PerfectSwitch.cc revision 11321:02e930db812d
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <algorithm>
30
31#include "base/cast.hh"
32#include "base/random.hh"
33#include "debug/RubyNetwork.hh"
34#include "mem/ruby/network/MessageBuffer.hh"
35#include "mem/ruby/network/simple/PerfectSwitch.hh"
36#include "mem/ruby/network/simple/SimpleNetwork.hh"
37#include "mem/ruby/network/simple/Switch.hh"
38#include "mem/ruby/slicc_interface/Message.hh"
39
40using namespace std;
41
42const int PRIORITY_SWITCH_LIMIT = 128;
43
44// Operator for helper class
45bool
46operator<(const LinkOrder& l1, const LinkOrder& l2)
47{
48    return (l1.m_value < l2.m_value);
49}
50
51PerfectSwitch::PerfectSwitch(SwitchID sid, Switch *sw, uint32_t virt_nets)
52    : Consumer(sw), m_switch_id(sid), m_switch(sw)
53{
54    m_round_robin_start = 0;
55    m_wakeups_wo_switch = 0;
56    m_virtual_networks = virt_nets;
57}
58
59void
60PerfectSwitch::init(SimpleNetwork *network_ptr)
61{
62    m_network_ptr = network_ptr;
63
64    for (int i = 0;i < m_virtual_networks;++i) {
65        m_pending_message_count.push_back(0);
66    }
67}
68
69void
70PerfectSwitch::addInPort(const vector<MessageBuffer*>& in)
71{
72    NodeID port = m_in.size();
73    m_in.push_back(in);
74
75    for (int i = 0; i < in.size(); ++i) {
76        if (in[i] != nullptr) {
77            in[i]->setConsumer(this);
78            in[i]->setIncomingLink(port);
79            in[i]->setVnet(i);
80        }
81    }
82}
83
84void
85PerfectSwitch::addOutPort(const vector<MessageBuffer*>& out,
86                          const NetDest& routing_table_entry)
87{
88    // Setup link order
89    LinkOrder l;
90    l.m_value = 0;
91    l.m_link = m_out.size();
92    m_link_order.push_back(l);
93
94    // Add to routing table
95    m_out.push_back(out);
96    m_routing_table.push_back(routing_table_entry);
97}
98
99PerfectSwitch::~PerfectSwitch()
100{
101}
102
103void
104PerfectSwitch::operateVnet(int vnet)
105{
106    // This is for round-robin scheduling
107    int incoming = m_round_robin_start;
108    m_round_robin_start++;
109    if (m_round_robin_start >= m_in.size()) {
110        m_round_robin_start = 0;
111    }
112
113    if (m_pending_message_count[vnet] > 0) {
114        // for all input ports, use round robin scheduling
115        for (int counter = 0; counter < m_in.size(); counter++) {
116            // Round robin scheduling
117            incoming++;
118            if (incoming >= m_in.size()) {
119                incoming = 0;
120            }
121
122            // Is there a message waiting?
123            if (m_in[incoming].size() <= vnet) {
124                continue;
125            }
126
127            MessageBuffer *buffer = m_in[incoming][vnet];
128            if (buffer == nullptr) {
129                continue;
130            }
131
132            operateMessageBuffer(buffer, incoming, vnet);
133        }
134    }
135}
136
137void
138PerfectSwitch::operateMessageBuffer(MessageBuffer *buffer, int incoming,
139                                    int vnet)
140{
141    MsgPtr msg_ptr;
142    Message *net_msg_ptr = NULL;
143
144    // temporary vectors to store the routing results
145    vector<LinkID> output_links;
146    vector<NetDest> output_link_destinations;
147    Tick current_time = m_switch->clockEdge();
148
149    while (buffer->isReady(current_time)) {
150        DPRINTF(RubyNetwork, "incoming: %d\n", incoming);
151
152        // Peek at message
153        msg_ptr = buffer->peekMsgPtr();
154        net_msg_ptr = msg_ptr.get();
155        DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
156
157        output_links.clear();
158        output_link_destinations.clear();
159        NetDest msg_dsts = net_msg_ptr->getDestination();
160
161        // Unfortunately, the token-protocol sends some
162        // zero-destination messages, so this assert isn't valid
163        // assert(msg_dsts.count() > 0);
164
165        assert(m_link_order.size() == m_routing_table.size());
166        assert(m_link_order.size() == m_out.size());
167
168        if (m_network_ptr->getAdaptiveRouting()) {
169            if (m_network_ptr->isVNetOrdered(vnet)) {
170                // Don't adaptively route
171                for (int out = 0; out < m_out.size(); out++) {
172                    m_link_order[out].m_link = out;
173                    m_link_order[out].m_value = 0;
174                }
175            } else {
176                // Find how clogged each link is
177                for (int out = 0; out < m_out.size(); out++) {
178                    int out_queue_length = 0;
179                    for (int v = 0; v < m_virtual_networks; v++) {
180                        out_queue_length += m_out[out][v]->getSize(current_time);
181                    }
182                    int value =
183                        (out_queue_length << 8) |
184                        random_mt.random(0, 0xff);
185                    m_link_order[out].m_link = out;
186                    m_link_order[out].m_value = value;
187                }
188
189                // Look at the most empty link first
190                sort(m_link_order.begin(), m_link_order.end());
191            }
192        }
193
194        for (int i = 0; i < m_routing_table.size(); i++) {
195            // pick the next link to look at
196            int link = m_link_order[i].m_link;
197            NetDest dst = m_routing_table[link];
198            DPRINTF(RubyNetwork, "dst: %s\n", dst);
199
200            if (!msg_dsts.intersectionIsNotEmpty(dst))
201                continue;
202
203            // Remember what link we're using
204            output_links.push_back(link);
205
206            // Need to remember which destinations need this message in
207            // another vector.  This Set is the intersection of the
208            // routing_table entry and the current destination set.  The
209            // intersection must not be empty, since we are inside "if"
210            output_link_destinations.push_back(msg_dsts.AND(dst));
211
212            // Next, we update the msg_destination not to include
213            // those nodes that were already handled by this link
214            msg_dsts.removeNetDest(dst);
215        }
216
217        assert(msg_dsts.count() == 0);
218
219        // Check for resources - for all outgoing queues
220        bool enough = true;
221        for (int i = 0; i < output_links.size(); i++) {
222            int outgoing = output_links[i];
223
224            if (!m_out[outgoing][vnet]->areNSlotsAvailable(1, current_time))
225                enough = false;
226
227            DPRINTF(RubyNetwork, "Checking if node is blocked ..."
228                    "outgoing: %d, vnet: %d, enough: %d\n",
229                    outgoing, vnet, enough);
230        }
231
232        // There were not enough resources
233        if (!enough) {
234            scheduleEvent(Cycles(1));
235            DPRINTF(RubyNetwork, "Can't deliver message since a node "
236                    "is blocked\n");
237            DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
238            break; // go to next incoming port
239        }
240
241        MsgPtr unmodified_msg_ptr;
242
243        if (output_links.size() > 1) {
244            // If we are sending this message down more than one link
245            // (size>1), we need to make a copy of the message so each
246            // branch can have a different internal destination we need
247            // to create an unmodified MsgPtr because the MessageBuffer
248            // enqueue func will modify the message
249
250            // This magic line creates a private copy of the message
251            unmodified_msg_ptr = msg_ptr->clone();
252        }
253
254        // Dequeue msg
255        buffer->dequeue(current_time);
256        m_pending_message_count[vnet]--;
257
258        // Enqueue it - for all outgoing queues
259        for (int i=0; i<output_links.size(); i++) {
260            int outgoing = output_links[i];
261
262            if (i > 0) {
263                // create a private copy of the unmodified message
264                msg_ptr = unmodified_msg_ptr->clone();
265            }
266
267            // Change the internal destination set of the message so it
268            // knows which destinations this link is responsible for.
269            net_msg_ptr = msg_ptr.get();
270            net_msg_ptr->getDestination() = output_link_destinations[i];
271
272            // Enqeue msg
273            DPRINTF(RubyNetwork, "Enqueuing net msg from "
274                    "inport[%d][%d] to outport [%d][%d].\n",
275                    incoming, vnet, outgoing, vnet);
276
277            m_out[outgoing][vnet]->enqueue(msg_ptr, current_time,
278                                           m_switch->cyclesToTicks(Cycles(1)));
279        }
280    }
281}
282
283void
284PerfectSwitch::wakeup()
285{
286    // Give the highest numbered link priority most of the time
287    m_wakeups_wo_switch++;
288    int highest_prio_vnet = m_virtual_networks-1;
289    int lowest_prio_vnet = 0;
290    int decrementer = 1;
291
292    // invert priorities to avoid starvation seen in the component network
293    if (m_wakeups_wo_switch > PRIORITY_SWITCH_LIMIT) {
294        m_wakeups_wo_switch = 0;
295        highest_prio_vnet = 0;
296        lowest_prio_vnet = m_virtual_networks-1;
297        decrementer = -1;
298    }
299
300    // For all components incoming queues
301    for (int vnet = highest_prio_vnet;
302         (vnet * decrementer) >= (decrementer * lowest_prio_vnet);
303         vnet -= decrementer) {
304        operateVnet(vnet);
305    }
306}
307
308void
309PerfectSwitch::storeEventInfo(int info)
310{
311    m_pending_message_count[info]++;
312}
313
314void
315PerfectSwitch::clearStats()
316{
317}
318void
319PerfectSwitch::collateStats()
320{
321}
322
323
324void
325PerfectSwitch::print(std::ostream& out) const
326{
327    out << "[PerfectSwitch " << m_switch_id << "]";
328}
329