Profiler.cc revision 6288:083a6806dd96
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30   This file has been modified by Kevin Moore and Dan Nussbaum of the
31   Scalable Systems Research Group at Sun Microsystems Laboratories
32   (http://research.sun.com/scalable/) to support the Adaptive
33   Transactional Memory Test Platform (ATMTP).
34
35   Please send email to atmtp-interest@sun.com with feedback, questions, or
36   to request future announcements about ATMTP.
37
38   ----------------------------------------------------------------------
39
40   File modification date: 2008-02-23
41
42   ----------------------------------------------------------------------
43*/
44
45/*
46 * Profiler.cc
47 *
48 * Description: See Profiler.hh
49 *
50 * $Id$
51 *
52 */
53
54#include "mem/ruby/profiler/Profiler.hh"
55#include "mem/ruby/profiler/CacheProfiler.hh"
56#include "mem/ruby/profiler/AddressProfiler.hh"
57#include "mem/ruby/system/System.hh"
58#include "mem/ruby/network/Network.hh"
59#include "mem/gems_common/PrioHeap.hh"
60#include "mem/protocol/CacheMsg.hh"
61#include "mem/protocol/Protocol.hh"
62#include "mem/gems_common/util.hh"
63#include "mem/gems_common/Map.hh"
64#include "mem/ruby/common/Debug.hh"
65#include "mem/protocol/MachineType.hh"
66
67// Allows use of times() library call, which determines virtual runtime
68#include <sys/times.h>
69
70extern std::ostream * debug_cout_ptr;
71
72static double process_memory_total();
73static double process_memory_resident();
74
75Profiler::Profiler(const string & name)
76  : m_conflicting_histogram(-1)
77{
78  m_name = name;
79  m_requestProfileMap_ptr = new Map<string, int>;
80  m_L1D_cache_profiler_ptr = new CacheProfiler("L1D_cache");
81  m_L1I_cache_profiler_ptr = new CacheProfiler("L1I_cache");
82
83  m_L2_cache_profiler_ptr = new CacheProfiler("L2_cache");
84
85  m_inst_profiler_ptr = NULL;
86  m_address_profiler_ptr = NULL;
87
88/*
89  m_address_profiler_ptr = new AddressProfiler;
90  m_inst_profiler_ptr = NULL;
91  if (m_all_instructions) {
92    m_inst_profiler_ptr = new AddressProfiler;
93  }
94*/
95  m_conflicting_map_ptr = new Map<Address, Time>;
96
97  m_real_time_start_time = time(NULL); // Not reset in clearStats()
98  m_stats_period = 1000000; // Default
99  m_periodic_output_file_ptr = &cerr;
100
101//changed by SS
102/*
103  // for MemoryControl:
104  m_memReq = 0;
105  m_memBankBusy = 0;
106  m_memBusBusy = 0;
107  m_memReadWriteBusy = 0;
108  m_memDataBusBusy = 0;
109  m_memTfawBusy = 0;
110  m_memRefresh = 0;
111  m_memRead = 0;
112  m_memWrite = 0;
113  m_memWaitCycles = 0;
114  m_memInputQ = 0;
115  m_memBankQ = 0;
116  m_memArbWait = 0;
117  m_memRandBusy = 0;
118  m_memNotOld = 0;
119
120
121  int totalBanks = RubyConfig::banksPerRank()
122                 * RubyConfig::ranksPerDimm()
123                 * RubyConfig::dimmsPerChannel();
124  m_memBankCount.setSize(totalBanks);
125*/
126}
127
128Profiler::~Profiler()
129{
130  if (m_periodic_output_file_ptr != &cerr) {
131    delete m_periodic_output_file_ptr;
132  }
133  delete m_address_profiler_ptr;
134  delete m_L1D_cache_profiler_ptr;
135  delete m_L1I_cache_profiler_ptr;
136  delete m_L2_cache_profiler_ptr;
137  delete m_requestProfileMap_ptr;
138  delete m_conflicting_map_ptr;
139}
140
141void Profiler::init(const vector<string> & argv, vector<string> memory_control_names)
142{
143  // added by SS
144  vector<string>::iterator it;
145  memory_control_profiler* mcp;
146  m_memory_control_names = memory_control_names;
147//  printf ( "Here in Profiler::init \n");
148  for ( it=memory_control_names.begin() ; it < memory_control_names.end(); it++ ){
149//    printf ( "Here in Profiler::init memory control name %s \n", (*it).c_str());
150    mcp = new memory_control_profiler;
151    mcp->m_memReq = 0;
152    mcp->m_memBankBusy = 0;
153    mcp->m_memBusBusy = 0;
154    mcp->m_memReadWriteBusy = 0;
155    mcp->m_memDataBusBusy = 0;
156    mcp->m_memTfawBusy = 0;
157    mcp->m_memRefresh = 0;
158    mcp->m_memRead = 0;
159    mcp->m_memWrite = 0;
160    mcp->m_memWaitCycles = 0;
161    mcp->m_memInputQ = 0;
162    mcp->m_memBankQ = 0;
163    mcp->m_memArbWait = 0;
164    mcp->m_memRandBusy = 0;
165    mcp->m_memNotOld = 0;
166
167    mcp->m_banks_per_rank = RubySystem::getMemoryControl((*it).c_str())->getBanksPerRank();
168    mcp->m_ranks_per_dimm = RubySystem::getMemoryControl((*it).c_str())->getRanksPerDimm();
169    mcp->m_dimms_per_channel = RubySystem::getMemoryControl((*it).c_str())->getDimmsPerChannel();
170
171    int totalBanks = mcp->m_banks_per_rank
172                 * mcp->m_ranks_per_dimm
173                 * mcp->m_dimms_per_channel;
174
175    mcp->m_memBankCount.setSize(totalBanks);
176
177    m_memory_control_profilers [(*it).c_str()] = mcp;
178  }
179
180  clearStats();
181  m_hot_lines = false;
182  m_all_instructions = false;
183
184  for (size_t i=0; i<argv.size(); i+=2) {
185    if ( argv[i] == "hot_lines") {
186      m_hot_lines = (argv[i+1]=="true");
187    } else if ( argv[i] == "all_instructions") {
188      m_all_instructions = (argv[i+1]=="true");
189    }else {
190      cerr << "WARNING: Profiler: Unkown configuration parameter: " << argv[i] << endl;
191      assert(false);
192    }
193  }
194
195  m_address_profiler_ptr = new AddressProfiler;
196  m_address_profiler_ptr -> setHotLines(m_hot_lines);
197  m_address_profiler_ptr -> setAllInstructions(m_all_instructions);
198
199  if (m_all_instructions) {
200    m_inst_profiler_ptr = new AddressProfiler;
201    m_inst_profiler_ptr -> setHotLines(m_hot_lines);
202    m_inst_profiler_ptr -> setAllInstructions(m_all_instructions);
203  }
204}
205
206void Profiler::wakeup()
207{
208  // FIXME - avoid the repeated code
209
210  Vector<integer_t> perProcInstructionCount;
211  perProcInstructionCount.setSize(RubySystem::getNumberOfSequencers());
212
213  Vector<integer_t> perProcCycleCount;
214  perProcCycleCount.setSize(RubySystem::getNumberOfSequencers());
215
216  for(int i=0; i < RubySystem::getNumberOfSequencers(); i++) {
217    perProcInstructionCount[i] = g_system_ptr->getInstructionCount(i) - m_instructions_executed_at_start[i] + 1;
218    perProcCycleCount[i] = g_system_ptr->getCycleCount(i) - m_cycles_executed_at_start[i] + 1;
219    // The +1 allows us to avoid division by zero
220  }
221
222  integer_t total_misses = m_perProcTotalMisses.sum();
223  integer_t instruction_executed = perProcInstructionCount.sum();
224  integer_t simics_cycles_executed = perProcCycleCount.sum();
225  integer_t transactions_started = m_perProcStartTransaction.sum();
226  integer_t transactions_ended = m_perProcEndTransaction.sum();
227
228  (*m_periodic_output_file_ptr) << "ruby_cycles: " << g_eventQueue_ptr->getTime()-m_ruby_start << endl;
229  (*m_periodic_output_file_ptr) << "total_misses: " << total_misses << " " << m_perProcTotalMisses << endl;
230  (*m_periodic_output_file_ptr) << "instruction_executed: " << instruction_executed << " " << perProcInstructionCount << endl;
231  (*m_periodic_output_file_ptr) << "simics_cycles_executed: " << simics_cycles_executed << " " << perProcCycleCount << endl;
232  (*m_periodic_output_file_ptr) << "transactions_started: " << transactions_started << " " << m_perProcStartTransaction << endl;
233  (*m_periodic_output_file_ptr) << "transactions_ended: " << transactions_ended << " " << m_perProcEndTransaction << endl;
234  (*m_periodic_output_file_ptr) << "L1TBE_usage: " << m_L1tbeProfile << endl;
235  (*m_periodic_output_file_ptr) << "L2TBE_usage: " << m_L2tbeProfile << endl;
236  (*m_periodic_output_file_ptr) << "mbytes_resident: " << process_memory_resident() << endl;
237  (*m_periodic_output_file_ptr) << "mbytes_total: " << process_memory_total() << endl;
238  if (process_memory_total() > 0) {
239    (*m_periodic_output_file_ptr) << "resident_ratio: " << process_memory_resident()/process_memory_total() << endl;
240  }
241  (*m_periodic_output_file_ptr) << "miss_latency: " << m_allMissLatencyHistogram << endl;
242
243  *m_periodic_output_file_ptr << endl;
244
245  if (m_all_instructions) {
246    m_inst_profiler_ptr->printStats(*m_periodic_output_file_ptr);
247  }
248
249  //g_system_ptr->getNetwork()->printStats(*m_periodic_output_file_ptr);
250  g_eventQueue_ptr->scheduleEvent(this, m_stats_period);
251}
252
253void Profiler::setPeriodicStatsFile(const string& filename)
254{
255  cout << "Recording periodic statistics to file '" << filename << "' every "
256       << m_stats_period << " Ruby cycles" << endl;
257
258  if (m_periodic_output_file_ptr != &cerr) {
259    delete m_periodic_output_file_ptr;
260  }
261
262  m_periodic_output_file_ptr = new ofstream(filename.c_str());
263  g_eventQueue_ptr->scheduleEvent(this, 1);
264}
265
266void Profiler::setPeriodicStatsInterval(integer_t period)
267{
268  cout << "Recording periodic statistics every " << m_stats_period << " Ruby cycles" << endl;
269  m_stats_period = period;
270  g_eventQueue_ptr->scheduleEvent(this, 1);
271}
272
273void Profiler::printConfig(ostream& out) const
274{
275  out << endl;
276  out << "Profiler Configuration" << endl;
277  out << "----------------------" << endl;
278  out << "periodic_stats_period: " << m_stats_period << endl;
279}
280
281void Profiler::print(ostream& out) const
282{
283  out << "[Profiler]";
284}
285
286void Profiler::printStats(ostream& out, bool short_stats)
287{
288  out << endl;
289  if (short_stats) {
290    out << "SHORT ";
291  }
292  out << "Profiler Stats" << endl;
293  out << "--------------" << endl;
294
295  time_t real_time_current = time(NULL);
296  double seconds = difftime(real_time_current, m_real_time_start_time);
297  double minutes = seconds/60.0;
298  double hours = minutes/60.0;
299  double days = hours/24.0;
300  Time ruby_cycles = g_eventQueue_ptr->getTime()-m_ruby_start;
301
302  if (!short_stats) {
303    out << "Elapsed_time_in_seconds: " << seconds << endl;
304    out << "Elapsed_time_in_minutes: " << minutes << endl;
305    out << "Elapsed_time_in_hours: " << hours << endl;
306    out << "Elapsed_time_in_days: " << days << endl;
307    out << endl;
308  }
309
310  // print the virtual runtimes as well
311  struct tms vtime;
312  times(&vtime);
313  seconds = (vtime.tms_utime + vtime.tms_stime) / 100.0;
314  minutes = seconds / 60.0;
315  hours = minutes / 60.0;
316  days = hours / 24.0;
317  out << "Virtual_time_in_seconds: " << seconds << endl;
318  out << "Virtual_time_in_minutes: " << minutes << endl;
319  out << "Virtual_time_in_hours:   " << hours << endl;
320  out << "Virtual_time_in_days:    " << hours << endl;
321  out << endl;
322
323  out << "Ruby_current_time: " << g_eventQueue_ptr->getTime() << endl;
324  out << "Ruby_start_time: " << m_ruby_start << endl;
325  out << "Ruby_cycles: " << ruby_cycles << endl;
326  out << endl;
327
328  if (!short_stats) {
329    out << "mbytes_resident: " << process_memory_resident() << endl;
330    out << "mbytes_total: " << process_memory_total() << endl;
331    if (process_memory_total() > 0) {
332      out << "resident_ratio: " << process_memory_resident()/process_memory_total() << endl;
333    }
334    out << endl;
335
336    if(m_num_BA_broadcasts + m_num_BA_unicasts != 0){
337      out << endl;
338      out << "Broadcast_percent: " << (float)m_num_BA_broadcasts/(m_num_BA_broadcasts+m_num_BA_unicasts) << endl;
339    }
340  }
341
342  Vector<integer_t> perProcInstructionCount;
343  Vector<integer_t> perProcCycleCount;
344  Vector<double> perProcCPI;
345  Vector<double> perProcMissesPerInsn;
346  Vector<double> perProcInsnPerTrans;
347  Vector<double> perProcCyclesPerTrans;
348  Vector<double> perProcMissesPerTrans;
349
350  perProcInstructionCount.setSize(RubySystem::getNumberOfSequencers());
351  perProcCycleCount.setSize(RubySystem::getNumberOfSequencers());
352  perProcCPI.setSize(RubySystem::getNumberOfSequencers());
353  perProcMissesPerInsn.setSize(RubySystem::getNumberOfSequencers());
354
355  perProcInsnPerTrans.setSize(RubySystem::getNumberOfSequencers());
356  perProcCyclesPerTrans.setSize(RubySystem::getNumberOfSequencers());
357  perProcMissesPerTrans.setSize(RubySystem::getNumberOfSequencers());
358
359  for(int i=0; i < RubySystem::getNumberOfSequencers(); i++) {
360    perProcInstructionCount[i] = g_system_ptr->getInstructionCount(i) - m_instructions_executed_at_start[i] + 1;
361    perProcCycleCount[i] = g_system_ptr->getCycleCount(i) - m_cycles_executed_at_start[i] + 1;
362    // The +1 allows us to avoid division by zero
363    perProcCPI[i] = double(ruby_cycles)/perProcInstructionCount[i];
364    perProcMissesPerInsn[i] = 1000.0 * (double(m_perProcTotalMisses[i]) / double(perProcInstructionCount[i]));
365
366    int trans = m_perProcEndTransaction[i];
367    if (trans == 0) {
368      perProcInsnPerTrans[i] = 0;
369      perProcCyclesPerTrans[i] = 0;
370      perProcMissesPerTrans[i] = 0;
371    } else {
372      perProcInsnPerTrans[i] = perProcInstructionCount[i] / double(trans);
373      perProcCyclesPerTrans[i] = ruby_cycles / double(trans);
374      perProcMissesPerTrans[i] = m_perProcTotalMisses[i] / double(trans);
375    }
376  }
377
378  integer_t total_misses = m_perProcTotalMisses.sum();
379  integer_t user_misses = m_perProcUserMisses.sum();
380  integer_t supervisor_misses = m_perProcSupervisorMisses.sum();
381  integer_t instruction_executed = perProcInstructionCount.sum();
382  integer_t simics_cycles_executed = perProcCycleCount.sum();
383  integer_t transactions_started = m_perProcStartTransaction.sum();
384  integer_t transactions_ended = m_perProcEndTransaction.sum();
385
386  double instructions_per_transaction = (transactions_ended != 0) ? double(instruction_executed) / double(transactions_ended) : 0;
387  double cycles_per_transaction = (transactions_ended != 0) ? (RubySystem::getNumberOfSequencers() * double(ruby_cycles)) / double(transactions_ended) : 0;
388  double misses_per_transaction = (transactions_ended != 0) ? double(total_misses) / double(transactions_ended) : 0;
389
390  out << "Total_misses: " << total_misses << endl;
391  out << "total_misses: " << total_misses << " " << m_perProcTotalMisses << endl;
392  out << "user_misses: " << user_misses << " " << m_perProcUserMisses << endl;
393  out << "supervisor_misses: " << supervisor_misses << " " << m_perProcSupervisorMisses << endl;
394  out << endl;
395  out << "instruction_executed: " << instruction_executed << " " << perProcInstructionCount << endl;
396  out << "ruby_cycles_executed: " << simics_cycles_executed << " " << perProcCycleCount << endl;
397  out << "cycles_per_instruction: " << (RubySystem::getNumberOfSequencers()*double(ruby_cycles))/double(instruction_executed) << " " << perProcCPI << endl;
398  out << "misses_per_thousand_instructions: " << 1000.0 * (double(total_misses) / double(instruction_executed)) << " " << perProcMissesPerInsn << endl;
399  out << endl;
400  out << "transactions_started: " << transactions_started << " " << m_perProcStartTransaction << endl;
401  out << "transactions_ended: " << transactions_ended << " " << m_perProcEndTransaction << endl;
402  out << "instructions_per_transaction: " << instructions_per_transaction << " " << perProcInsnPerTrans << endl;
403  out << "cycles_per_transaction: " << cycles_per_transaction  << " " << perProcCyclesPerTrans << endl;
404  out << "misses_per_transaction: " << misses_per_transaction << " " << perProcMissesPerTrans << endl;
405
406  out << endl;
407
408  m_L1D_cache_profiler_ptr->printStats(out);
409  m_L1I_cache_profiler_ptr->printStats(out);
410  m_L2_cache_profiler_ptr->printStats(out);
411
412  out << endl;
413
414  vector<string>::iterator it;
415
416  for ( it=m_memory_control_names.begin() ; it < m_memory_control_names.end(); it++ ){
417    long long int m_memReq = m_memory_control_profilers[(*it).c_str()] -> m_memReq;
418    long long int m_memRefresh = m_memory_control_profilers[(*it).c_str()] -> m_memRefresh;
419    long long int m_memInputQ = m_memory_control_profilers[(*it).c_str()] -> m_memInputQ;
420    long long int m_memBankQ = m_memory_control_profilers[(*it).c_str()] -> m_memBankQ;
421    long long int m_memWaitCycles = m_memory_control_profilers[(*it).c_str()] -> m_memWaitCycles;
422    long long int m_memRead = m_memory_control_profilers[(*it).c_str()] -> m_memRead;
423    long long int m_memWrite = m_memory_control_profilers[(*it).c_str()] -> m_memWrite;
424    long long int m_memBankBusy = m_memory_control_profilers[(*it).c_str()] -> m_memBankBusy;
425    long long int m_memRandBusy = m_memory_control_profilers[(*it).c_str()] -> m_memRandBusy;
426    long long int m_memNotOld = m_memory_control_profilers[(*it).c_str()] -> m_memNotOld;
427    long long int m_memArbWait = m_memory_control_profilers[(*it).c_str()] -> m_memArbWait;
428    long long int m_memBusBusy = m_memory_control_profilers[(*it).c_str()] -> m_memBusBusy;
429    long long int m_memTfawBusy = m_memory_control_profilers[(*it).c_str()] -> m_memTfawBusy;
430    long long int m_memReadWriteBusy = m_memory_control_profilers[(*it).c_str()] -> m_memReadWriteBusy;
431    long long int m_memDataBusBusy = m_memory_control_profilers[(*it).c_str()] -> m_memDataBusBusy;
432    Vector<long long int> m_memBankCount = m_memory_control_profilers[(*it).c_str()] -> m_memBankCount;
433
434    if (m_memReq || m_memRefresh) {    // if there's a memory controller at all
435      long long int total_stalls = m_memInputQ + m_memBankQ + m_memWaitCycles;
436      double stallsPerReq = total_stalls * 1.0 / m_memReq;
437      out << "Memory control:" << endl;
438      out << "  memory_total_requests: " << m_memReq << endl;  // does not include refreshes
439      out << "  memory_reads: " << m_memRead << endl;
440      out << "  memory_writes: " << m_memWrite << endl;
441      out << "  memory_refreshes: " << m_memRefresh << endl;
442      out << "  memory_total_request_delays: " << total_stalls << endl;
443      out << "  memory_delays_per_request: " << stallsPerReq << endl;
444      out << "  memory_delays_in_input_queue: " << m_memInputQ << endl;
445      out << "  memory_delays_behind_head_of_bank_queue: " << m_memBankQ << endl;
446      out << "  memory_delays_stalled_at_head_of_bank_queue: " << m_memWaitCycles << endl;
447      // Note:  The following "memory stalls" entries are a breakdown of the
448      // cycles which already showed up in m_memWaitCycles.  The order is
449      // significant; it is the priority of attributing the cycles.
450      // For example, bank_busy is before arbitration because if the bank was
451      // busy, we didn't even check arbitration.
452      // Note:  "not old enough" means that since we grouped waiting heads-of-queues
453      // into batches to avoid starvation, a request in a newer batch
454      // didn't try to arbitrate yet because there are older requests waiting.
455      out << "  memory_stalls_for_bank_busy: " << m_memBankBusy << endl;
456      out << "  memory_stalls_for_random_busy: " << m_memRandBusy << endl;
457      out << "  memory_stalls_for_anti_starvation: " << m_memNotOld << endl;
458      out << "  memory_stalls_for_arbitration: " << m_memArbWait << endl;
459      out << "  memory_stalls_for_bus: " << m_memBusBusy << endl;
460      out << "  memory_stalls_for_tfaw: " << m_memTfawBusy << endl;
461      out << "  memory_stalls_for_read_write_turnaround: " << m_memReadWriteBusy << endl;
462      out << "  memory_stalls_for_read_read_turnaround: " << m_memDataBusBusy << endl;
463      out << "  accesses_per_bank: ";
464      for (int bank=0; bank < m_memBankCount.size(); bank++) {
465        out << m_memBankCount[bank] << "  ";
466        //if ((bank % 8) == 7) out << "                     " << endl;
467      }
468      out << endl;
469      out << endl;
470    }
471  }
472  if (!short_stats) {
473    out << "Busy Controller Counts:" << endl;
474    for(int i=0; i < MachineType_NUM; i++) {
475      for(int j=0; j < MachineType_base_count((MachineType)i); j++) {
476        MachineID machID;
477        machID.type = (MachineType)i;
478        machID.num = j;
479        out << machID << ":" << m_busyControllerCount[i][j] << "  ";
480        if ((j+1)%8 == 0) {
481          out << endl;
482        }
483      }
484      out << endl;
485    }
486    out << endl;
487
488    out << "Busy Bank Count:" << m_busyBankCount << endl;
489    out << endl;
490
491    out << "L1TBE_usage: " << m_L1tbeProfile << endl;
492    out << "L2TBE_usage: " << m_L2tbeProfile << endl;
493    out << "StopTable_usage: " << m_stopTableProfile << endl;
494    out << "sequencer_requests_outstanding: " << m_sequencer_requests << endl;
495    out << "store_buffer_size: " << m_store_buffer_size << endl;
496    out << "unique_blocks_in_store_buffer: " << m_store_buffer_blocks << endl;
497    out << endl;
498  }
499
500  if (!short_stats) {
501    out << "All Non-Zero Cycle Demand Cache Accesses" << endl;
502    out << "----------------------------------------" << endl;
503    out << "miss_latency: " << m_allMissLatencyHistogram << endl;
504    for(int i=0; i<m_missLatencyHistograms.size(); i++) {
505      if (m_missLatencyHistograms[i].size() > 0) {
506        out << "miss_latency_" << RubyRequestType(i) << ": " << m_missLatencyHistograms[i] << endl;
507      }
508    }
509    for(int i=0; i<m_machLatencyHistograms.size(); i++) {
510      if (m_machLatencyHistograms[i].size() > 0) {
511        out << "miss_latency_" << GenericMachineType(i) << ": " << m_machLatencyHistograms[i] << endl;
512      }
513    }
514    out << "miss_latency_L2Miss: " << m_L2MissLatencyHistogram << endl;
515
516    out << endl;
517
518    out << "All Non-Zero Cycle SW Prefetch Requests" << endl;
519    out << "------------------------------------" << endl;
520    out << "prefetch_latency: " << m_allSWPrefetchLatencyHistogram << endl;
521    for(int i=0; i<m_SWPrefetchLatencyHistograms.size(); i++) {
522      if (m_SWPrefetchLatencyHistograms[i].size() > 0) {
523        out << "prefetch_latency_" << CacheRequestType(i) << ": " << m_SWPrefetchLatencyHistograms[i] << endl;
524      }
525    }
526    for(int i=0; i<m_SWPrefetchMachLatencyHistograms.size(); i++) {
527      if (m_SWPrefetchMachLatencyHistograms[i].size() > 0) {
528        out << "prefetch_latency_" << GenericMachineType(i) << ": " << m_SWPrefetchMachLatencyHistograms[i] << endl;
529      }
530    }
531    out << "prefetch_latency_L2Miss:" << m_SWPrefetchL2MissLatencyHistogram << endl;
532
533    out << "multicast_retries: " << m_multicast_retry_histogram << endl;
534    out << "gets_mask_prediction_count: " << m_gets_mask_prediction << endl;
535    out << "getx_mask_prediction_count: " << m_getx_mask_prediction << endl;
536    out << "explicit_training_mask: " << m_explicit_training_mask << endl;
537    out << endl;
538
539    if (m_all_sharing_histogram.size() > 0) {
540      out << "all_sharing: " << m_all_sharing_histogram << endl;
541      out << "read_sharing: " << m_read_sharing_histogram << endl;
542      out << "write_sharing: " << m_write_sharing_histogram << endl;
543
544      out << "all_sharing_percent: "; m_all_sharing_histogram.printPercent(out); out << endl;
545      out << "read_sharing_percent: "; m_read_sharing_histogram.printPercent(out); out << endl;
546      out << "write_sharing_percent: "; m_write_sharing_histogram.printPercent(out); out << endl;
547
548      int64 total_miss = m_cache_to_cache +  m_memory_to_cache;
549      out << "all_misses: " << total_miss << endl;
550      out << "cache_to_cache_misses: " << m_cache_to_cache << endl;
551      out << "memory_to_cache_misses: " << m_memory_to_cache << endl;
552      out << "cache_to_cache_percent: " << 100.0 * (double(m_cache_to_cache) / double(total_miss)) << endl;
553      out << "memory_to_cache_percent: " << 100.0 * (double(m_memory_to_cache) / double(total_miss)) << endl;
554      out << endl;
555    }
556
557    if (m_conflicting_histogram.size() > 0) {
558      out << "conflicting_histogram: " << m_conflicting_histogram << endl;
559      out << "conflicting_histogram_percent: "; m_conflicting_histogram.printPercent(out); out << endl;
560      out << endl;
561    }
562
563    if (m_outstanding_requests.size() > 0) {
564      out << "outstanding_requests: "; m_outstanding_requests.printPercent(out); out << endl;
565      if (m_outstanding_persistent_requests.size() > 0) {
566        out << "outstanding_persistent_requests: "; m_outstanding_persistent_requests.printPercent(out); out << endl;
567      }
568      out << endl;
569    }
570  }
571
572  if (!short_stats) {
573    out << "Request vs. RubySystem State Profile" << endl;
574    out << "--------------------------------" << endl;
575    out << endl;
576
577    Vector<string> requestProfileKeys = m_requestProfileMap_ptr->keys();
578    requestProfileKeys.sortVector();
579
580    for(int i=0; i<requestProfileKeys.size(); i++) {
581      int temp_int = m_requestProfileMap_ptr->lookup(requestProfileKeys[i]);
582      double percent = (100.0*double(temp_int))/double(m_requests);
583      while (requestProfileKeys[i] != "") {
584        out << setw(10) << string_split(requestProfileKeys[i], ':');
585      }
586      out << setw(11) << temp_int;
587      out << setw(14) << percent << endl;
588    }
589    out << endl;
590
591    out << "filter_action: " << m_filter_action_histogram << endl;
592
593    if (!m_all_instructions) {
594      m_address_profiler_ptr->printStats(out);
595    }
596
597    if (m_all_instructions) {
598      m_inst_profiler_ptr->printStats(out);
599    }
600
601    out << endl;
602    out << "Message Delayed Cycles" << endl;
603    out << "----------------------" << endl;
604    out << "Total_delay_cycles: " <<   m_delayedCyclesHistogram << endl;
605    out << "Total_nonPF_delay_cycles: " << m_delayedCyclesNonPFHistogram << endl;
606    for (int i = 0; i < m_delayedCyclesVCHistograms.size(); i++) {
607      out << "  virtual_network_" << i << "_delay_cycles: " << m_delayedCyclesVCHistograms[i] << endl;
608    }
609
610    printResourceUsage(out);
611  }
612
613}
614
615void Profiler::printResourceUsage(ostream& out) const
616{
617  out << endl;
618  out << "Resource Usage" << endl;
619  out << "--------------" << endl;
620
621  integer_t pagesize = getpagesize(); // page size in bytes
622  out << "page_size: " << pagesize << endl;
623
624  rusage usage;
625  getrusage (RUSAGE_SELF, &usage);
626
627  out << "user_time: " << usage.ru_utime.tv_sec << endl;
628  out << "system_time: " << usage.ru_stime.tv_sec << endl;
629  out << "page_reclaims: " << usage.ru_minflt << endl;
630  out << "page_faults: " << usage.ru_majflt << endl;
631  out << "swaps: " << usage.ru_nswap << endl;
632  out << "block_inputs: " << usage.ru_inblock << endl;
633  out << "block_outputs: " << usage.ru_oublock << endl;
634}
635
636void Profiler::clearStats()
637{
638  m_num_BA_unicasts = 0;
639  m_num_BA_broadcasts = 0;
640
641  m_ruby_start = g_eventQueue_ptr->getTime();
642
643  m_instructions_executed_at_start.setSize(RubySystem::getNumberOfSequencers());
644  m_cycles_executed_at_start.setSize(RubySystem::getNumberOfSequencers());
645  for (int i=0; i < RubySystem::getNumberOfSequencers(); i++) {
646    if (g_system_ptr == NULL) {
647      m_instructions_executed_at_start[i] = 0;
648      m_cycles_executed_at_start[i] = 0;
649    } else {
650      m_instructions_executed_at_start[i] = g_system_ptr->getInstructionCount(i);
651      m_cycles_executed_at_start[i] = g_system_ptr->getCycleCount(i);
652    }
653  }
654
655  m_perProcTotalMisses.setSize(RubySystem::getNumberOfSequencers());
656  m_perProcUserMisses.setSize(RubySystem::getNumberOfSequencers());
657  m_perProcSupervisorMisses.setSize(RubySystem::getNumberOfSequencers());
658  m_perProcStartTransaction.setSize(RubySystem::getNumberOfSequencers());
659  m_perProcEndTransaction.setSize(RubySystem::getNumberOfSequencers());
660
661  for(int i=0; i < RubySystem::getNumberOfSequencers(); i++) {
662    m_perProcTotalMisses[i] = 0;
663    m_perProcUserMisses[i] = 0;
664    m_perProcSupervisorMisses[i] = 0;
665    m_perProcStartTransaction[i] = 0;
666    m_perProcEndTransaction[i] = 0;
667  }
668
669  m_busyControllerCount.setSize(MachineType_NUM); // all machines
670  for(int i=0; i < MachineType_NUM; i++) {
671    m_busyControllerCount[i].setSize(MachineType_base_count((MachineType)i));
672    for(int j=0; j < MachineType_base_count((MachineType)i); j++) {
673      m_busyControllerCount[i][j] = 0;
674    }
675  }
676  m_busyBankCount = 0;
677
678  m_delayedCyclesHistogram.clear();
679  m_delayedCyclesNonPFHistogram.clear();
680  m_delayedCyclesVCHistograms.setSize(RubySystem::getNetwork()->getNumberOfVirtualNetworks());
681  for (int i = 0; i < RubySystem::getNetwork()->getNumberOfVirtualNetworks(); i++) {
682    m_delayedCyclesVCHistograms[i].clear();
683  }
684
685  m_gets_mask_prediction.clear();
686  m_getx_mask_prediction.clear();
687  m_explicit_training_mask.clear();
688
689  m_missLatencyHistograms.setSize(CacheRequestType_NUM);
690  for(int i=0; i<m_missLatencyHistograms.size(); i++) {
691    m_missLatencyHistograms[i].clear(200);
692  }
693  m_machLatencyHistograms.setSize(GenericMachineType_NUM+1);
694  for(int i=0; i<m_machLatencyHistograms.size(); i++) {
695    m_machLatencyHistograms[i].clear(200);
696  }
697  m_allMissLatencyHistogram.clear(200);
698  m_L2MissLatencyHistogram.clear(200);
699
700  m_SWPrefetchLatencyHistograms.setSize(CacheRequestType_NUM);
701  for(int i=0; i<m_SWPrefetchLatencyHistograms.size(); i++) {
702    m_SWPrefetchLatencyHistograms[i].clear(200);
703  }
704  m_SWPrefetchMachLatencyHistograms.setSize(GenericMachineType_NUM+1);
705  for(int i=0; i<m_SWPrefetchMachLatencyHistograms.size(); i++) {
706    m_SWPrefetchMachLatencyHistograms[i].clear(200);
707  }
708  m_allSWPrefetchLatencyHistogram.clear(200);
709  m_SWPrefetchL2MissLatencyHistogram.clear(200);
710
711  m_multicast_retry_histogram.clear();
712
713  m_L1tbeProfile.clear();
714  m_L2tbeProfile.clear();
715  m_stopTableProfile.clear();
716  m_filter_action_histogram.clear();
717
718  m_sequencer_requests.clear();
719  m_store_buffer_size.clear();
720  m_store_buffer_blocks.clear();
721  m_read_sharing_histogram.clear();
722  m_write_sharing_histogram.clear();
723  m_all_sharing_histogram.clear();
724  m_cache_to_cache = 0;
725  m_memory_to_cache = 0;
726
727  m_predictions = 0;
728  m_predictionOpportunities = 0;
729  m_goodPredictions = 0;
730
731  // clear HashMaps
732  m_requestProfileMap_ptr->clear();
733
734  // count requests profiled
735  m_requests = 0;
736
737  // Conflicting requests
738  m_conflicting_map_ptr->clear();
739  m_conflicting_histogram.clear();
740
741  m_outstanding_requests.clear();
742  m_outstanding_persistent_requests.clear();
743
744  m_L1D_cache_profiler_ptr->clearStats();
745  m_L1I_cache_profiler_ptr->clearStats();
746  m_L2_cache_profiler_ptr->clearStats();
747
748  // for MemoryControl:
749/*
750  m_memReq = 0;
751  m_memBankBusy = 0;
752  m_memBusBusy = 0;
753  m_memTfawBusy = 0;
754  m_memReadWriteBusy = 0;
755  m_memDataBusBusy = 0;
756  m_memRefresh = 0;
757  m_memRead = 0;
758  m_memWrite = 0;
759  m_memWaitCycles = 0;
760  m_memInputQ = 0;
761  m_memBankQ = 0;
762  m_memArbWait = 0;
763  m_memRandBusy = 0;
764  m_memNotOld = 0;
765
766  for (int bank=0; bank < m_memBankCount.size(); bank++) {
767    m_memBankCount[bank] = 0;
768  }
769*/
770//added by SS
771  vector<string>::iterator it;
772
773  for ( it=m_memory_control_names.begin() ; it < m_memory_control_names.end(); it++ ){
774    m_memory_control_profilers[(*it).c_str()] -> m_memReq = 0;
775    m_memory_control_profilers[(*it).c_str()] -> m_memBankBusy = 0;
776    m_memory_control_profilers[(*it).c_str()] -> m_memBusBusy = 0;
777    m_memory_control_profilers[(*it).c_str()] -> m_memTfawBusy = 0;
778    m_memory_control_profilers[(*it).c_str()] -> m_memReadWriteBusy = 0;
779    m_memory_control_profilers[(*it).c_str()] -> m_memDataBusBusy = 0;
780    m_memory_control_profilers[(*it).c_str()] -> m_memRefresh = 0;
781    m_memory_control_profilers[(*it).c_str()] -> m_memRead = 0;
782    m_memory_control_profilers[(*it).c_str()] -> m_memWrite = 0;
783    m_memory_control_profilers[(*it).c_str()] -> m_memWaitCycles = 0;
784    m_memory_control_profilers[(*it).c_str()] -> m_memInputQ = 0;
785    m_memory_control_profilers[(*it).c_str()] -> m_memBankQ = 0;
786    m_memory_control_profilers[(*it).c_str()] -> m_memArbWait = 0;
787    m_memory_control_profilers[(*it).c_str()] -> m_memRandBusy = 0;
788    m_memory_control_profilers[(*it).c_str()] -> m_memNotOld = 0;
789
790    for (int bank=0; bank < m_memory_control_profilers[(*it).c_str()] -> m_memBankCount.size(); bank++) {
791        m_memory_control_profilers[(*it).c_str()] -> m_memBankCount[bank] = 0;
792    }
793  }
794  // Flush the prefetches through the system - used so that there are no outstanding requests after stats are cleared
795  //g_eventQueue_ptr->triggerAllEvents();
796
797  // update the start time
798  m_ruby_start = g_eventQueue_ptr->getTime();
799}
800
801void Profiler::addPrimaryStatSample(const CacheMsg& msg, NodeID id)
802{
803  if (Protocol::m_TwoLevelCache) {
804    if (msg.getType() == CacheRequestType_IFETCH) {
805      addL1IStatSample(msg, id);
806    } else {
807      addL1DStatSample(msg, id);
808    }
809    // profile the address after an L1 miss (outside of the processor for CMP)
810    if (Protocol::m_CMP) {
811      addAddressTraceSample(msg, id);
812    }
813  } else {
814    addL2StatSample(CacheRequestType_to_GenericRequestType(msg.getType()),
815                    msg.getAccessMode(), msg.getSize(), msg.getPrefetch(), id);
816    addAddressTraceSample(msg, id);
817  }
818}
819
820void Profiler::profileConflictingRequests(const Address& addr)
821{
822  assert(addr == line_address(addr));
823  Time last_time = m_ruby_start;
824  if (m_conflicting_map_ptr->exist(addr)) {
825    last_time = m_conflicting_map_ptr->lookup(addr);
826  }
827  Time current_time = g_eventQueue_ptr->getTime();
828  assert (current_time - last_time > 0);
829  m_conflicting_histogram.add(current_time - last_time);
830  m_conflicting_map_ptr->add(addr, current_time);
831}
832
833void Profiler::addSecondaryStatSample(CacheRequestType requestType, AccessModeType type, int msgSize, PrefetchBit pfBit, NodeID id)
834{
835  addSecondaryStatSample(CacheRequestType_to_GenericRequestType(requestType), type, msgSize, pfBit, id);
836}
837
838void Profiler::addSecondaryStatSample(GenericRequestType requestType, AccessModeType type, int msgSize, PrefetchBit pfBit, NodeID id)
839{
840  addL2StatSample(requestType, type, msgSize, pfBit, id);
841}
842
843void Profiler::addL2StatSample(GenericRequestType requestType, AccessModeType type, int msgSize, PrefetchBit pfBit, NodeID id)
844{
845  m_perProcTotalMisses[id]++;
846  if (type == AccessModeType_SupervisorMode) {
847    m_perProcSupervisorMisses[id]++;
848  } else {
849    m_perProcUserMisses[id]++;
850  }
851  m_L2_cache_profiler_ptr->addStatSample(requestType, type, msgSize, pfBit);
852}
853
854void Profiler::addL1DStatSample(const CacheMsg& msg, NodeID id)
855{
856  m_L1D_cache_profiler_ptr->addStatSample(CacheRequestType_to_GenericRequestType(msg.getType()),
857                                          msg.getAccessMode(), msg.getSize(), msg.getPrefetch());
858}
859
860void Profiler::addL1IStatSample(const CacheMsg& msg, NodeID id)
861{
862  m_L1I_cache_profiler_ptr->addStatSample(CacheRequestType_to_GenericRequestType(msg.getType()),
863                                          msg.getAccessMode(), msg.getSize(), msg.getPrefetch());
864}
865
866void Profiler::addAddressTraceSample(const CacheMsg& msg, NodeID id)
867{
868  if (msg.getType() != CacheRequestType_IFETCH) {
869
870    // Note: The following line should be commented out if you want to
871    // use the special profiling that is part of the GS320 protocol
872
873    // NOTE: Unless PROFILE_HOT_LINES or RubyConfig::getProfileAllInstructions() are enabled, nothing will be profiled by the AddressProfiler
874    m_address_profiler_ptr->addTraceSample(msg.getLineAddress(), msg.getProgramCounter(), msg.getType(), msg.getAccessMode(), id, false);
875  }
876}
877
878void Profiler::profileSharing(const Address& addr, AccessType type, NodeID requestor, const Set& sharers, const Set& owner)
879{
880  Set set_contacted(owner);
881  if (type == AccessType_Write) {
882    set_contacted.addSet(sharers);
883  }
884  set_contacted.remove(requestor);
885  int number_contacted = set_contacted.count();
886
887  if (type == AccessType_Write) {
888    m_write_sharing_histogram.add(number_contacted);
889  } else {
890    m_read_sharing_histogram.add(number_contacted);
891  }
892  m_all_sharing_histogram.add(number_contacted);
893
894  if (number_contacted == 0) {
895    m_memory_to_cache++;
896  } else {
897    m_cache_to_cache++;
898  }
899
900}
901
902void Profiler::profileMsgDelay(int virtualNetwork, int delayCycles) {
903  assert(virtualNetwork < m_delayedCyclesVCHistograms.size());
904  m_delayedCyclesHistogram.add(delayCycles);
905  m_delayedCyclesVCHistograms[virtualNetwork].add(delayCycles);
906  if (virtualNetwork != 0) {
907    m_delayedCyclesNonPFHistogram.add(delayCycles);
908  }
909}
910
911// profiles original cache requests including PUTs
912void Profiler::profileRequest(const string& requestStr)
913{
914  m_requests++;
915
916  if (m_requestProfileMap_ptr->exist(requestStr)) {
917    (m_requestProfileMap_ptr->lookup(requestStr))++;
918  } else {
919    m_requestProfileMap_ptr->add(requestStr, 1);
920  }
921}
922
923void Profiler::recordPrediction(bool wasGood, bool wasPredicted)
924{
925  m_predictionOpportunities++;
926  if(wasPredicted){
927    m_predictions++;
928    if(wasGood){
929      m_goodPredictions++;
930    }
931  }
932}
933
934void Profiler::profileFilterAction(int action)
935{
936  m_filter_action_histogram.add(action);
937}
938
939void Profiler::profileMulticastRetry(const Address& addr, int count)
940{
941  m_multicast_retry_histogram.add(count);
942}
943
944void Profiler::startTransaction(int cpu)
945{
946  m_perProcStartTransaction[cpu]++;
947}
948
949void Profiler::endTransaction(int cpu)
950{
951  m_perProcEndTransaction[cpu]++;
952}
953
954void Profiler::controllerBusy(MachineID machID)
955{
956  m_busyControllerCount[(int)machID.type][(int)machID.num]++;
957}
958
959void Profiler::profilePFWait(Time waitTime)
960{
961  m_prefetchWaitHistogram.add(waitTime);
962}
963
964void Profiler::bankBusy()
965{
966  m_busyBankCount++;
967}
968
969// non-zero cycle demand request
970void Profiler::missLatency(Time t, RubyRequestType type)
971{
972  m_allMissLatencyHistogram.add(t);
973  m_missLatencyHistograms[type].add(t);
974  /*
975  m_machLatencyHistograms[respondingMach].add(t);
976  if(respondingMach == GenericMachineType_Directory || respondingMach == GenericMachineType_NUM) {
977    m_L2MissLatencyHistogram.add(t);
978  }
979  */
980}
981
982// non-zero cycle prefetch request
983void Profiler::swPrefetchLatency(Time t, CacheRequestType type, GenericMachineType respondingMach)
984{
985  m_allSWPrefetchLatencyHistogram.add(t);
986  m_SWPrefetchLatencyHistograms[type].add(t);
987  m_SWPrefetchMachLatencyHistograms[respondingMach].add(t);
988  if(respondingMach == GenericMachineType_Directory || respondingMach == GenericMachineType_NUM) {
989    m_SWPrefetchL2MissLatencyHistogram.add(t);
990  }
991}
992
993void Profiler::profileTransition(const string& component, NodeID version, Address addr,
994                                 const string& state, const string& event,
995                                 const string& next_state, const string& note)
996{
997  const int EVENT_SPACES = 20;
998  const int ID_SPACES = 3;
999  const int TIME_SPACES = 7;
1000  const int COMP_SPACES = 10;
1001  const int STATE_SPACES = 6;
1002
1003  if ((g_debug_ptr->getDebugTime() > 0) &&
1004      (g_eventQueue_ptr->getTime() >= g_debug_ptr->getDebugTime())) {
1005    (* debug_cout_ptr).flags(ios::right);
1006    (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " ";
1007    (* debug_cout_ptr) << setw(ID_SPACES) << version << " ";
1008    (* debug_cout_ptr) << setw(COMP_SPACES) << component;
1009    (* debug_cout_ptr) << setw(EVENT_SPACES) << event << " ";
1010
1011    (* debug_cout_ptr).flags(ios::right);
1012    (* debug_cout_ptr) << setw(STATE_SPACES) << state;
1013    (* debug_cout_ptr) << ">";
1014    (* debug_cout_ptr).flags(ios::left);
1015    (* debug_cout_ptr) << setw(STATE_SPACES) << next_state;
1016
1017    (* debug_cout_ptr) << " " << addr << " " << note;
1018
1019    (* debug_cout_ptr) << endl;
1020  }
1021}
1022
1023// Helper function
1024static double process_memory_total()
1025{
1026  const double MULTIPLIER = 4096.0/(1024.0*1024.0); // 4kB page size, 1024*1024 bytes per MB,
1027  ifstream proc_file;
1028  proc_file.open("/proc/self/statm");
1029  int total_size_in_pages = 0;
1030  int res_size_in_pages = 0;
1031  proc_file >> total_size_in_pages;
1032  proc_file >> res_size_in_pages;
1033  return double(total_size_in_pages)*MULTIPLIER; // size in megabytes
1034}
1035
1036static double process_memory_resident()
1037{
1038  const double MULTIPLIER = 4096.0/(1024.0*1024.0); // 4kB page size, 1024*1024 bytes per MB,
1039  ifstream proc_file;
1040  proc_file.open("/proc/self/statm");
1041  int total_size_in_pages = 0;
1042  int res_size_in_pages = 0;
1043  proc_file >> total_size_in_pages;
1044  proc_file >> res_size_in_pages;
1045  return double(res_size_in_pages)*MULTIPLIER; // size in megabytes
1046}
1047
1048void Profiler::profileGetXMaskPrediction(const Set& pred_set)
1049{
1050  m_getx_mask_prediction.add(pred_set.count());
1051}
1052
1053void Profiler::profileGetSMaskPrediction(const Set& pred_set)
1054{
1055  m_gets_mask_prediction.add(pred_set.count());
1056}
1057
1058void Profiler::profileTrainingMask(const Set& pred_set)
1059{
1060  m_explicit_training_mask.add(pred_set.count());
1061}
1062
1063int64 Profiler::getTotalInstructionsExecuted() const
1064{
1065  int64 sum = 1;     // Starting at 1 allows us to avoid division by zero
1066  for(int i=0; i < RubySystem::getNumberOfSequencers(); i++) {
1067    sum += (g_system_ptr->getInstructionCount(i) - m_instructions_executed_at_start[i]);
1068  }
1069  return sum;
1070}
1071
1072int64 Profiler::getTotalTransactionsExecuted() const
1073{
1074  int64 sum = m_perProcEndTransaction.sum();
1075  if (sum > 0) {
1076    return sum;
1077  } else {
1078    return 1;  // Avoid division by zero errors
1079  }
1080}
1081
1082
1083// The following case statement converts CacheRequestTypes to GenericRequestTypes
1084// allowing all profiling to be done with a single enum type instead of slow strings
1085GenericRequestType Profiler::CacheRequestType_to_GenericRequestType(const CacheRequestType& type) {
1086  switch (type) {
1087  case CacheRequestType_LD:
1088    return GenericRequestType_LD;
1089    break;
1090  case CacheRequestType_ST:
1091    return GenericRequestType_ST;
1092    break;
1093  case CacheRequestType_ATOMIC:
1094    return GenericRequestType_ATOMIC;
1095    break;
1096  case CacheRequestType_IFETCH:
1097    return GenericRequestType_IFETCH;
1098    break;
1099  case CacheRequestType_NULL:
1100    return GenericRequestType_NULL;
1101    break;
1102  default:
1103    ERROR_MSG("Unexpected cache request type");
1104  }
1105}
1106
1107void Profiler::rubyWatch(int id){
1108    //int rn_g1 = 0;//SIMICS_get_register_number(id, "g1");
1109  uint64 tr = 0;//SIMICS_read_register(id, rn_g1);
1110    Address watch_address = Address(tr);
1111    const int ID_SPACES = 3;
1112    const int TIME_SPACES = 7;
1113
1114    (* debug_cout_ptr).flags(ios::right);
1115    (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " ";
1116    (* debug_cout_ptr) << setw(ID_SPACES) << id << " "
1117                       << "RUBY WATCH "
1118                       << watch_address
1119                       << endl;
1120
1121    if(!m_watch_address_list_ptr->exist(watch_address)){
1122      m_watch_address_list_ptr->add(watch_address, 1);
1123    }
1124}
1125
1126bool Profiler::watchAddress(Address addr){
1127    if (m_watch_address_list_ptr->exist(addr))
1128      return true;
1129    else
1130      return false;
1131}
1132
1133// For MemoryControl:
1134void Profiler::profileMemReq(string name, int bank) {
1135//  printf("name is %s", name.c_str());
1136  assert(m_memory_control_profilers.count(name) == 1);
1137  m_memory_control_profilers[name] -> m_memReq++;
1138  m_memory_control_profilers[name] -> m_memBankCount[bank]++;
1139}
1140void Profiler::profileMemBankBusy(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memBankBusy++; }
1141void Profiler::profileMemBusBusy(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memBusBusy++; }
1142void Profiler::profileMemReadWriteBusy(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memReadWriteBusy++; }
1143void Profiler::profileMemDataBusBusy(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memDataBusBusy++; }
1144void Profiler::profileMemTfawBusy(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memTfawBusy++; }
1145void Profiler::profileMemRefresh(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memRefresh++; }
1146void Profiler::profileMemRead(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memRead++; }
1147void Profiler::profileMemWrite(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memWrite++; }
1148void Profiler::profileMemWaitCycles(string name, int cycles) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memWaitCycles += cycles; }
1149void Profiler::profileMemInputQ(string name, int cycles) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memInputQ += cycles; }
1150void Profiler::profileMemBankQ(string name, int cycles) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memBankQ += cycles; }
1151void Profiler::profileMemArbWait(string name, int cycles) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memArbWait += cycles; }
1152void Profiler::profileMemRandBusy(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memRandBusy++; }
1153void Profiler::profileMemNotOld(string name) {   assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memNotOld++; }
1154
1155