PerfectSwitch.cc revision 9302:c2e70a9bc340
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <algorithm>
30
31#include "base/cast.hh"
32#include "debug/RubyNetwork.hh"
33#include "mem/ruby/buffers/MessageBuffer.hh"
34#include "mem/ruby/network/simple/PerfectSwitch.hh"
35#include "mem/ruby/network/simple/SimpleNetwork.hh"
36#include "mem/ruby/network/simple/Switch.hh"
37#include "mem/ruby/slicc_interface/NetworkMessage.hh"
38
39using namespace std;
40
41const int PRIORITY_SWITCH_LIMIT = 128;
42
43// Operator for helper class
44bool
45operator<(const LinkOrder& l1, const LinkOrder& l2)
46{
47    return (l1.m_value < l2.m_value);
48}
49
50PerfectSwitch::PerfectSwitch(SwitchID sid, Switch *sw, uint32_t virt_nets)
51    : Consumer(sw)
52{
53    m_switch_id = sid;
54    m_round_robin_start = 0;
55    m_wakeups_wo_switch = 0;
56    m_virtual_networks = virt_nets;
57}
58
59void
60PerfectSwitch::init(SimpleNetwork *network_ptr)
61{
62    m_network_ptr = network_ptr;
63
64    for(int i = 0;i < m_virtual_networks;++i)
65    {
66        m_pending_message_count.push_back(0);
67    }
68}
69
70void
71PerfectSwitch::addInPort(const vector<MessageBuffer*>& in)
72{
73    assert(in.size() == m_virtual_networks);
74    NodeID port = m_in.size();
75    m_in.push_back(in);
76
77    for (int j = 0; j < m_virtual_networks; j++) {
78        m_in[port][j]->setConsumer(this);
79        string desc = csprintf("[Queue from port %s %s %s to PerfectSwitch]",
80            to_string(m_switch_id), to_string(port), to_string(j));
81        m_in[port][j]->setDescription(desc);
82        m_in[port][j]->setIncomingLink(port);
83        m_in[port][j]->setVnet(j);
84    }
85}
86
87void
88PerfectSwitch::addOutPort(const vector<MessageBuffer*>& out,
89    const NetDest& routing_table_entry)
90{
91    assert(out.size() == m_virtual_networks);
92
93    // Setup link order
94    LinkOrder l;
95    l.m_value = 0;
96    l.m_link = m_out.size();
97    m_link_order.push_back(l);
98
99    // Add to routing table
100    m_out.push_back(out);
101    m_routing_table.push_back(routing_table_entry);
102}
103
104void
105PerfectSwitch::clearRoutingTables()
106{
107    m_routing_table.clear();
108}
109
110void
111PerfectSwitch::clearBuffers()
112{
113    for (int i = 0; i < m_in.size(); i++){
114        for(int vnet = 0; vnet < m_virtual_networks; vnet++) {
115            m_in[i][vnet]->clear();
116        }
117    }
118
119    for (int i = 0; i < m_out.size(); i++){
120        for(int vnet = 0; vnet < m_virtual_networks; vnet++) {
121            m_out[i][vnet]->clear();
122        }
123    }
124}
125
126void
127PerfectSwitch::reconfigureOutPort(const NetDest& routing_table_entry)
128{
129    m_routing_table.push_back(routing_table_entry);
130}
131
132PerfectSwitch::~PerfectSwitch()
133{
134}
135
136void
137PerfectSwitch::wakeup()
138{
139    MsgPtr msg_ptr;
140
141    // Give the highest numbered link priority most of the time
142    m_wakeups_wo_switch++;
143    int highest_prio_vnet = m_virtual_networks-1;
144    int lowest_prio_vnet = 0;
145    int decrementer = 1;
146    NetworkMessage* net_msg_ptr = NULL;
147
148    // invert priorities to avoid starvation seen in the component network
149    if (m_wakeups_wo_switch > PRIORITY_SWITCH_LIMIT) {
150        m_wakeups_wo_switch = 0;
151        highest_prio_vnet = 0;
152        lowest_prio_vnet = m_virtual_networks-1;
153        decrementer = -1;
154    }
155
156    // For all components incoming queues
157    for (int vnet = highest_prio_vnet;
158         (vnet * decrementer) >= (decrementer * lowest_prio_vnet);
159         vnet -= decrementer) {
160
161        // This is for round-robin scheduling
162        int incoming = m_round_robin_start;
163        m_round_robin_start++;
164        if (m_round_robin_start >= m_in.size()) {
165            m_round_robin_start = 0;
166        }
167
168        if(m_pending_message_count[vnet] > 0) {
169            // for all input ports, use round robin scheduling
170            for (int counter = 0; counter < m_in.size(); counter++) {
171                // Round robin scheduling
172                incoming++;
173                if (incoming >= m_in.size()) {
174                    incoming = 0;
175                }
176
177                // temporary vectors to store the routing results
178                vector<LinkID> output_links;
179                vector<NetDest> output_link_destinations;
180
181                // Is there a message waiting?
182                while (m_in[incoming][vnet]->isReady()) {
183                    DPRINTF(RubyNetwork, "incoming: %d\n", incoming);
184
185                    // Peek at message
186                    msg_ptr = m_in[incoming][vnet]->peekMsgPtr();
187                    net_msg_ptr = safe_cast<NetworkMessage*>(msg_ptr.get());
188                    DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
189
190                    output_links.clear();
191                    output_link_destinations.clear();
192                    NetDest msg_dsts =
193                        net_msg_ptr->getInternalDestination();
194
195                    // Unfortunately, the token-protocol sends some
196                    // zero-destination messages, so this assert isn't valid
197                    // assert(msg_dsts.count() > 0);
198
199                    assert(m_link_order.size() == m_routing_table.size());
200                    assert(m_link_order.size() == m_out.size());
201
202                    if (m_network_ptr->getAdaptiveRouting()) {
203                        if (m_network_ptr->isVNetOrdered(vnet)) {
204                            // Don't adaptively route
205                            for (int out = 0; out < m_out.size(); out++) {
206                                m_link_order[out].m_link = out;
207                                m_link_order[out].m_value = 0;
208                            }
209                        } else {
210                            // Find how clogged each link is
211                            for (int out = 0; out < m_out.size(); out++) {
212                                int out_queue_length = 0;
213                                for (int v = 0; v < m_virtual_networks; v++) {
214                                    out_queue_length += m_out[out][v]->getSize();
215                                }
216                                int value =
217                                    (out_queue_length << 8) | (random() & 0xff);
218                                m_link_order[out].m_link = out;
219                                m_link_order[out].m_value = value;
220                            }
221
222                            // Look at the most empty link first
223                            sort(m_link_order.begin(), m_link_order.end());
224                        }
225                    }
226
227                    for (int i = 0; i < m_routing_table.size(); i++) {
228                        // pick the next link to look at
229                        int link = m_link_order[i].m_link;
230                        NetDest dst = m_routing_table[link];
231                        DPRINTF(RubyNetwork, "dst: %s\n", dst);
232
233                        if (!msg_dsts.intersectionIsNotEmpty(dst))
234                            continue;
235
236                        // Remember what link we're using
237                        output_links.push_back(link);
238
239                        // Need to remember which destinations need this
240                        // message in another vector.  This Set is the
241                        // intersection of the routing_table entry and the
242                        // current destination set.  The intersection must
243                        // not be empty, since we are inside "if"
244                        output_link_destinations.push_back(msg_dsts.AND(dst));
245
246                        // Next, we update the msg_destination not to
247                        // include those nodes that were already handled
248                        // by this link
249                        msg_dsts.removeNetDest(dst);
250                    }
251
252                    assert(msg_dsts.count() == 0);
253                    //assert(output_links.size() > 0);
254
255                    // Check for resources - for all outgoing queues
256                    bool enough = true;
257                    for (int i = 0; i < output_links.size(); i++) {
258                        int outgoing = output_links[i];
259                        if (!m_out[outgoing][vnet]->areNSlotsAvailable(1))
260                            enough = false;
261                        DPRINTF(RubyNetwork, "Checking if node is blocked ..."
262                                "outgoing: %d, vnet: %d, enough: %d\n",
263                                outgoing, vnet, enough);
264                    }
265
266                    // There were not enough resources
267                    if (!enough) {
268                        scheduleEvent(1);
269                        DPRINTF(RubyNetwork, "Can't deliver message since a node "
270                                "is blocked\n");
271                        DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
272                        break; // go to next incoming port
273                    }
274
275                    MsgPtr unmodified_msg_ptr;
276
277                    if (output_links.size() > 1) {
278                        // If we are sending this message down more than
279                        // one link (size>1), we need to make a copy of
280                        // the message so each branch can have a different
281                        // internal destination we need to create an
282                        // unmodified MsgPtr because the MessageBuffer
283                        // enqueue func will modify the message
284
285                        // This magic line creates a private copy of the
286                        // message
287                        unmodified_msg_ptr = msg_ptr->clone();
288                    }
289
290                    // Enqueue it - for all outgoing queues
291                    for (int i=0; i<output_links.size(); i++) {
292                        int outgoing = output_links[i];
293
294                        if (i > 0) {
295                            // create a private copy of the unmodified
296                            // message
297                            msg_ptr = unmodified_msg_ptr->clone();
298                        }
299
300                        // Change the internal destination set of the
301                        // message so it knows which destinations this
302                        // link is responsible for.
303                        net_msg_ptr = safe_cast<NetworkMessage*>(msg_ptr.get());
304                        net_msg_ptr->getInternalDestination() =
305                            output_link_destinations[i];
306
307                        // Enqeue msg
308                        DPRINTF(RubyNetwork, "Enqueuing net msg from "
309                                "inport[%d][%d] to outport [%d][%d].\n",
310                                incoming, vnet, outgoing, vnet);
311
312                        m_out[outgoing][vnet]->enqueue(msg_ptr);
313                    }
314
315                    // Dequeue msg
316                    m_in[incoming][vnet]->pop();
317                    m_pending_message_count[vnet]--;
318                }
319            }
320        }
321    }
322}
323
324void
325PerfectSwitch::storeEventInfo(int info)
326{
327    m_pending_message_count[info]++;
328}
329
330void
331PerfectSwitch::printStats(std::ostream& out) const
332{
333    out << "PerfectSwitch printStats" << endl;
334}
335
336void
337PerfectSwitch::clearStats()
338{
339}
340
341void
342PerfectSwitch::print(std::ostream& out) const
343{
344    out << "[PerfectSwitch " << m_switch_id << "]";
345}
346