Topology.cc revision 8645:89929730804b
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <cassert>
30
31#include "debug/RubyNetwork.hh"
32#include "mem/protocol/MachineType.hh"
33#include "mem/protocol/TopologyType.hh"
34#include "mem/ruby/common/NetDest.hh"
35#include "mem/ruby/network/BasicLink.hh"
36#include "mem/ruby/network/BasicRouter.hh"
37#include "mem/ruby/network/Network.hh"
38#include "mem/ruby/network/Topology.hh"
39#include "mem/ruby/slicc_interface/AbstractController.hh"
40
41using namespace std;
42
43const int INFINITE_LATENCY = 10000; // Yes, this is a big hack
44
45class BasicRouter;
46
47// Note: In this file, we use the first 2*m_nodes SwitchIDs to
48// represent the input and output endpoint links.  These really are
49// not 'switches', as they will not have a Switch object allocated for
50// them. The first m_nodes SwitchIDs are the links into the network,
51// the second m_nodes set of SwitchIDs represent the the output queues
52// of the network.
53
54// Helper functions based on chapter 29 of Cormen et al.
55void extend_shortest_path(Matrix& current_dist, Matrix& latencies,
56    Matrix& inter_switches);
57Matrix shortest_path(const Matrix& weights, Matrix& latencies,
58    Matrix& inter_switches);
59bool link_is_shortest_path_to_node(SwitchID src, SwitchID next,
60    SwitchID final, const Matrix& weights, const Matrix& dist);
61NetDest shortest_path_to_node(SwitchID src, SwitchID next,
62    const Matrix& weights, const Matrix& dist);
63
64Topology::Topology(const Params *p)
65    : SimObject(p)
66{
67    m_print_config = p->print_config;
68    m_number_of_switches = p->routers.size();
69
70    // initialize component latencies record
71    m_component_latencies.resize(0);
72    m_component_inter_switches.resize(0);
73
74    // Total nodes/controllers in network
75    // Must make sure this is called after the State Machine constructors
76    m_nodes = MachineType_base_number(MachineType_NUM);
77    assert(m_nodes > 1);
78
79    if (m_nodes != params()->ext_links.size() &&
80        m_nodes != params()->ext_links.size()) {
81        fatal("m_nodes (%d) != ext_links vector length (%d)\n",
82              m_nodes != params()->ext_links.size());
83    }
84
85    // analyze both the internal and external links, create data structures
86    // Note that the python created links are bi-directional, but that the
87    // topology and networks utilize uni-directional links.  Thus each
88    // BasicLink is converted to two calls to add link, on for each direction
89    for (vector<BasicExtLink*>::const_iterator i = params()->ext_links.begin();
90         i != params()->ext_links.end(); ++i) {
91        BasicExtLink *ext_link = (*i);
92        AbstractController *abs_cntrl = ext_link->params()->ext_node;
93        BasicRouter *router = ext_link->params()->int_node;
94
95        // Store the controller and ExtLink pointers for later
96        m_controller_vector.push_back(abs_cntrl);
97        m_ext_link_vector.push_back(ext_link);
98
99        int ext_idx1 = abs_cntrl->params()->cntrl_id;
100        int ext_idx2 = ext_idx1 + m_nodes;
101        int int_idx = router->params()->router_id + 2*m_nodes;
102
103        // create the internal uni-directional links in both directions
104        //   the first direction is marked: In
105        addLink(ext_idx1, int_idx, ext_link, LinkDirection_In);
106        //   the first direction is marked: Out
107        addLink(int_idx, ext_idx2, ext_link, LinkDirection_Out);
108    }
109
110    for (vector<BasicIntLink*>::const_iterator i = params()->int_links.begin();
111         i != params()->int_links.end(); ++i) {
112        BasicIntLink *int_link = (*i);
113        BasicRouter *router_a = int_link->params()->node_a;
114        BasicRouter *router_b = int_link->params()->node_b;
115
116        // Store the IntLink pointers for later
117        m_int_link_vector.push_back(int_link);
118
119        int a = router_a->params()->router_id + 2*m_nodes;
120        int b = router_b->params()->router_id + 2*m_nodes;
121
122        // create the internal uni-directional links in both directions
123        //   the first direction is marked: In
124        addLink(a, b, int_link, LinkDirection_In);
125        //   the second direction is marked: Out
126        addLink(b, a, int_link, LinkDirection_Out);
127    }
128}
129
130void
131Topology::init()
132{
133}
134
135
136void
137Topology::initNetworkPtr(Network* net_ptr)
138{
139    for (vector<BasicExtLink*>::const_iterator i = params()->ext_links.begin();
140         i != params()->ext_links.end(); ++i) {
141        BasicExtLink *ext_link = (*i);
142        AbstractController *abs_cntrl = ext_link->params()->ext_node;
143        abs_cntrl->initNetworkPtr(net_ptr);
144    }
145}
146
147void
148Topology::createLinks(Network *net, bool isReconfiguration)
149{
150    // Find maximum switchID
151    SwitchID max_switch_id = 0;
152    for (LinkMap::const_iterator i = m_link_map.begin();
153         i != m_link_map.end(); ++i) {
154        std::pair<int, int> src_dest = (*i).first;
155        max_switch_id = max(max_switch_id, src_dest.first);
156        max_switch_id = max(max_switch_id, src_dest.second);
157    }
158
159    // Initialize weight, latency, and inter switched vectors
160    Matrix topology_weights;
161    int num_switches = max_switch_id+1;
162    topology_weights.resize(num_switches);
163    m_component_latencies.resize(num_switches);
164    m_component_inter_switches.resize(num_switches);
165
166    for (int i = 0; i < topology_weights.size(); i++) {
167        topology_weights[i].resize(num_switches);
168        m_component_latencies[i].resize(num_switches);
169        m_component_inter_switches[i].resize(num_switches);
170
171        for (int j = 0; j < topology_weights[i].size(); j++) {
172            topology_weights[i][j] = INFINITE_LATENCY;
173
174            // initialize to invalid values
175            m_component_latencies[i][j] = -1;
176
177            // initially assume direct connections / no intermediate
178            // switches between components
179            m_component_inter_switches[i][j] = 0;
180        }
181    }
182
183    // Set identity weights to zero
184    for (int i = 0; i < topology_weights.size(); i++) {
185        topology_weights[i][i] = 0;
186    }
187
188    // Fill in the topology weights and bandwidth multipliers
189    for (LinkMap::const_iterator i = m_link_map.begin();
190         i != m_link_map.end(); ++i) {
191        std::pair<int, int> src_dest = (*i).first;
192        BasicLink* link = (*i).second.link;
193        int src = src_dest.first;
194        int dst = src_dest.second;
195        m_component_latencies[src][dst] = link->m_latency;
196        topology_weights[src][dst] = link->m_weight;
197    }
198
199    // Walk topology and hookup the links
200    Matrix dist = shortest_path(topology_weights, m_component_latencies,
201        m_component_inter_switches);
202    for (int i = 0; i < topology_weights.size(); i++) {
203        for (int j = 0; j < topology_weights[i].size(); j++) {
204            int weight = topology_weights[i][j];
205            if (weight > 0 && weight != INFINITE_LATENCY) {
206                NetDest destination_set = shortest_path_to_node(i, j,
207                                                     topology_weights, dist);
208                makeLink(net, i, j, destination_set, isReconfiguration);
209            }
210        }
211    }
212}
213
214void
215Topology::addLink(SwitchID src, SwitchID dest, BasicLink* link,
216                  LinkDirection dir)
217{
218    assert(src <= m_number_of_switches+m_nodes+m_nodes);
219    assert(dest <= m_number_of_switches+m_nodes+m_nodes);
220
221    std::pair<int, int> src_dest_pair;
222    LinkEntry link_entry;
223
224    src_dest_pair.first = src;
225    src_dest_pair.second = dest;
226    link_entry.direction = dir;
227    link_entry.link = link;
228    m_link_map[src_dest_pair] = link_entry;
229}
230
231void
232Topology::makeLink(Network *net, SwitchID src, SwitchID dest,
233                   const NetDest& routing_table_entry, bool isReconfiguration)
234{
235    // Make sure we're not trying to connect two end-point nodes
236    // directly together
237    assert(src >= 2 * m_nodes || dest >= 2 * m_nodes);
238
239    std::pair<int, int> src_dest;
240    LinkEntry link_entry;
241
242    if (src < m_nodes) {
243        src_dest.first = src;
244        src_dest.second = dest;
245        link_entry = m_link_map[src_dest];
246        net->makeInLink(src, dest - (2 * m_nodes), link_entry.link,
247                        link_entry.direction,
248                        routing_table_entry,
249                        isReconfiguration);
250    } else if (dest < 2*m_nodes) {
251        assert(dest >= m_nodes);
252        NodeID node = dest - m_nodes;
253        src_dest.first = src;
254        src_dest.second = dest;
255        link_entry = m_link_map[src_dest];
256        net->makeOutLink(src - (2 * m_nodes), node, link_entry.link,
257                         link_entry.direction,
258                         routing_table_entry,
259                         isReconfiguration);
260    } else {
261        assert((src >= 2 * m_nodes) && (dest >= 2 * m_nodes));
262        src_dest.first = src;
263        src_dest.second = dest;
264        link_entry = m_link_map[src_dest];
265        net->makeInternalLink(src - (2 * m_nodes), dest - (2 * m_nodes),
266                              link_entry.link, link_entry.direction,
267                              routing_table_entry, isReconfiguration);
268    }
269}
270
271void
272Topology::printStats(std::ostream& out) const
273{
274    for (int cntrl = 0; cntrl < m_controller_vector.size(); cntrl++) {
275        m_controller_vector[cntrl]->printStats(out);
276    }
277}
278
279void
280Topology::clearStats()
281{
282    for (int cntrl = 0; cntrl < m_controller_vector.size(); cntrl++) {
283        m_controller_vector[cntrl]->clearStats();
284    }
285}
286
287void
288Topology::printConfig(std::ostream& out) const
289{
290    if (m_print_config == false)
291        return;
292
293    assert(m_component_latencies.size() > 0);
294
295    out << "--- Begin Topology Print ---" << endl
296        << endl
297        << "Topology print ONLY indicates the _NETWORK_ latency between two "
298        << "machines" << endl
299        << "It does NOT include the latency within the machines" << endl
300        << endl;
301
302    for (int m = 0; m < MachineType_NUM; m++) {
303        int i_end = MachineType_base_count((MachineType)m);
304        for (int i = 0; i < i_end; i++) {
305            MachineID cur_mach = {(MachineType)m, i};
306            out << cur_mach << " Network Latencies" << endl;
307            for (int n = 0; n < MachineType_NUM; n++) {
308                int j_end = MachineType_base_count((MachineType)n);
309                for (int j = 0; j < j_end; j++) {
310                    MachineID dest_mach = {(MachineType)n, j};
311                    if (cur_mach == dest_mach)
312                        continue;
313
314                    int src = MachineType_base_number((MachineType)m) + i;
315                    int dst = MachineType_base_number(MachineType_NUM) +
316                        MachineType_base_number((MachineType)n) + j;
317                    int link_latency = m_component_latencies[src][dst];
318                    int intermediate_switches =
319                        m_component_inter_switches[src][dst];
320
321                    // NOTE switches are assumed to have single
322                    // cycle latency
323                    out << "  " << cur_mach << " -> " << dest_mach
324                        << " net_lat: "
325                        << link_latency + intermediate_switches << endl;
326                }
327            }
328            out << endl;
329        }
330    }
331
332    out << "--- End Topology Print ---" << endl;
333}
334
335// The following all-pairs shortest path algorithm is based on the
336// discussion from Cormen et al., Chapter 26.1.
337void
338extend_shortest_path(Matrix& current_dist, Matrix& latencies,
339    Matrix& inter_switches)
340{
341    bool change = true;
342    int nodes = current_dist.size();
343
344    while (change) {
345        change = false;
346        for (int i = 0; i < nodes; i++) {
347            for (int j = 0; j < nodes; j++) {
348                int minimum = current_dist[i][j];
349                int previous_minimum = minimum;
350                int intermediate_switch = -1;
351                for (int k = 0; k < nodes; k++) {
352                    minimum = min(minimum,
353                        current_dist[i][k] + current_dist[k][j]);
354                    if (previous_minimum != minimum) {
355                        intermediate_switch = k;
356                        inter_switches[i][j] =
357                            inter_switches[i][k] +
358                            inter_switches[k][j] + 1;
359                    }
360                    previous_minimum = minimum;
361                }
362                if (current_dist[i][j] != minimum) {
363                    change = true;
364                    current_dist[i][j] = minimum;
365                    assert(intermediate_switch >= 0);
366                    assert(intermediate_switch < latencies[i].size());
367                    latencies[i][j] = latencies[i][intermediate_switch] +
368                        latencies[intermediate_switch][j];
369                }
370            }
371        }
372    }
373}
374
375Matrix
376shortest_path(const Matrix& weights, Matrix& latencies, Matrix& inter_switches)
377{
378    Matrix dist = weights;
379    extend_shortest_path(dist, latencies, inter_switches);
380    return dist;
381}
382
383bool
384link_is_shortest_path_to_node(SwitchID src, SwitchID next, SwitchID final,
385    const Matrix& weights, const Matrix& dist)
386{
387    return weights[src][next] + dist[next][final] == dist[src][final];
388}
389
390NetDest
391shortest_path_to_node(SwitchID src, SwitchID next, const Matrix& weights,
392    const Matrix& dist)
393{
394    NetDest result;
395    int d = 0;
396    int machines;
397    int max_machines;
398
399    machines = MachineType_NUM;
400    max_machines = MachineType_base_number(MachineType_NUM);
401
402    for (int m = 0; m < machines; m++) {
403        for (int i = 0; i < MachineType_base_count((MachineType)m); i++) {
404            // we use "d+max_machines" below since the "destination"
405            // switches for the machines are numbered
406            // [MachineType_base_number(MachineType_NUM)...
407            //  2*MachineType_base_number(MachineType_NUM)-1] for the
408            // component network
409            if (link_is_shortest_path_to_node(src, next, d + max_machines,
410                    weights, dist)) {
411                MachineID mach = {(MachineType)m, i};
412                result.add(mach);
413            }
414            d++;
415        }
416    }
417
418    DPRINTF(RubyNetwork, "Returning shortest path\n"
419            "(src-(2*max_machines)): %d, (next-(2*max_machines)): %d, "
420            "src: %d, next: %d, result: %s\n",
421            (src-(2*max_machines)), (next-(2*max_machines)),
422            src, next, result);
423
424    return result;
425}
426
427Topology *
428TopologyParams::create()
429{
430    return new Topology(this);
431}
432
433