Topology.cc revision 10078
1/* 2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29#include <cassert> 30 31#include "base/trace.hh" 32#include "debug/RubyNetwork.hh" 33#include "mem/protocol/MachineType.hh" 34#include "mem/ruby/common/NetDest.hh" 35#include "mem/ruby/network/BasicLink.hh" 36#include "mem/ruby/network/Topology.hh" 37#include "mem/ruby/slicc_interface/AbstractController.hh" 38 39using namespace std; 40 41const int INFINITE_LATENCY = 10000; // Yes, this is a big hack 42 43// Note: In this file, we use the first 2*m_nodes SwitchIDs to 44// represent the input and output endpoint links. These really are 45// not 'switches', as they will not have a Switch object allocated for 46// them. The first m_nodes SwitchIDs are the links into the network, 47// the second m_nodes set of SwitchIDs represent the the output queues 48// of the network. 49 50// Helper functions based on chapter 29 of Cormen et al. 51void extend_shortest_path(Matrix& current_dist, Matrix& latencies, 52 Matrix& inter_switches); 53Matrix shortest_path(const Matrix& weights, Matrix& latencies, 54 Matrix& inter_switches); 55bool link_is_shortest_path_to_node(SwitchID src, SwitchID next, 56 SwitchID final, const Matrix& weights, const Matrix& dist); 57NetDest shortest_path_to_node(SwitchID src, SwitchID next, 58 const Matrix& weights, const Matrix& dist); 59 60Topology::Topology(uint32_t num_routers, vector<BasicExtLink *> ext_links, 61 vector<BasicIntLink *> int_links) 62 : m_number_of_switches(num_routers) 63{ 64 65 // initialize component latencies record 66 m_component_latencies.resize(0); 67 m_component_inter_switches.resize(0); 68 69 // Total nodes/controllers in network 70 // Must make sure this is called after the State Machine constructors 71 m_nodes = MachineType_base_number(MachineType_NUM); 72 assert(m_nodes > 1); 73 74 if (m_nodes != ext_links.size()) { 75 fatal("m_nodes (%d) != ext_links vector length (%d)\n", 76 m_nodes, ext_links.size()); 77 } 78 79 // analyze both the internal and external links, create data structures 80 // Note that the python created links are bi-directional, but that the 81 // topology and networks utilize uni-directional links. Thus each 82 // BasicLink is converted to two calls to add link, on for each direction 83 for (vector<BasicExtLink*>::const_iterator i = ext_links.begin(); 84 i != ext_links.end(); ++i) { 85 BasicExtLink *ext_link = (*i); 86 AbstractController *abs_cntrl = ext_link->params()->ext_node; 87 BasicRouter *router = ext_link->params()->int_node; 88 89 // Store the ExtLink pointers for later 90 m_ext_link_vector.push_back(ext_link); 91 92 int machine_base_idx = MachineType_base_number(abs_cntrl->getType()); 93 int ext_idx1 = machine_base_idx + abs_cntrl->getVersion(); 94 int ext_idx2 = ext_idx1 + m_nodes; 95 int int_idx = router->params()->router_id + 2*m_nodes; 96 97 // create the internal uni-directional links in both directions 98 // the first direction is marked: In 99 addLink(ext_idx1, int_idx, ext_link, LinkDirection_In); 100 // the first direction is marked: Out 101 addLink(int_idx, ext_idx2, ext_link, LinkDirection_Out); 102 } 103 104 for (vector<BasicIntLink*>::const_iterator i = int_links.begin(); 105 i != int_links.end(); ++i) { 106 BasicIntLink *int_link = (*i); 107 BasicRouter *router_a = int_link->params()->node_a; 108 BasicRouter *router_b = int_link->params()->node_b; 109 110 // Store the IntLink pointers for later 111 m_int_link_vector.push_back(int_link); 112 113 int a = router_a->params()->router_id + 2*m_nodes; 114 int b = router_b->params()->router_id + 2*m_nodes; 115 116 // create the internal uni-directional links in both directions 117 // the first direction is marked: In 118 addLink(a, b, int_link, LinkDirection_In); 119 // the second direction is marked: Out 120 addLink(b, a, int_link, LinkDirection_Out); 121 } 122} 123 124void 125Topology::createLinks(Network *net) 126{ 127 // Find maximum switchID 128 SwitchID max_switch_id = 0; 129 for (LinkMap::const_iterator i = m_link_map.begin(); 130 i != m_link_map.end(); ++i) { 131 std::pair<SwitchID, SwitchID> src_dest = (*i).first; 132 max_switch_id = max(max_switch_id, src_dest.first); 133 max_switch_id = max(max_switch_id, src_dest.second); 134 } 135 136 // Initialize weight, latency, and inter switched vectors 137 Matrix topology_weights; 138 int num_switches = max_switch_id+1; 139 topology_weights.resize(num_switches); 140 m_component_latencies.resize(num_switches); 141 m_component_inter_switches.resize(num_switches); 142 143 for (int i = 0; i < topology_weights.size(); i++) { 144 topology_weights[i].resize(num_switches); 145 m_component_latencies[i].resize(num_switches); 146 m_component_inter_switches[i].resize(num_switches); 147 148 for (int j = 0; j < topology_weights[i].size(); j++) { 149 topology_weights[i][j] = INFINITE_LATENCY; 150 151 // initialize to invalid values 152 m_component_latencies[i][j] = -1; 153 154 // initially assume direct connections / no intermediate 155 // switches between components 156 m_component_inter_switches[i][j] = 0; 157 } 158 } 159 160 // Set identity weights to zero 161 for (int i = 0; i < topology_weights.size(); i++) { 162 topology_weights[i][i] = 0; 163 } 164 165 // Fill in the topology weights and bandwidth multipliers 166 for (LinkMap::const_iterator i = m_link_map.begin(); 167 i != m_link_map.end(); ++i) { 168 std::pair<int, int> src_dest = (*i).first; 169 BasicLink* link = (*i).second.link; 170 int src = src_dest.first; 171 int dst = src_dest.second; 172 m_component_latencies[src][dst] = link->m_latency; 173 topology_weights[src][dst] = link->m_weight; 174 } 175 176 // Walk topology and hookup the links 177 Matrix dist = shortest_path(topology_weights, m_component_latencies, 178 m_component_inter_switches); 179 for (int i = 0; i < topology_weights.size(); i++) { 180 for (int j = 0; j < topology_weights[i].size(); j++) { 181 int weight = topology_weights[i][j]; 182 if (weight > 0 && weight != INFINITE_LATENCY) { 183 NetDest destination_set = 184 shortest_path_to_node(i, j, topology_weights, dist); 185 makeLink(net, i, j, destination_set); 186 } 187 } 188 } 189} 190 191void 192Topology::addLink(SwitchID src, SwitchID dest, BasicLink* link, 193 LinkDirection dir) 194{ 195 assert(src <= m_number_of_switches+m_nodes+m_nodes); 196 assert(dest <= m_number_of_switches+m_nodes+m_nodes); 197 198 std::pair<int, int> src_dest_pair; 199 LinkEntry link_entry; 200 201 src_dest_pair.first = src; 202 src_dest_pair.second = dest; 203 link_entry.direction = dir; 204 link_entry.link = link; 205 m_link_map[src_dest_pair] = link_entry; 206} 207 208void 209Topology::makeLink(Network *net, SwitchID src, SwitchID dest, 210 const NetDest& routing_table_entry) 211{ 212 // Make sure we're not trying to connect two end-point nodes 213 // directly together 214 assert(src >= 2 * m_nodes || dest >= 2 * m_nodes); 215 216 std::pair<int, int> src_dest; 217 LinkEntry link_entry; 218 219 if (src < m_nodes) { 220 src_dest.first = src; 221 src_dest.second = dest; 222 link_entry = m_link_map[src_dest]; 223 net->makeInLink(src, dest - (2 * m_nodes), link_entry.link, 224 link_entry.direction, routing_table_entry); 225 } else if (dest < 2*m_nodes) { 226 assert(dest >= m_nodes); 227 NodeID node = dest - m_nodes; 228 src_dest.first = src; 229 src_dest.second = dest; 230 link_entry = m_link_map[src_dest]; 231 net->makeOutLink(src - (2 * m_nodes), node, link_entry.link, 232 link_entry.direction, routing_table_entry); 233 } else { 234 assert((src >= 2 * m_nodes) && (dest >= 2 * m_nodes)); 235 src_dest.first = src; 236 src_dest.second = dest; 237 link_entry = m_link_map[src_dest]; 238 net->makeInternalLink(src - (2 * m_nodes), dest - (2 * m_nodes), 239 link_entry.link, link_entry.direction, 240 routing_table_entry); 241 } 242} 243 244// The following all-pairs shortest path algorithm is based on the 245// discussion from Cormen et al., Chapter 26.1. 246void 247extend_shortest_path(Matrix& current_dist, Matrix& latencies, 248 Matrix& inter_switches) 249{ 250 bool change = true; 251 int nodes = current_dist.size(); 252 253 while (change) { 254 change = false; 255 for (int i = 0; i < nodes; i++) { 256 for (int j = 0; j < nodes; j++) { 257 int minimum = current_dist[i][j]; 258 int previous_minimum = minimum; 259 int intermediate_switch = -1; 260 for (int k = 0; k < nodes; k++) { 261 minimum = min(minimum, 262 current_dist[i][k] + current_dist[k][j]); 263 if (previous_minimum != minimum) { 264 intermediate_switch = k; 265 inter_switches[i][j] = 266 inter_switches[i][k] + 267 inter_switches[k][j] + 1; 268 } 269 previous_minimum = minimum; 270 } 271 if (current_dist[i][j] != minimum) { 272 change = true; 273 current_dist[i][j] = minimum; 274 assert(intermediate_switch >= 0); 275 assert(intermediate_switch < latencies[i].size()); 276 latencies[i][j] = latencies[i][intermediate_switch] + 277 latencies[intermediate_switch][j]; 278 } 279 } 280 } 281 } 282} 283 284Matrix 285shortest_path(const Matrix& weights, Matrix& latencies, Matrix& inter_switches) 286{ 287 Matrix dist = weights; 288 extend_shortest_path(dist, latencies, inter_switches); 289 return dist; 290} 291 292bool 293link_is_shortest_path_to_node(SwitchID src, SwitchID next, SwitchID final, 294 const Matrix& weights, const Matrix& dist) 295{ 296 return weights[src][next] + dist[next][final] == dist[src][final]; 297} 298 299NetDest 300shortest_path_to_node(SwitchID src, SwitchID next, const Matrix& weights, 301 const Matrix& dist) 302{ 303 NetDest result; 304 int d = 0; 305 int machines; 306 int max_machines; 307 308 machines = MachineType_NUM; 309 max_machines = MachineType_base_number(MachineType_NUM); 310 311 for (int m = 0; m < machines; m++) { 312 for (NodeID i = 0; i < MachineType_base_count((MachineType)m); i++) { 313 // we use "d+max_machines" below since the "destination" 314 // switches for the machines are numbered 315 // [MachineType_base_number(MachineType_NUM)... 316 // 2*MachineType_base_number(MachineType_NUM)-1] for the 317 // component network 318 if (link_is_shortest_path_to_node(src, next, d + max_machines, 319 weights, dist)) { 320 MachineID mach = {(MachineType)m, i}; 321 result.add(mach); 322 } 323 d++; 324 } 325 } 326 327 DPRINTF(RubyNetwork, "Returning shortest path\n" 328 "(src-(2*max_machines)): %d, (next-(2*max_machines)): %d, " 329 "src: %d, next: %d, result: %s\n", 330 (src-(2*max_machines)), (next-(2*max_machines)), 331 src, next, result); 332 333 return result; 334} 335