memArbWait = m_memory_control_profilers[(*it).c_str()] -> m_memArbWait;
403    long long int m_memBusBusy = m_memory_control_profilers[(*it).c_str()] -> m_memBusBusy;
404    long long int m_memTfawBusy = m_memory_control_profilers[(*it).c_str()] -> m_memTfawBusy;
405    long long int m_memReadWriteBusy = m_memory_control_profilers[(*it).c_str()] -> m_memReadWriteBusy;
406    long long int m_memDataBusBusy = m_memory_control_profilers[(*it).c_str()] -> m_memDataBusBusy;
407    Vector<long long int> m_memBankCount = m_memory_control_profilers[(*it).c_str()] -> m_memBankCount;
408
409    if (m_memReq || m_memRefresh) {    // if there's a memory controller at all
410      long long int total_stalls = m_memInputQ + m_memBankQ + m_memWaitCycles;
411      double stallsPerReq = total_stalls * 1.0 / m_memReq;
412      out << "Memory control:" << endl;
413      out << "  memory_total_requests: " << m_memReq << endl;  // does not include refreshes
414      out << "  memory_reads: " << m_memRead << endl;
415      out << "  memory_writes: " << m_memWrite << endl;
416      out << "  memory_refreshes: " << m_memRefresh << endl;
417      out << "  memory_total_request_delays: " << total_stalls << endl;
418      out << "  memory_delays_per_request: " << stallsPerReq << endl;
419      out << "  memory_delays_in_input_queue: " << m_memInputQ << endl;
420      out << "  memory_delays_behind_head_of_bank_queue: " << m_memBankQ << endl;
421      out << "  memory_delays_stalled_at_head_of_bank_queue: " << m_memWaitCycles << endl;
422      // Note:  The following "memory stalls" entries are a breakdown of the
423      // cycles which already showed up in m_memWaitCycles.  The order is
424      // significant; it is the priority of attributing the cycles.
425      // For example, bank_busy is before arbitration because if the bank was
426      // busy, we didn't even check arbitration.
427      // Note:  "not old enough" means that since we grouped waiting heads-of-queues
428      // into batches to avoid starvation, a request in a newer batch
429      // didn't try to arbitrate yet because there are older requests waiting.
430      out << "  memory_stalls_for_bank_busy: " << m_memBankBusy << endl;
431      out << "  memory_stalls_for_random_busy: " << m_memRandBusy << endl;
432      out << "  memory_stalls_for_anti_starvation: " << m_memNotOld << endl;
433      out << "  memory_stalls_for_arbitration: " << m_memArbWait << endl;
434      out << "  memory_stalls_for_bus: " << m_memBusBusy << endl;
435      out << "  memory_stalls_for_tfaw: " << m_memTfawBusy << endl;
436      out << "  memory_stalls_for_read_write_turnaround: " << m_memReadWriteBusy << endl;
437      out << "  memory_stalls_for_read_read_turnaround: " << m_memDataBusBusy << endl;
438      out << "  accesses_per_bank: ";
439      for (int bank=0; bank < m_memBankCount.size(); bank++) {
440        out << m_memBankCount[bank] << "  ";
441        //if ((bank % 8) == 7) out << "                     " << endl;
442      }
443      out << endl;
444      out << endl;
445    }
446  }
447  if (!short_stats) {
448    out << "Busy Controller Counts:" << endl;
449    for(int i=0; i < MachineType_NUM; i++) {
450      for(int j=0; j < MachineType_base_count((MachineType)i); j++) {
451        MachineID machID;
452        machID.type = (MachineType)i;
453        machID.num = j;
454        out << machID << ":" << m_busyControllerCount[i][j] << "  ";
455        if ((j+1)%8 == 0) {
456          out << endl;
457        }
458      }
459      out << endl;
460    }
461    out << endl;
462
463    out << "Busy Bank Count:" << m_busyBankCount << endl;
464    out << endl;
465
466    out << "L1TBE_usage: " << m_L1tbeProfile << endl;
467    out << "L2TBE_usage: " << m_L2tbeProfile << endl;
468    out << "StopTable_usage: " << m_stopTableProfile << endl;
469    out << "sequencer_requests_outstanding: " << m_sequencer_requests << endl;
470    out << "store_buffer_size: " << m_store_buffer_size << endl;
471    out << "unique_blocks_in_store_buffer: " << m_store_buffer_blocks << endl;
472    out << endl;
473  }
474
475  if (!short_stats) {
476    out << "All Non-Zero Cycle Demand Cache Accesses" << endl;
477    out << "----------------------------------------" << endl;
478    out << "miss_latency: " << m_allMissLatencyHistogram << endl;
479    for(int i=0; i<m_missLatencyHistograms.size(); i++) {
480      if (m_missLatencyHistograms[i].size() > 0) {
481        out << "miss_latency_" << RubyRequestType(i) << ": " << m_missLatencyHistograms[i] << endl;
482      }
483    }
484    for(int i=0; i<m_machLatencyHistograms.size(); i++) {
485      if (m_machLatencyHistograms[i].size() > 0) {
486        out << "miss_latency_" << GenericMachineType(i) << ": " << m_machLatencyHistograms[i] << endl;
487      }
488    }
489    out << "miss_latency_L2Miss: " << m_L2MissLatencyHistogram << endl;
490
491    out << endl;
492
493    out << "All Non-Zero Cycle SW Prefetch Requests" << endl;
494    out << "------------------------------------" << endl;
495    out << "prefetch_latency: " << m_allSWPrefetchLatencyHistogram << endl;
496    for(int i=0; i<m_SWPrefetchLatencyHistograms.size(); i++) {
497      if (m_SWPrefetchLatencyHistograms[i].size() > 0) {
498        out << "prefetch_latency_" << CacheRequestType(i) << ": " << m_SWPrefetchLatencyHistograms[i] << endl;
499      }
500    }
501    for(int i=0; i<m_SWPrefetchMachLatencyHistograms.size(); i++) {
502      if (m_SWPrefetchMachLatencyHistograms[i].size() > 0) {
503        out << "prefetch_latency_" << GenericMachineType(i) << ": " << m_SWPrefetchMachLatencyHistograms[i] << endl;
504      }
505    }
506    out << "prefetch_latency_L2Miss:" << m_SWPrefetchL2MissLatencyHistogram << endl;
507
508    out << "multicast_retries: " << m_multicast_retry_histogram << endl;
509    out << "gets_mask_prediction_count: " << m_gets_mask_prediction << endl;
510    out << "getx_mask_prediction_count: " << m_getx_mask_prediction << endl;
511    out << "explicit_training_mask: " << m_explicit_training_mask << endl;
512    out << endl;
513
514    if (m_all_sharing_histogram.size() > 0) {
515      out << "all_sharing: " << m_all_sharing_histogram << endl;
516      out << "read_sharing: " << m_read_sharing_histogram << endl;
517      out << "write_sharing: " << m_write_sharing_histogram << endl;
518
519      out << "all_sharing_percent: "; m_all_sharing_histogram.printPercent(out); out << endl;
520      out << "read_sharing_percent: "; m_read_sharing_histogram.printPercent(out); out << endl;
521      out << "write_sharing_percent: "; m_write_sharing_histogram.printPercent(out); out << endl;
522
523      int64 total_miss = m_cache_to_cache +  m_memory_to_cache;
524      out << "all_misses: " << total_miss << endl;
525      out << "cache_to_cache_misses: " << m_cache_to_cache << endl;
526      out << "memory_to_cache_misses: " << m_memory_to_cache << endl;
527      out << "cache_to_cache_percent: " << 100.0 * (double(m_cache_to_cache) / double(total_miss)) << endl;
528      out << "memory_to_cache_percent: " << 100.0 * (double(m_memory_to_cache) / double(total_miss)) << endl;
529      out << endl;
530    }
531
532    if (m_conflicting_histogram.size() > 0) {
533      out << "conflicting_histogram: " << m_conflicting_histogram << endl;
534      out << "conflicting_histogram_percent: "; m_conflicting_histogram.printPercent(out); out << endl;
535      out << endl;
536    }
537
538    if (m_outstanding_requests.size() > 0) {
539      out << "outstanding_requests: "; m_outstanding_requests.printPercent(out); out << endl;
540      if (m_outstanding_persistent_requests.size() > 0) {
541        out << "outstanding_persistent_requests: "; m_outstanding_persistent_requests.printPercent(out); out << endl;
542      }
543      out << endl;
544    }
545  }
546
547  if (!short_stats) {
548    out << "Request vs. RubySystem State Profile" << endl;
549    out << "--------------------------------" << endl;
550    out << endl;
551
552    Vector<string> requestProfileKeys = m_requestProfileMap_ptr->keys();
553    requestProfileKeys.sortVector();
554
555    for(int i=0; i<requestProfileKeys.size(); i++) {
556      int temp_int = m_requestProfileMap_ptr->lookup(requestProfileKeys[i]);
557      double percent = (100.0*double(temp_int))/double(m_requests);
558      while (requestProfileKeys[i] != "") {
559        out << setw(10) << string_split(requestProfileKeys[i], ':');
560      }
561      out << setw(11) << temp_int;
562      out << setw(14) << percent << endl;
563    }
564    out << endl;
565
566    out << "filter_action: " << m_filter_action_histogram << endl;
567
568    if (!m_all_instructions) {
569      m_address_profiler_ptr->printStats(out);
570    }
571
572    if (m_all_instructions) {
573      m_inst_profiler_ptr->printStats(out);
574    }
575
576    out << endl;
577    out << "Message Delayed Cycles" << endl;
578    out << "----------------------" << endl;
579    out << "Total_delay_cycles: " <<   m_delayedCyclesHistogram << endl;
580    out << "Total_nonPF_delay_cycles: " << m_delayedCyclesNonPFHistogram << endl;
581    for (int i = 0; i < m_delayedCyclesVCHistograms.size(); i++) {
582      out << "  virtual_network_" << i << "_delay_cycles: " << m_delayedCyclesVCHistograms[i] << endl;
583    }
584
585    printResourceUsage(out);
586  }
587
588}
589
590void Profiler::printResourceUsage(ostream& out) const
591{
592  out << endl;
593  out << "Resource Usage" << endl;
594  out << "--------------" << endl;
595
596  integer_t pagesize = getpagesize(); // page size in bytes
597  out << "page_size: " << pagesize << endl;
598
599  rusage usage;
600  getrusage (RUSAGE_SELF, &usage);
601
602  out << "user_time: " << usage.ru_utime.tv_sec << endl;
603  out << "system_time: " << usage.ru_stime.tv_sec << endl;
604  out << "page_reclaims: " << usage.ru_minflt << endl;
605  out << "page_faults: " << usage.ru_majflt << endl;
606  out << "swaps: " << usage.ru_nswap << endl;
607  out << "block_inputs: " << usage.ru_inblock << endl;
608  out << "block_outputs: " << usage.ru_oublock << endl;
609}
610
611void Profiler::clearStats()
612{
613  m_num_BA_unicasts = 0;
614  m_num_BA_broadcasts = 0;
615
616  m_ruby_start = g_eventQueue_ptr->getTime();
617
618  m_instructions_executed_at_start.setSize(RubySystem::getNumberOfSequencers());
619  m_cycles_executed_at_start.setSize(RubySystem::getNumberOfSequencers());
620  for (int i=0; i < RubySystem::getNumberOfSequencers(); i++) {
621    if (g_system_ptr == NULL) {
622      m_instructions_executed_at_start[i] = 0;
623      m_cycles_executed_at_start[i] = 0;
624    } else {
625      m_instructions_executed_at_start[i] = g_system_ptr->getInstructionCount(i);
626      m_cycles_executed_at_start[i] = g_system_ptr->getCycleCount(i);
627    }
628  }
629
630  m_perProcTotalMisses.setSize(RubySystem::getNumberOfSequencers());
631  m_perProcUserMisses.setSize(RubySystem::getNumberOfSequencers());
632  m_perProcSupervisorMisses.setSize(RubySystem::getNumberOfSequencers());
633  m_perProcStartTransaction.setSize(RubySystem::getNumberOfSequencers());
634  m_perProcEndTransaction.setSize(RubySystem::getNumberOfSequencers());
635
636  for(int i=0; i < RubySystem::getNumberOfSequencers(); i++) {
637    m_perProcTotalMisses[i] = 0;
638    m_perProcUserMisses[i] = 0;
639    m_perProcSupervisorMisses[i] = 0;
640    m_perProcStartTransaction[i] = 0;
641    m_perProcEndTransaction[i] = 0;
642  }
643
644  m_busyControllerCount.setSize(MachineType_NUM); // all machines
645  for(int i=0; i < MachineType_NUM; i++) {
646    m_busyControllerCount[i].setSize(MachineType_base_count((MachineType)i));
647    for(int j=0; j < MachineType_base_count((MachineType)i); j++) {
648      m_busyControllerCount[i][j] = 0;
649    }
650  }
651  m_busyBankCount = 0;
652
653  m_delayedCyclesHistogram.clear();
654  m_delayedCyclesNonPFHistogram.clear();
655  m_delayedCyclesVCHistograms.setSize(RubySystem::getNetwork()->getNumberOfVirtualNetworks());
656  for (int i = 0; i < RubySystem::getNetwork()->getNumberOfVirtualNetworks(); i++) {
657    m_delayedCyclesVCHistograms[i].clear();
658  }
659
660  m_gets_mask_prediction.clear();
661  m_getx_mask_prediction.clear();
662  m_explicit_training_mask.clear();
663
664  m_missLatencyHistograms.setSize(CacheRequestType_NUM);
665  for(int i=0; i<m_missLatencyHistograms.size(); i++) {
666    m_missLatencyHistograms[i].clear(200);
667  }
668  m_machLatencyHistograms.setSize(GenericMachineType_NUM+1);
669  for(int i=0; i<m_machLatencyHistograms.size(); i++) {
670    m_machLatencyHistograms[i].clear(200);
671  }
672  m_allMissLatencyHistogram.clear(200);
673  m_L2MissLatencyHistogram.clear(200);
674
675  m_SWPrefetchLatencyHistograms.setSize(CacheRequestType_NUM);
676  for(int i=0; i<m_SWPrefetchLatencyHistograms.size(); i++) {
677    m_SWPrefetchLatencyHistograms[i].clear(200);
678  }
679  m_SWPrefetchMachLatencyHistograms.setSize(GenericMachineType_NUM+1);
680  for(int i=0; i<m_SWPrefetchMachLatencyHistograms.size(); i++) {
681    m_SWPrefetchMachLatencyHistograms[i].clear(200);
682  }
683  m_allSWPrefetchLatencyHistogram.clear(200);
684  m_SWPrefetchL2MissLatencyHistogram.clear(200);
685
686  m_multicast_retry_histogram.clear();
687
688  m_L1tbeProfile.clear();
689  m_L2tbeProfile.clear();
690  m_stopTableProfile.clear();
691  m_filter_action_histogram.clear();
692
693  m_sequencer_requests.clear();
694  m_store_buffer_size.clear();
695  m_store_buffer_blocks.clear();
696  m_read_sharing_histogram.clear();
697  m_write_sharing_histogram.clear();
698  m_all_sharing_histogram.clear();
699  m_cache_to_cache = 0;
700  m_memory_to_cache = 0;
701
702  m_predictions = 0;
703  m_predictionOpportunities = 0;
704  m_goodPredictions = 0;
705
706  // clear HashMaps
707  m_requestProfileMap_ptr->clear();
708
709  // count requests profiled
710  m_requests = 0;
711
712  // Conflicting requests
713  m_conflicting_map_ptr->clear();
714  m_conflicting_histogram.clear();
715
716  m_outstanding_requests.clear();
717  m_outstanding_persistent_requests.clear();
718
719  m_L1D_cache_profiler_ptr->clearStats();
720  m_L1I_cache_profiler_ptr->clearStats();
721  m_L2_cache_profiler_ptr->clearStats();
722
723  // for MemoryControl:
724/*
725  m_memReq = 0;
726  m_memBankBusy = 0;
727  m_memBusBusy = 0;
728  m_memTfawBusy = 0;
729  m_memReadWriteBusy = 0;
730  m_memDataBusBusy = 0;
731  m_memRefresh = 0;
732  m_memRead = 0;
733  m_memWrite = 0;
734  m_memWaitCycles = 0;
735  m_memInputQ = 0;
736  m_memBankQ = 0;
737  m_memArbWait = 0;
738  m_memRandBusy = 0;
739  m_memNotOld = 0;
740
741  for (int bank=0; bank < m_memBankCount.size(); bank++) {
742    m_memBankCount[bank] = 0;
743  }
744*/
745//added by SS
746  vector<string>::iterator it;
747
748  for ( it=m_memory_control_names.begin() ; it < m_memory_control_names.end(); it++ ){
749    m_memory_control_profilers[(*it).c_str()] -> m_memReq = 0;
750    m_memory_control_profilers[(*it).c_str()] -> m_memBankBusy = 0;
751    m_memory_control_profilers[(*it).c_str()] -> m_memBusBusy = 0;
752    m_memory_control_profilers[(*it).c_str()] -> m_memTfawBusy = 0;
753    m_memory_control_profilers[(*it).c_str()] -> m_memReadWriteBusy = 0;
754    m_memory_control_profilers[(*it).c_str()] -> m_memDataBusBusy = 0;
755    m_memory_control_profilers[(*it).c_str()] -> m_memRefresh = 0;
756    m_memory_control_profilers[(*it).c_str()] -> m_memRead = 0;
757    m_memory_control_profilers[(*it).c_str()] -> m_memWrite = 0;
758    m_memory_control_profilers[(*it).c_str()] -> m_memWaitCycles = 0;
759    m_memory_control_profilers[(*it).c_str()] -> m_memInputQ = 0;
760    m_memory_control_profilers[(*it).c_str()] -> m_memBankQ = 0;
761    m_memory_control_profilers[(*it).c_str()] -> m_memArbWait = 0;
762    m_memory_control_profilers[(*it).c_str()] -> m_memRandBusy = 0;
763    m_memory_control_profilers[(*it).c_str()] -> m_memNotOld = 0;
764
765    for (int bank=0; bank < m_memory_control_profilers[(*it).c_str()] -> m_memBankCount.size(); bank++) {
766        m_memory_control_profilers[(*it).c_str()] -> m_memBankCount[bank] = 0;
767    }
768  }
769  // Flush the prefetches through the system - used so that there are no outstanding requests after stats are cleared
770  //g_eventQueue_ptr->triggerAllEvents();
771
772  // update the start time
773  m_ruby_start = g_eventQueue_ptr->getTime();
774}
775
776void Profiler::addPrimaryStatSample(const CacheMsg& msg, NodeID id)
777{
778  if (Protocol::m_TwoLevelCache) {
779    if (msg.getType() == CacheRequestType_IFETCH) {
780      addL1IStatSample(msg, id);
781    } else {
782      addL1DStatSample(msg, id);
783    }
784    // profile the address after an L1 miss (outside of the processor for CMP)
785    if (Protocol::m_CMP) {
786      addAddressTraceSample(msg, id);
787    }
788  } else {
789    addL2StatSample(CacheRequestType_to_GenericRequestType(msg.getType()),
790                    msg.getAccessMode(), msg.getSize(), msg.getPrefetch(), id);
791    addAddressTraceSample(msg, id);
792  }
793}
794
795void Profiler::profileConflictingRequests(const Address& addr)
796{
797  assert(addr == line_address(addr));
798  Time last_time = m_ruby_start;
799  if (m_conflicting_map_ptr->exist(addr)) {
800    last_time = m_conflicting_map_ptr->lookup(addr);
801  }
802  Time current_time = g_eventQueue_ptr->getTime();
803  assert (current_time - last_time > 0);
804  m_conflicting_histogram.add(current_time - last_time);
805  m_conflicting_map_ptr->add(addr, current_time);
806}
807
808void Profiler::addSecondaryStatSample(CacheRequestType requestType, AccessModeType type, int msgSize, PrefetchBit pfBit, NodeID id)
809{
810  addSecondaryStatSample(CacheRequestType_to_GenericRequestType(requestType), type, msgSize, pfBit, id);
811}
812
813void Profiler::addSecondaryStatSample(GenericRequestType requestType, AccessModeType type, int msgSize, PrefetchBit pfBit, NodeID id)
814{
815  addL2StatSample(requestType, type, msgSize, pfBit, id);
816}
817
818void Profiler::addL2StatSample(GenericRequestType requestType, AccessModeType type, int msgSize, PrefetchBit pfBit, NodeID id)
819{
820  m_perProcTotalMisses[id]++;
821  if (type == AccessModeType_SupervisorMode) {
822    m_perProcSupervisorMisses[id]++;
823  } else {
824    m_perProcUserMisses[id]++;
825  }
826  m_L2_cache_profiler_ptr->addStatSample(requestType, type, msgSize, pfBit);
827}
828
829void Profiler::addL1DStatSample(const CacheMsg& msg, NodeID id)
830{
831  m_L1D_cache_profiler_ptr->addStatSample(CacheRequestType_to_GenericRequestType(msg.getType()),
832                                          msg.getAccessMode(), msg.getSize(), msg.getPrefetch());
833}
834
835void Profiler::addL1IStatSample(const CacheMsg& msg, NodeID id)
836{
837  m_L1I_cache_profiler_ptr->addStatSample(CacheRequestType_to_GenericRequestType(msg.getType()),
838                                          msg.getAccessMode(), msg.getSize(), msg.getPrefetch());
839}
840
841void Profiler::addAddressTraceSample(const CacheMsg& msg, NodeID id)
842{
843  if (msg.getType() != CacheRequestType_IFETCH) {
844
845    // Note: The following line should be commented out if you want to
846    // use the special profiling that is part of the GS320 protocol
847
848    // NOTE: Unless PROFILE_HOT_LINES is enabled, nothing will be profiled by the AddressProfiler
849    m_address_profiler_ptr->addTraceSample(msg.getLineAddress(), msg.getProgramCounter(), msg.getType(), msg.getAccessMode(), id, false);
850  }
851}
852
853void Profiler::profileSharing(const Address& addr, AccessType type, NodeID requestor, const Set& sharers, const Set& owner)
854{
855  Set set_contacted(owner);
856  if (type == AccessType_Write) {
857    set_contacted.addSet(sharers);
858  }
859  set_contacted.remove(requestor);
860  int number_contacted = set_contacted.count();
861
862  if (type == AccessType_Write) {
863    m_write_sharing_histogram.add(number_contacted);
864  } else {
865    m_read_sharing_histogram.add(number_contacted);
866  }
867  m_all_sharing_histogram.add(number_contacted);
868
869  if (number_contacted == 0) {
870    m_memory_to_cache++;
871  } else {
872    m_cache_to_cache++;
873  }
874
875}
876
877void Profiler::profileMsgDelay(int virtualNetwork, int delayCycles) {
878  assert(virtualNetwork < m_delayedCyclesVCHistograms.size());
879  m_delayedCyclesHistogram.add(delayCycles);
880  m_delayedCyclesVCHistograms[virtualNetwork].add(delayCycles);
881  if (virtualNetwork != 0) {
882    m_delayedCyclesNonPFHistogram.add(delayCycles);
883  }
884}
885
886// profiles original cache requests including PUTs
887void Profiler::profileRequest(const string& requestStr)
888{
889  m_requests++;
890
891  if (m_requestProfileMap_ptr->exist(requestStr)) {
892    (m_requestProfileMap_ptr->lookup(requestStr))++;
893  } else {
894    m_requestProfileMap_ptr->add(requestStr, 1);
895  }
896}
897
898void Profiler::recordPrediction(bool wasGood, bool wasPredicted)
899{
900  m_predictionOpportunities++;
901  if(wasPredicted){
902    m_predictions++;
903    if(wasGood){
904      m_goodPredictions++;
905    }
906  }
907}
908
909void Profiler::profileFilterAction(int action)
910{
911  m_filter_action_histogram.add(action);
912}
913
914void Profiler::profileMulticastRetry(const Address& addr, int count)
915{
916  m_multicast_retry_histogram.add(count);
917}
918
919void Profiler::startTransaction(int cpu)
920{
921  m_perProcStartTransaction[cpu]++;
922}
923
924void Profiler::endTransaction(int cpu)
925{
926  m_perProcEndTransaction[cpu]++;
927}
928
929void Profiler::controllerBusy(MachineID machID)
930{
931  m_busyControllerCount[(int)machID.type][(int)machID.num]++;
932}
933
934void Profiler::profilePFWait(Time waitTime)
935{
936  m_prefetchWaitHistogram.add(waitTime);
937}
938
939void Profiler::bankBusy()
940{
941  m_busyBankCount++;
942}
943
944// non-zero cycle demand request
945void Profiler::missLatency(Time t, RubyRequestType type)
946{
947  m_allMissLatencyHistogram.add(t);
948  m_missLatencyHistograms[type].add(t);
949  /*
950  m_machLatencyHistograms[respondingMach].add(t);
951  if(respondingMach == GenericMachineType_Directory || respondingMach == GenericMachineType_NUM) {
952    m_L2MissLatencyHistogram.add(t);
953  }
954  */
955}
956
957// non-zero cycle prefetch request
958void Profiler::swPrefetchLatency(Time t, CacheRequestType type, GenericMachineType respondingMach)
959{
960  m_allSWPrefetchLatencyHistogram.add(t);
961  m_SWPrefetchLatencyHistograms[type].add(t);
962  m_SWPrefetchMachLatencyHistograms[respondingMach].add(t);
963  if(respondingMach == GenericMachineType_Directory || respondingMach == GenericMachineType_NUM) {
964    m_SWPrefetchL2MissLatencyHistogram.add(t);
965  }
966}
967
968void Profiler::profileTransition(const string& component, NodeID version, Address addr,
969                                 const string& state, const string& event,
970                                 const string& next_state, const string& note)
971{
972  const int EVENT_SPACES = 20;
973  const int ID_SPACES = 3;
974  const int TIME_SPACES = 7;
975  const int COMP_SPACES = 10;
976  const int STATE_SPACES = 6;
977
978  if ((g_debug_ptr->getDebugTime() > 0) &&
979      (g_eventQueue_ptr->getTime() >= g_debug_ptr->getDebugTime())) {
980    (* debug_cout_ptr).flags(ios::right);
981    (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " ";
982    (* debug_cout_ptr) << setw(ID_SPACES) << version << " ";
983    (* debug_cout_ptr) << setw(COMP_SPACES) << component;
984    (* debug_cout_ptr) << setw(EVENT_SPACES) << event << " ";
985
986    (* debug_cout_ptr).flags(ios::right);
987    (* debug_cout_ptr) << setw(STATE_SPACES) << state;
988    (* debug_cout_ptr) << ">";
989    (* debug_cout_ptr).flags(ios::left);
990    (* debug_cout_ptr) << setw(STATE_SPACES) << next_state;
991
992    (* debug_cout_ptr) << " " << addr << " " << note;
993
994    (* debug_cout_ptr) << endl;
995  }
996}
997
998// Helper function
999static double process_memory_total()
1000{
1001  const double MULTIPLIER = 4096.0/(1024.0*1024.0); // 4kB page size, 1024*1024 bytes per MB,
1002  ifstream proc_file;
1003  proc_file.open("/proc/self/statm");
1004  int total_size_in_pages = 0;
1005  int res_size_in_pages = 0;
1006  proc_file >> total_size_in_pages;
1007  proc_file >> res_size_in_pages;
1008  return double(total_size_in_pages)*MULTIPLIER; // size in megabytes
1009}
1010
1011static double process_memory_resident()
1012{
1013  const double MULTIPLIER = 4096.0/(1024.0*1024.0); // 4kB page size, 1024*1024 bytes per MB,
1014  ifstream proc_file;
1015  proc_file.open("/proc/self/statm");
1016  int total_size_in_pages = 0;
1017  int res_size_in_pages = 0;
1018  proc_file >> total_size_in_pages;
1019  proc_file >> res_size_in_pages;
1020  return double(res_size_in_pages)*MULTIPLIER; // size in megabytes
1021}
1022
1023void Profiler::profileGetXMaskPrediction(const Set& pred_set)
1024{
1025  m_getx_mask_prediction.add(pred_set.count());
1026}
1027
1028void Profiler::profileGetSMaskPrediction(const Set& pred_set)
1029{
1030  m_gets_mask_prediction.add(pred_set.count());
1031}
1032
1033void Profiler::profileTrainingMask(const Set& pred_set)
1034{
1035  m_explicit_training_mask.add(pred_set.count());
1036}
1037
1038int64 Profiler::getTotalInstructionsExecuted() const
1039{
1040  int64 sum = 1;     // Starting at 1 allows us to avoid division by zero
1041  for(int i=0; i < RubySystem::getNumberOfSequencers(); i++) {
1042    sum += (g_system_ptr->getInstructionCount(i) - m_instructions_executed_at_start[i]);
1043  }
1044  return sum;
1045}
1046
1047int64 Profiler::getTotalTransactionsExecuted() const
1048{
1049  int64 sum = m_perProcEndTransaction.sum();
1050  if (sum > 0) {
1051    return sum;
1052  } else {
1053    return 1;  // Avoid division by zero errors
1054  }
1055}
1056
1057
1058// The following case statement converts CacheRequestTypes to GenericRequestTypes
1059// allowing all profiling to be done with a single enum type instead of slow strings
1060GenericRequestType Profiler::CacheRequestType_to_GenericRequestType(const CacheRequestType& type) {
1061  switch (type) {
1062  case CacheRequestType_LD:
1063    return GenericRequestType_LD;
1064    break;
1065  case CacheRequestType_ST:
1066    return GenericRequestType_ST;
1067    break;
1068  case CacheRequestType_ATOMIC:
1069    return GenericRequestType_ATOMIC;
1070    break;
1071  case CacheRequestType_IFETCH:
1072    return GenericRequestType_IFETCH;
1073    break;
1074  case CacheRequestType_NULL:
1075    return GenericRequestType_NULL;
1076    break;
1077  default:
1078    ERROR_MSG("Unexpected cache request type");
1079  }
1080}
1081
1082void Profiler::rubyWatch(int id){
1083    //int rn_g1 = 0;//SIMICS_get_register_number(id, "g1");
1084  uint64 tr = 0;//SIMICS_read_register(id, rn_g1);
1085    Address watch_address = Address(tr);
1086    const int ID_SPACES = 3;
1087    const int TIME_SPACES = 7;
1088
1089    (* debug_cout_ptr).flags(ios::right);
1090    (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " ";
1091    (* debug_cout_ptr) << setw(ID_SPACES) << id << " "
1092                       << "RUBY WATCH "
1093                       << watch_address
1094                       << endl;
1095
1096    if(!m_watch_address_list_ptr->exist(watch_address)){
1097      m_watch_address_list_ptr->add(watch_address, 1);
1098    }
1099}
1100
1101bool Profiler::watchAddress(Address addr){
1102    if (m_watch_address_list_ptr->exist(addr))
1103      return true;
1104    else
1105      return false;
1106}
1107
1108// For MemoryControl:
1109void Profiler::profileMemReq(string name, int bank) {
1110//  printf("name is %s", name.c_str());
1111  assert(m_memory_control_profilers.count(name) == 1);
1112  m_memory_control_profilers[name] -> m_memReq++;
1113  m_memory_control_profilers[name] -> m_memBankCount[bank]++;
1114}
1115void Profiler::profileMemBankBusy(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memBankBusy++; }
1116void Profiler::profileMemBusBusy(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memBusBusy++; }
1117void Profiler::profileMemReadWriteBusy(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memReadWriteBusy++; }
1118void Profiler::profileMemDataBusBusy(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memDataBusBusy++; }
1119void Profiler::profileMemTfawBusy(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memTfawBusy++; }
1120void Profiler::profileMemRefresh(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memRefresh++; }
1121void Profiler::profileMemRead(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memRead++; }
1122void Profiler::profileMemWrite(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memWrite++; }
1123void Profiler::profileMemWaitCycles(string name, int cycles) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memWaitCycles += cycles; }
1124void Profiler::profileMemInputQ(string name, int cycles) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memInputQ += cycles; }
1125void Profiler::profileMemBankQ(string name, int cycles) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memBankQ += cycles; }
1126void Profiler::profileMemArbWait(string name, int cycles) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memArbWait += cycles; }
1127void Profiler::profileMemRandBusy(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memRandBusy++; }
1128void Profiler::profileMemNotOld(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memNotOld++; }
1129
1130