Topology.cc revision 9799
16145SN/A/*
26145SN/A * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
36145SN/A * All rights reserved.
46145SN/A *
56145SN/A * Redistribution and use in source and binary forms, with or without
66145SN/A * modification, are permitted provided that the following conditions are
76145SN/A * met: redistributions of source code must retain the above copyright
86145SN/A * notice, this list of conditions and the following disclaimer;
96145SN/A * redistributions in binary form must reproduce the above copyright
106145SN/A * notice, this list of conditions and the following disclaimer in the
116145SN/A * documentation and/or other materials provided with the distribution;
126145SN/A * neither the name of the copyright holders nor the names of its
136145SN/A * contributors may be used to endorse or promote products derived from
146145SN/A * this software without specific prior written permission.
156145SN/A *
166145SN/A * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
176145SN/A * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
186145SN/A * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
196145SN/A * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
206145SN/A * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
216145SN/A * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
226145SN/A * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
236145SN/A * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
246145SN/A * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
256145SN/A * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
266145SN/A * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
276145SN/A */
286145SN/A
297832SN/A#include <cassert>
307832SN/A
319356Snilay@cs.wisc.edu#include "base/trace.hh"
328232SN/A#include "debug/RubyNetwork.hh"
336154SN/A#include "mem/protocol/MachineType.hh"
347054SN/A#include "mem/ruby/common/NetDest.hh"
358257SBrad.Beckmann@amd.com#include "mem/ruby/network/BasicLink.hh"
368255SBrad.Beckmann@amd.com#include "mem/ruby/network/Topology.hh"
377054SN/A#include "mem/ruby/slicc_interface/AbstractController.hh"
386145SN/A
397055SN/Ausing namespace std;
407055SN/A
417054SN/Aconst int INFINITE_LATENCY = 10000; // Yes, this is a big hack
428257SBrad.Beckmann@amd.com
436145SN/A// Note: In this file, we use the first 2*m_nodes SwitchIDs to
446145SN/A// represent the input and output endpoint links.  These really are
456145SN/A// not 'switches', as they will not have a Switch object allocated for
466145SN/A// them. The first m_nodes SwitchIDs are the links into the network,
476145SN/A// the second m_nodes set of SwitchIDs represent the the output queues
486145SN/A// of the network.
496145SN/A
506145SN/A// Helper functions based on chapter 29 of Cormen et al.
517054SN/Avoid extend_shortest_path(Matrix& current_dist, Matrix& latencies,
527054SN/A    Matrix& inter_switches);
537054SN/AMatrix shortest_path(const Matrix& weights, Matrix& latencies,
547054SN/A    Matrix& inter_switches);
557054SN/Abool link_is_shortest_path_to_node(SwitchID src, SwitchID next,
567054SN/A    SwitchID final, const Matrix& weights, const Matrix& dist);
577054SN/ANetDest shortest_path_to_node(SwitchID src, SwitchID next,
587054SN/A    const Matrix& weights, const Matrix& dist);
596145SN/A
609594Snilay@cs.wisc.eduTopology::Topology(uint32_t num_routers, vector<BasicExtLink *> ext_links,
619594Snilay@cs.wisc.edu                   vector<BasicIntLink *> int_links)
629594Snilay@cs.wisc.edu    : m_number_of_switches(num_routers)
636145SN/A{
648257SBrad.Beckmann@amd.com
656881SN/A    // initialize component latencies record
667454SN/A    m_component_latencies.resize(0);
677454SN/A    m_component_inter_switches.resize(0);
686145SN/A
696881SN/A    // Total nodes/controllers in network
706881SN/A    // Must make sure this is called after the State Machine constructors
716879SN/A    m_nodes = MachineType_base_number(MachineType_NUM);
726881SN/A    assert(m_nodes > 1);
736285SN/A
749594Snilay@cs.wisc.edu    if (m_nodes != ext_links.size()) {
756879SN/A        fatal("m_nodes (%d) != ext_links vector length (%d)\n",
769594Snilay@cs.wisc.edu              m_nodes, ext_links.size());
776879SN/A    }
786879SN/A
798257SBrad.Beckmann@amd.com    // analyze both the internal and external links, create data structures
808257SBrad.Beckmann@amd.com    // Note that the python created links are bi-directional, but that the
818257SBrad.Beckmann@amd.com    // topology and networks utilize uni-directional links.  Thus each
828257SBrad.Beckmann@amd.com    // BasicLink is converted to two calls to add link, on for each direction
839594Snilay@cs.wisc.edu    for (vector<BasicExtLink*>::const_iterator i = ext_links.begin();
849594Snilay@cs.wisc.edu         i != ext_links.end(); ++i) {
858257SBrad.Beckmann@amd.com        BasicExtLink *ext_link = (*i);
868257SBrad.Beckmann@amd.com        AbstractController *abs_cntrl = ext_link->params()->ext_node;
878257SBrad.Beckmann@amd.com        BasicRouter *router = ext_link->params()->int_node;
886881SN/A
899496Snilay@cs.wisc.edu        // Store the ExtLink pointers for later
908257SBrad.Beckmann@amd.com        m_ext_link_vector.push_back(ext_link);
916881SN/A
928257SBrad.Beckmann@amd.com        int ext_idx1 = abs_cntrl->params()->cntrl_id;
937054SN/A        int ext_idx2 = ext_idx1 + m_nodes;
948257SBrad.Beckmann@amd.com        int int_idx = router->params()->router_id + 2*m_nodes;
956145SN/A
968257SBrad.Beckmann@amd.com        // create the internal uni-directional links in both directions
978257SBrad.Beckmann@amd.com        //   the first direction is marked: In
988257SBrad.Beckmann@amd.com        addLink(ext_idx1, int_idx, ext_link, LinkDirection_In);
998257SBrad.Beckmann@amd.com        //   the first direction is marked: Out
1008257SBrad.Beckmann@amd.com        addLink(int_idx, ext_idx2, ext_link, LinkDirection_Out);
1017054SN/A    }
1026145SN/A
1039594Snilay@cs.wisc.edu    for (vector<BasicIntLink*>::const_iterator i = int_links.begin();
1049594Snilay@cs.wisc.edu         i != int_links.end(); ++i) {
1058257SBrad.Beckmann@amd.com        BasicIntLink *int_link = (*i);
1068257SBrad.Beckmann@amd.com        BasicRouter *router_a = int_link->params()->node_a;
1078257SBrad.Beckmann@amd.com        BasicRouter *router_b = int_link->params()->node_b;
1086881SN/A
1098257SBrad.Beckmann@amd.com        // Store the IntLink pointers for later
1108257SBrad.Beckmann@amd.com        m_int_link_vector.push_back(int_link);
1118257SBrad.Beckmann@amd.com
1128257SBrad.Beckmann@amd.com        int a = router_a->params()->router_id + 2*m_nodes;
1138257SBrad.Beckmann@amd.com        int b = router_b->params()->router_id + 2*m_nodes;
1148257SBrad.Beckmann@amd.com
1158257SBrad.Beckmann@amd.com        // create the internal uni-directional links in both directions
1168257SBrad.Beckmann@amd.com        //   the first direction is marked: In
1178257SBrad.Beckmann@amd.com        addLink(a, b, int_link, LinkDirection_In);
1188257SBrad.Beckmann@amd.com        //   the second direction is marked: Out
1198257SBrad.Beckmann@amd.com        addLink(b, a, int_link, LinkDirection_Out);
1207054SN/A    }
1216145SN/A}
1226145SN/A
1238257SBrad.Beckmann@amd.comvoid
1249799Snilay@cs.wisc.eduTopology::createLinks(Network *net)
1257054SN/A{
1267054SN/A    // Find maximum switchID
1277054SN/A    SwitchID max_switch_id = 0;
1288257SBrad.Beckmann@amd.com    for (LinkMap::const_iterator i = m_link_map.begin();
1298257SBrad.Beckmann@amd.com         i != m_link_map.end(); ++i) {
1308257SBrad.Beckmann@amd.com        std::pair<int, int> src_dest = (*i).first;
1318257SBrad.Beckmann@amd.com        max_switch_id = max(max_switch_id, src_dest.first);
1328257SBrad.Beckmann@amd.com        max_switch_id = max(max_switch_id, src_dest.second);
1337054SN/A    }
1346881SN/A
1358257SBrad.Beckmann@amd.com    // Initialize weight, latency, and inter switched vectors
1367054SN/A    Matrix topology_weights;
1377054SN/A    int num_switches = max_switch_id+1;
1387454SN/A    topology_weights.resize(num_switches);
1397454SN/A    m_component_latencies.resize(num_switches);
1407454SN/A    m_component_inter_switches.resize(num_switches);
1417054SN/A
1427054SN/A    for (int i = 0; i < topology_weights.size(); i++) {
1437454SN/A        topology_weights[i].resize(num_switches);
1447454SN/A        m_component_latencies[i].resize(num_switches);
1457454SN/A        m_component_inter_switches[i].resize(num_switches);
1467054SN/A
1477054SN/A        for (int j = 0; j < topology_weights[i].size(); j++) {
1487054SN/A            topology_weights[i][j] = INFINITE_LATENCY;
1497054SN/A
1507054SN/A            // initialize to invalid values
1517054SN/A            m_component_latencies[i][j] = -1;
1527054SN/A
1537054SN/A            // initially assume direct connections / no intermediate
1547054SN/A            // switches between components
1557054SN/A            m_component_inter_switches[i][j] = 0;
1567054SN/A        }
1576145SN/A    }
1586145SN/A
1597054SN/A    // Set identity weights to zero
1607054SN/A    for (int i = 0; i < topology_weights.size(); i++) {
1617054SN/A        topology_weights[i][i] = 0;
1627054SN/A    }
1636145SN/A
1647054SN/A    // Fill in the topology weights and bandwidth multipliers
1658257SBrad.Beckmann@amd.com    for (LinkMap::const_iterator i = m_link_map.begin();
1668257SBrad.Beckmann@amd.com         i != m_link_map.end(); ++i) {
1678257SBrad.Beckmann@amd.com        std::pair<int, int> src_dest = (*i).first;
1688257SBrad.Beckmann@amd.com        BasicLink* link = (*i).second.link;
1698257SBrad.Beckmann@amd.com        int src = src_dest.first;
1708257SBrad.Beckmann@amd.com        int dst = src_dest.second;
1718257SBrad.Beckmann@amd.com        m_component_latencies[src][dst] = link->m_latency;
1728257SBrad.Beckmann@amd.com        topology_weights[src][dst] = link->m_weight;
1737054SN/A    }
1748257SBrad.Beckmann@amd.com
1757054SN/A    // Walk topology and hookup the links
1767054SN/A    Matrix dist = shortest_path(topology_weights, m_component_latencies,
1777054SN/A        m_component_inter_switches);
1787054SN/A    for (int i = 0; i < topology_weights.size(); i++) {
1797054SN/A        for (int j = 0; j < topology_weights[i].size(); j++) {
1807054SN/A            int weight = topology_weights[i][j];
1817054SN/A            if (weight > 0 && weight != INFINITE_LATENCY) {
1829799Snilay@cs.wisc.edu                NetDest destination_set =
1839799Snilay@cs.wisc.edu                        shortest_path_to_node(i, j, topology_weights, dist);
1849799Snilay@cs.wisc.edu                makeLink(net, i, j, destination_set);
1857054SN/A            }
1867054SN/A        }
1876895SN/A    }
1886895SN/A}
1896895SN/A
1907054SN/Avoid
1918257SBrad.Beckmann@amd.comTopology::addLink(SwitchID src, SwitchID dest, BasicLink* link,
1928257SBrad.Beckmann@amd.com                  LinkDirection dir)
1937054SN/A{
1947832SN/A    assert(src <= m_number_of_switches+m_nodes+m_nodes);
1957832SN/A    assert(dest <= m_number_of_switches+m_nodes+m_nodes);
1968257SBrad.Beckmann@amd.com
1978257SBrad.Beckmann@amd.com    std::pair<int, int> src_dest_pair;
1988257SBrad.Beckmann@amd.com    LinkEntry link_entry;
1998257SBrad.Beckmann@amd.com
2008257SBrad.Beckmann@amd.com    src_dest_pair.first = src;
2018257SBrad.Beckmann@amd.com    src_dest_pair.second = dest;
2028257SBrad.Beckmann@amd.com    link_entry.direction = dir;
2038257SBrad.Beckmann@amd.com    link_entry.link = link;
2048257SBrad.Beckmann@amd.com    m_link_map[src_dest_pair] = link_entry;
2057054SN/A}
2067054SN/A
2077054SN/Avoid
2087054SN/ATopology::makeLink(Network *net, SwitchID src, SwitchID dest,
2099799Snilay@cs.wisc.edu                   const NetDest& routing_table_entry)
2107054SN/A{
2117054SN/A    // Make sure we're not trying to connect two end-point nodes
2127054SN/A    // directly together
2137054SN/A    assert(src >= 2 * m_nodes || dest >= 2 * m_nodes);
2147054SN/A
2158257SBrad.Beckmann@amd.com    std::pair<int, int> src_dest;
2168257SBrad.Beckmann@amd.com    LinkEntry link_entry;
2178257SBrad.Beckmann@amd.com
2187054SN/A    if (src < m_nodes) {
2198257SBrad.Beckmann@amd.com        src_dest.first = src;
2208257SBrad.Beckmann@amd.com        src_dest.second = dest;
2218257SBrad.Beckmann@amd.com        link_entry = m_link_map[src_dest];
2228257SBrad.Beckmann@amd.com        net->makeInLink(src, dest - (2 * m_nodes), link_entry.link,
2239799Snilay@cs.wisc.edu                        link_entry.direction, routing_table_entry);
2247054SN/A    } else if (dest < 2*m_nodes) {
2257054SN/A        assert(dest >= m_nodes);
2268257SBrad.Beckmann@amd.com        NodeID node = dest - m_nodes;
2278257SBrad.Beckmann@amd.com        src_dest.first = src;
2288257SBrad.Beckmann@amd.com        src_dest.second = dest;
2298257SBrad.Beckmann@amd.com        link_entry = m_link_map[src_dest];
2308257SBrad.Beckmann@amd.com        net->makeOutLink(src - (2 * m_nodes), node, link_entry.link,
2319799Snilay@cs.wisc.edu                         link_entry.direction, routing_table_entry);
2327054SN/A    } else {
2338257SBrad.Beckmann@amd.com        assert((src >= 2 * m_nodes) && (dest >= 2 * m_nodes));
2348257SBrad.Beckmann@amd.com        src_dest.first = src;
2358257SBrad.Beckmann@amd.com        src_dest.second = dest;
2368257SBrad.Beckmann@amd.com        link_entry = m_link_map[src_dest];
2378257SBrad.Beckmann@amd.com        net->makeInternalLink(src - (2 * m_nodes), dest - (2 * m_nodes),
2388257SBrad.Beckmann@amd.com                              link_entry.link, link_entry.direction,
2399799Snilay@cs.wisc.edu                              routing_table_entry);
2407054SN/A    }
2417054SN/A}
2427054SN/A
2436145SN/A// The following all-pairs shortest path algorithm is based on the
2446145SN/A// discussion from Cormen et al., Chapter 26.1.
2457054SN/Avoid
2467054SN/Aextend_shortest_path(Matrix& current_dist, Matrix& latencies,
2477054SN/A    Matrix& inter_switches)
2487054SN/A{
2497054SN/A    bool change = true;
2507054SN/A    int nodes = current_dist.size();
2516145SN/A
2527054SN/A    while (change) {
2537054SN/A        change = false;
2547054SN/A        for (int i = 0; i < nodes; i++) {
2557054SN/A            for (int j = 0; j < nodes; j++) {
2567054SN/A                int minimum = current_dist[i][j];
2577054SN/A                int previous_minimum = minimum;
2587054SN/A                int intermediate_switch = -1;
2597054SN/A                for (int k = 0; k < nodes; k++) {
2607054SN/A                    minimum = min(minimum,
2617054SN/A                        current_dist[i][k] + current_dist[k][j]);
2627054SN/A                    if (previous_minimum != minimum) {
2637054SN/A                        intermediate_switch = k;
2647054SN/A                        inter_switches[i][j] =
2657054SN/A                            inter_switches[i][k] +
2667054SN/A                            inter_switches[k][j] + 1;
2677054SN/A                    }
2687054SN/A                    previous_minimum = minimum;
2697054SN/A                }
2707054SN/A                if (current_dist[i][j] != minimum) {
2717054SN/A                    change = true;
2727054SN/A                    current_dist[i][j] = minimum;
2737054SN/A                    assert(intermediate_switch >= 0);
2747054SN/A                    assert(intermediate_switch < latencies[i].size());
2757054SN/A                    latencies[i][j] = latencies[i][intermediate_switch] +
2767054SN/A                        latencies[intermediate_switch][j];
2777054SN/A                }
2787054SN/A            }
2796145SN/A        }
2806145SN/A    }
2816145SN/A}
2826145SN/A
2837054SN/AMatrix
2847054SN/Ashortest_path(const Matrix& weights, Matrix& latencies, Matrix& inter_switches)
2856145SN/A{
2867054SN/A    Matrix dist = weights;
2877054SN/A    extend_shortest_path(dist, latencies, inter_switches);
2887054SN/A    return dist;
2896145SN/A}
2906145SN/A
2917054SN/Abool
2927054SN/Alink_is_shortest_path_to_node(SwitchID src, SwitchID next, SwitchID final,
2937054SN/A    const Matrix& weights, const Matrix& dist)
2946145SN/A{
2957054SN/A    return weights[src][next] + dist[next][final] == dist[src][final];
2966145SN/A}
2976145SN/A
2987054SN/ANetDest
2997054SN/Ashortest_path_to_node(SwitchID src, SwitchID next, const Matrix& weights,
3007054SN/A    const Matrix& dist)
3016145SN/A{
3027054SN/A    NetDest result;
3037054SN/A    int d = 0;
3047054SN/A    int machines;
3057054SN/A    int max_machines;
3066145SN/A
3077054SN/A    machines = MachineType_NUM;
3087054SN/A    max_machines = MachineType_base_number(MachineType_NUM);
3096145SN/A
3107054SN/A    for (int m = 0; m < machines; m++) {
3117054SN/A        for (int i = 0; i < MachineType_base_count((MachineType)m); i++) {
3127054SN/A            // we use "d+max_machines" below since the "destination"
3137054SN/A            // switches for the machines are numbered
3147054SN/A            // [MachineType_base_number(MachineType_NUM)...
3157054SN/A            //  2*MachineType_base_number(MachineType_NUM)-1] for the
3167054SN/A            // component network
3177054SN/A            if (link_is_shortest_path_to_node(src, next, d + max_machines,
3187054SN/A                    weights, dist)) {
3197054SN/A                MachineID mach = {(MachineType)m, i};
3207054SN/A                result.add(mach);
3217054SN/A            }
3227054SN/A            d++;
3237054SN/A        }
3246145SN/A    }
3256145SN/A
3267780SN/A    DPRINTF(RubyNetwork, "Returning shortest path\n"
3277780SN/A            "(src-(2*max_machines)): %d, (next-(2*max_machines)): %d, "
3287780SN/A            "src: %d, next: %d, result: %s\n",
3297780SN/A            (src-(2*max_machines)), (next-(2*max_machines)),
3307780SN/A            src, next, result);
3316145SN/A
3327054SN/A    return result;
3336145SN/A}
334