MessageBuffer.cc revision 10524:fff17530cef6
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <cassert>
30
31#include "base/cprintf.hh"
32#include "base/misc.hh"
33#include "base/random.hh"
34#include "base/stl_helpers.hh"
35#include "debug/RubyQueue.hh"
36#include "mem/ruby/network/MessageBuffer.hh"
37#include "mem/ruby/system/System.hh"
38
39using namespace std;
40using m5::stl_helpers::operator<<;
41
42MessageBuffer::MessageBuffer(const string &name)
43    : m_time_last_time_size_checked(0), m_time_last_time_enqueue(0),
44    m_time_last_time_pop(0), m_last_arrival_time(0)
45{
46    m_msg_counter = 0;
47    m_consumer = NULL;
48    m_sender = NULL;
49    m_receiver = NULL;
50
51    m_ordering_set = false;
52    m_strict_fifo = true;
53    m_max_size = 0;
54    m_randomization = true;
55    m_size_last_time_size_checked = 0;
56    m_size_at_cycle_start = 0;
57    m_msgs_this_cycle = 0;
58    m_not_avail_count = 0;
59    m_priority_rank = 0;
60    m_name = name;
61
62    m_stall_msg_map.clear();
63    m_input_link_id = 0;
64    m_vnet_id = 0;
65}
66
67unsigned int
68MessageBuffer::getSize()
69{
70    if (m_time_last_time_size_checked != m_receiver->curCycle()) {
71        m_time_last_time_size_checked = m_receiver->curCycle();
72        m_size_last_time_size_checked = m_prio_heap.size();
73    }
74
75    return m_size_last_time_size_checked;
76}
77
78bool
79MessageBuffer::areNSlotsAvailable(unsigned int n)
80{
81
82    // fast path when message buffers have infinite size
83    if (m_max_size == 0) {
84        return true;
85    }
86
87    // determine the correct size for the current cycle
88    // pop operations shouldn't effect the network's visible size
89    // until next cycle, but enqueue operations effect the visible
90    // size immediately
91    unsigned int current_size = 0;
92
93    if (m_time_last_time_pop < m_sender->clockEdge()) {
94        // no pops this cycle - heap size is correct
95        current_size = m_prio_heap.size();
96    } else {
97        if (m_time_last_time_enqueue < m_sender->curCycle()) {
98            // no enqueues this cycle - m_size_at_cycle_start is correct
99            current_size = m_size_at_cycle_start;
100        } else {
101            // both pops and enqueues occured this cycle - add new
102            // enqueued msgs to m_size_at_cycle_start
103            current_size = m_size_at_cycle_start + m_msgs_this_cycle;
104        }
105    }
106
107    // now compare the new size with our max size
108    if (current_size + n <= m_max_size) {
109        return true;
110    } else {
111        DPRINTF(RubyQueue, "n: %d, current_size: %d, heap size: %d, "
112                "m_max_size: %d\n",
113                n, current_size, m_prio_heap.size(), m_max_size);
114        m_not_avail_count++;
115        return false;
116    }
117}
118
119const Message*
120MessageBuffer::peek() const
121{
122    DPRINTF(RubyQueue, "Peeking at head of queue.\n");
123    assert(isReady());
124
125    const Message* msg_ptr = m_prio_heap.front().m_msgptr.get();
126    assert(msg_ptr);
127
128    DPRINTF(RubyQueue, "Message: %s\n", (*msg_ptr));
129    return msg_ptr;
130}
131
132// FIXME - move me somewhere else
133Cycles
134random_time()
135{
136    Cycles time(1);
137    time += Cycles(random_mt.random(0, 3));  // [0...3]
138    if (random_mt.random(0, 7) == 0) {  // 1 in 8 chance
139        time += Cycles(100 + random_mt.random(1, 15)); // 100 + [1...15]
140    }
141    return time;
142}
143
144void
145MessageBuffer::enqueue(MsgPtr message, Cycles delta)
146{
147    assert(m_ordering_set);
148
149    // record current time incase we have a pop that also adjusts my size
150    if (m_time_last_time_enqueue < m_sender->curCycle()) {
151        m_msgs_this_cycle = 0;  // first msg this cycle
152        m_time_last_time_enqueue = m_sender->curCycle();
153    }
154
155    m_msg_counter++;
156    m_msgs_this_cycle++;
157
158    // Calculate the arrival time of the message, that is, the first
159    // cycle the message can be dequeued.
160    assert(delta > 0);
161    Tick current_time = m_sender->clockEdge();
162    Tick arrival_time = 0;
163
164    if (!RubySystem::getRandomization() || !m_randomization) {
165        // No randomization
166        arrival_time = current_time + delta * m_sender->clockPeriod();
167    } else {
168        // Randomization - ignore delta
169        if (m_strict_fifo) {
170            if (m_last_arrival_time < current_time) {
171                m_last_arrival_time = current_time;
172            }
173            arrival_time = m_last_arrival_time +
174                           random_time() * m_sender->clockPeriod();
175        } else {
176            arrival_time = current_time +
177                           random_time() * m_sender->clockPeriod();
178        }
179    }
180
181    // Check the arrival time
182    assert(arrival_time > current_time);
183    if (m_strict_fifo) {
184        if (arrival_time < m_last_arrival_time) {
185            panic("FIFO ordering violated: %s name: %s current time: %d "
186                  "delta: %d arrival_time: %d last arrival_time: %d\n",
187                  *this, m_name, current_time,
188                  delta * m_sender->clockPeriod(),
189                  arrival_time, m_last_arrival_time);
190        }
191    }
192
193    // If running a cache trace, don't worry about the last arrival checks
194    if (!g_system_ptr->m_warmup_enabled) {
195        m_last_arrival_time = arrival_time;
196    }
197
198    // compute the delay cycles and set enqueue time
199    Message* msg_ptr = message.get();
200    assert(msg_ptr != NULL);
201
202    assert(m_sender->clockEdge() >= msg_ptr->getLastEnqueueTime() &&
203           "ensure we aren't dequeued early");
204
205    msg_ptr->updateDelayedTicks(m_sender->clockEdge());
206    msg_ptr->setLastEnqueueTime(arrival_time);
207
208    // Insert the message into the priority heap
209    MessageBufferNode thisNode(arrival_time, m_msg_counter, message);
210    m_prio_heap.push_back(thisNode);
211    push_heap(m_prio_heap.begin(), m_prio_heap.end(),
212        greater<MessageBufferNode>());
213
214    DPRINTF(RubyQueue, "Enqueue arrival_time: %lld, Message: %s\n",
215            arrival_time, *(message.get()));
216
217    // Schedule the wakeup
218    assert(m_consumer != NULL);
219    m_consumer->scheduleEventAbsolute(arrival_time);
220    m_consumer->storeEventInfo(m_vnet_id);
221}
222
223Cycles
224MessageBuffer::dequeue()
225{
226    DPRINTF(RubyQueue, "Popping\n");
227    assert(isReady());
228
229    // get MsgPtr of the message about to be dequeued
230    MsgPtr message = m_prio_heap.front().m_msgptr;
231
232    // get the delay cycles
233    message->updateDelayedTicks(m_receiver->clockEdge());
234    Cycles delayCycles =
235        m_receiver->ticksToCycles(message->getDelayedTicks());
236
237    // record previous size and time so the current buffer size isn't
238    // adjusted until next cycle
239    if (m_time_last_time_pop < m_receiver->clockEdge()) {
240        m_size_at_cycle_start = m_prio_heap.size();
241        m_time_last_time_pop = m_receiver->clockEdge();
242    }
243
244    pop_heap(m_prio_heap.begin(), m_prio_heap.end(),
245        greater<MessageBufferNode>());
246    m_prio_heap.pop_back();
247
248    return delayCycles;
249}
250
251void
252MessageBuffer::clear()
253{
254    m_prio_heap.clear();
255
256    m_msg_counter = 0;
257    m_time_last_time_enqueue = Cycles(0);
258    m_time_last_time_pop = 0;
259    m_size_at_cycle_start = 0;
260    m_msgs_this_cycle = 0;
261}
262
263void
264MessageBuffer::recycle()
265{
266    DPRINTF(RubyQueue, "Recycling.\n");
267    assert(isReady());
268    MessageBufferNode node = m_prio_heap.front();
269    pop_heap(m_prio_heap.begin(), m_prio_heap.end(),
270        greater<MessageBufferNode>());
271
272    node.m_time = m_receiver->clockEdge(m_recycle_latency);
273    m_prio_heap.back() = node;
274    push_heap(m_prio_heap.begin(), m_prio_heap.end(),
275        greater<MessageBufferNode>());
276    m_consumer->
277        scheduleEventAbsolute(m_receiver->clockEdge(m_recycle_latency));
278}
279
280void
281MessageBuffer::reanalyzeList(list<MsgPtr> &lt, Tick nextTick)
282{
283    while(!lt.empty()) {
284        m_msg_counter++;
285        MessageBufferNode msgNode(nextTick, m_msg_counter, lt.front());
286
287        m_prio_heap.push_back(msgNode);
288        push_heap(m_prio_heap.begin(), m_prio_heap.end(),
289                  greater<MessageBufferNode>());
290
291        m_consumer->scheduleEventAbsolute(nextTick);
292        lt.pop_front();
293    }
294}
295
296void
297MessageBuffer::reanalyzeMessages(const Address& addr)
298{
299    DPRINTF(RubyQueue, "ReanalyzeMessages\n");
300    assert(m_stall_msg_map.count(addr) > 0);
301    Tick nextTick = m_receiver->clockEdge(Cycles(1));
302
303    //
304    // Put all stalled messages associated with this address back on the
305    // prio heap
306    //
307    reanalyzeList(m_stall_msg_map[addr], nextTick);
308    m_stall_msg_map.erase(addr);
309}
310
311void
312MessageBuffer::reanalyzeAllMessages()
313{
314    DPRINTF(RubyQueue, "ReanalyzeAllMessages\n");
315    Tick nextTick = m_receiver->clockEdge(Cycles(1));
316
317    //
318    // Put all stalled messages associated with this address back on the
319    // prio heap
320    //
321    for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
322         map_iter != m_stall_msg_map.end(); ++map_iter) {
323        reanalyzeList(map_iter->second, nextTick);
324    }
325    m_stall_msg_map.clear();
326}
327
328void
329MessageBuffer::stallMessage(const Address& addr)
330{
331    DPRINTF(RubyQueue, "Stalling due to %s\n", addr);
332    assert(isReady());
333    assert(addr.getOffset() == 0);
334    MsgPtr message = m_prio_heap.front().m_msgptr;
335
336    dequeue();
337
338    //
339    // Note: no event is scheduled to analyze the map at a later time.
340    // Instead the controller is responsible to call reanalyzeMessages when
341    // these addresses change state.
342    //
343    (m_stall_msg_map[addr]).push_back(message);
344}
345
346void
347MessageBuffer::print(ostream& out) const
348{
349    ccprintf(out, "[MessageBuffer: ");
350    if (m_consumer != NULL) {
351        ccprintf(out, " consumer-yes ");
352    }
353
354    vector<MessageBufferNode> copy(m_prio_heap);
355    sort_heap(copy.begin(), copy.end(), greater<MessageBufferNode>());
356    ccprintf(out, "%s] %s", copy, m_name);
357}
358
359bool
360MessageBuffer::isReady() const
361{
362    return ((m_prio_heap.size() > 0) &&
363            (m_prio_heap.front().m_time <= m_receiver->clockEdge()));
364}
365
366bool
367MessageBuffer::functionalRead(Packet *pkt)
368{
369    // Check the priority heap and read any messages that may
370    // correspond to the address in the packet.
371    for (unsigned int i = 0; i < m_prio_heap.size(); ++i) {
372        Message *msg = m_prio_heap[i].m_msgptr.get();
373        if (msg->functionalRead(pkt)) return true;
374    }
375
376    // Read the messages in the stall queue that correspond
377    // to the address in the packet.
378    for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
379         map_iter != m_stall_msg_map.end();
380         ++map_iter) {
381
382        for (std::list<MsgPtr>::iterator it = (map_iter->second).begin();
383            it != (map_iter->second).end(); ++it) {
384
385            Message *msg = (*it).get();
386            if (msg->functionalRead(pkt)) return true;
387        }
388    }
389    return false;
390}
391
392uint32_t
393MessageBuffer::functionalWrite(Packet *pkt)
394{
395    uint32_t num_functional_writes = 0;
396
397    // Check the priority heap and write any messages that may
398    // correspond to the address in the packet.
399    for (unsigned int i = 0; i < m_prio_heap.size(); ++i) {
400        Message *msg = m_prio_heap[i].m_msgptr.get();
401        if (msg->functionalWrite(pkt)) {
402            num_functional_writes++;
403        }
404    }
405
406    // Check the stall queue and write any messages that may
407    // correspond to the address in the packet.
408    for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
409         map_iter != m_stall_msg_map.end();
410         ++map_iter) {
411
412        for (std::list<MsgPtr>::iterator it = (map_iter->second).begin();
413            it != (map_iter->second).end(); ++it) {
414
415            Message *msg = (*it).get();
416            if (msg->functionalWrite(pkt)) {
417                num_functional_writes++;
418            }
419        }
420    }
421
422    return num_functional_writes;
423}
424