PerfectSwitch.cc revision 8266:66a3187a6714
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <algorithm>
30
31#include "debug/RubyNetwork.hh"
32#include "mem/protocol/Protocol.hh"
33#include "mem/ruby/buffers/MessageBuffer.hh"
34#include "mem/ruby/network/simple/PerfectSwitch.hh"
35#include "mem/ruby/network/simple/SimpleNetwork.hh"
36#include "mem/ruby/profiler/Profiler.hh"
37#include "mem/ruby/slicc_interface/NetworkMessage.hh"
38#include "mem/ruby/system/System.hh"
39
40using namespace std;
41
42const int PRIORITY_SWITCH_LIMIT = 128;
43
44// Operator for helper class
45bool
46operator<(const LinkOrder& l1, const LinkOrder& l2)
47{
48    return (l1.m_value < l2.m_value);
49}
50
51PerfectSwitch::PerfectSwitch(SwitchID sid, SimpleNetwork* network_ptr)
52{
53    m_virtual_networks = network_ptr->getNumberOfVirtualNetworks();
54    m_switch_id = sid;
55    m_round_robin_start = 0;
56    m_network_ptr = network_ptr;
57    m_wakeups_wo_switch = 0;
58
59    for(int i = 0;i < m_virtual_networks;++i)
60    {
61        m_pending_message_count.push_back(0);
62    }
63}
64
65void
66PerfectSwitch::addInPort(const vector<MessageBuffer*>& in)
67{
68    assert(in.size() == m_virtual_networks);
69    NodeID port = m_in.size();
70    m_in.push_back(in);
71
72    for (int j = 0; j < m_virtual_networks; j++) {
73        m_in[port][j]->setConsumer(this);
74        string desc = csprintf("[Queue from port %s %s %s to PerfectSwitch]",
75            NodeIDToString(m_switch_id), NodeIDToString(port),
76            NodeIDToString(j));
77        m_in[port][j]->setDescription(desc);
78        m_in[port][j]->setIncomingLink(port);
79        m_in[port][j]->setVnet(j);
80    }
81}
82
83void
84PerfectSwitch::addOutPort(const vector<MessageBuffer*>& out,
85    const NetDest& routing_table_entry)
86{
87    assert(out.size() == m_virtual_networks);
88
89    // Setup link order
90    LinkOrder l;
91    l.m_value = 0;
92    l.m_link = m_out.size();
93    m_link_order.push_back(l);
94
95    // Add to routing table
96    m_out.push_back(out);
97    m_routing_table.push_back(routing_table_entry);
98}
99
100void
101PerfectSwitch::clearRoutingTables()
102{
103    m_routing_table.clear();
104}
105
106void
107PerfectSwitch::clearBuffers()
108{
109    for (int i = 0; i < m_in.size(); i++){
110        for(int vnet = 0; vnet < m_virtual_networks; vnet++) {
111            m_in[i][vnet]->clear();
112        }
113    }
114
115    for (int i = 0; i < m_out.size(); i++){
116        for(int vnet = 0; vnet < m_virtual_networks; vnet++) {
117            m_out[i][vnet]->clear();
118        }
119    }
120}
121
122void
123PerfectSwitch::reconfigureOutPort(const NetDest& routing_table_entry)
124{
125    m_routing_table.push_back(routing_table_entry);
126}
127
128PerfectSwitch::~PerfectSwitch()
129{
130}
131
132void
133PerfectSwitch::wakeup()
134{
135    MsgPtr msg_ptr;
136
137    // Give the highest numbered link priority most of the time
138    m_wakeups_wo_switch++;
139    int highest_prio_vnet = m_virtual_networks-1;
140    int lowest_prio_vnet = 0;
141    int decrementer = 1;
142    NetworkMessage* net_msg_ptr = NULL;
143
144    // invert priorities to avoid starvation seen in the component network
145    if (m_wakeups_wo_switch > PRIORITY_SWITCH_LIMIT) {
146        m_wakeups_wo_switch = 0;
147        highest_prio_vnet = 0;
148        lowest_prio_vnet = m_virtual_networks-1;
149        decrementer = -1;
150    }
151
152    // For all components incoming queues
153    for (int vnet = highest_prio_vnet;
154         (vnet * decrementer) >= (decrementer * lowest_prio_vnet);
155         vnet -= decrementer) {
156
157        // This is for round-robin scheduling
158        int incoming = m_round_robin_start;
159        m_round_robin_start++;
160        if (m_round_robin_start >= m_in.size()) {
161            m_round_robin_start = 0;
162        }
163
164        if(m_pending_message_count[vnet] > 0) {
165            // for all input ports, use round robin scheduling
166            for (int counter = 0; counter < m_in.size(); counter++) {
167                // Round robin scheduling
168                incoming++;
169                if (incoming >= m_in.size()) {
170                    incoming = 0;
171                }
172
173                // temporary vectors to store the routing results
174                vector<LinkID> output_links;
175                vector<NetDest> output_link_destinations;
176
177                // Is there a message waiting?
178                while (m_in[incoming][vnet]->isReady()) {
179                    DPRINTF(RubyNetwork, "incoming: %d\n", incoming);
180
181                    // Peek at message
182                    msg_ptr = m_in[incoming][vnet]->peekMsgPtr();
183                    net_msg_ptr = safe_cast<NetworkMessage*>(msg_ptr.get());
184                    DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
185
186                    output_links.clear();
187                    output_link_destinations.clear();
188                    NetDest msg_dsts =
189                        net_msg_ptr->getInternalDestination();
190
191                    // Unfortunately, the token-protocol sends some
192                    // zero-destination messages, so this assert isn't valid
193                    // assert(msg_dsts.count() > 0);
194
195                    assert(m_link_order.size() == m_routing_table.size());
196                    assert(m_link_order.size() == m_out.size());
197
198                    if (m_network_ptr->getAdaptiveRouting()) {
199                        if (m_network_ptr->isVNetOrdered(vnet)) {
200                            // Don't adaptively route
201                            for (int out = 0; out < m_out.size(); out++) {
202                                m_link_order[out].m_link = out;
203                                m_link_order[out].m_value = 0;
204                            }
205                        } else {
206                            // Find how clogged each link is
207                            for (int out = 0; out < m_out.size(); out++) {
208                                int out_queue_length = 0;
209                                for (int v = 0; v < m_virtual_networks; v++) {
210                                    out_queue_length += m_out[out][v]->getSize();
211                                }
212                                int value =
213                                    (out_queue_length << 8) | (random() & 0xff);
214                                m_link_order[out].m_link = out;
215                                m_link_order[out].m_value = value;
216                            }
217
218                            // Look at the most empty link first
219                            sort(m_link_order.begin(), m_link_order.end());
220                        }
221                    }
222
223                    for (int i = 0; i < m_routing_table.size(); i++) {
224                        // pick the next link to look at
225                        int link = m_link_order[i].m_link;
226                        NetDest dst = m_routing_table[link];
227                        DPRINTF(RubyNetwork, "dst: %s\n", dst);
228
229                        if (!msg_dsts.intersectionIsNotEmpty(dst))
230                            continue;
231
232                        // Remember what link we're using
233                        output_links.push_back(link);
234
235                        // Need to remember which destinations need this
236                        // message in another vector.  This Set is the
237                        // intersection of the routing_table entry and the
238                        // current destination set.  The intersection must
239                        // not be empty, since we are inside "if"
240                        output_link_destinations.push_back(msg_dsts.AND(dst));
241
242                        // Next, we update the msg_destination not to
243                        // include those nodes that were already handled
244                        // by this link
245                        msg_dsts.removeNetDest(dst);
246                    }
247
248                    assert(msg_dsts.count() == 0);
249                    //assert(output_links.size() > 0);
250
251                    // Check for resources - for all outgoing queues
252                    bool enough = true;
253                    for (int i = 0; i < output_links.size(); i++) {
254                        int outgoing = output_links[i];
255                        if (!m_out[outgoing][vnet]->areNSlotsAvailable(1))
256                            enough = false;
257                        DPRINTF(RubyNetwork, "Checking if node is blocked ..."
258                                "outgoing: %d, vnet: %d, enough: %d\n",
259                                outgoing, vnet, enough);
260                    }
261
262                    // There were not enough resources
263                    if (!enough) {
264                        g_eventQueue_ptr->scheduleEvent(this, 1);
265                        DPRINTF(RubyNetwork, "Can't deliver message since a node "
266                                "is blocked\n");
267                        DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
268                        break; // go to next incoming port
269                    }
270
271                    MsgPtr unmodified_msg_ptr;
272
273                    if (output_links.size() > 1) {
274                        // If we are sending this message down more than
275                        // one link (size>1), we need to make a copy of
276                        // the message so each branch can have a different
277                        // internal destination we need to create an
278                        // unmodified MsgPtr because the MessageBuffer
279                        // enqueue func will modify the message
280
281                        // This magic line creates a private copy of the
282                        // message
283                        unmodified_msg_ptr = msg_ptr->clone();
284                    }
285
286                    // Enqueue it - for all outgoing queues
287                    for (int i=0; i<output_links.size(); i++) {
288                        int outgoing = output_links[i];
289
290                        if (i > 0) {
291                            // create a private copy of the unmodified
292                            // message
293                            msg_ptr = unmodified_msg_ptr->clone();
294                        }
295
296                        // Change the internal destination set of the
297                        // message so it knows which destinations this
298                        // link is responsible for.
299                        net_msg_ptr = safe_cast<NetworkMessage*>(msg_ptr.get());
300                        net_msg_ptr->getInternalDestination() =
301                            output_link_destinations[i];
302
303                        // Enqeue msg
304                        DPRINTF(RubyNetwork, "Enqueuing net msg from "
305                                "inport[%d][%d] to outport [%d][%d].\n",
306                                incoming, vnet, outgoing, vnet);
307
308                        m_out[outgoing][vnet]->enqueue(msg_ptr);
309                    }
310
311                    // Dequeue msg
312                    m_in[incoming][vnet]->pop();
313                    m_pending_message_count[vnet]--;
314                }
315            }
316        }
317    }
318}
319
320void
321PerfectSwitch::storeEventInfo(int info)
322{
323    m_pending_message_count[info]++;
324}
325
326void
327PerfectSwitch::printStats(std::ostream& out) const
328{
329    out << "PerfectSwitch printStats" << endl;
330}
331
332void
333PerfectSwitch::clearStats()
334{
335}
336
337void
338PerfectSwitch::printConfig(std::ostream& out) const
339{
340}
341
342void
343PerfectSwitch::print(std::ostream& out) const
344{
345    out << "[PerfectSwitch " << m_switch_id << "]";
346}
347
348