MessageBuffer.cc revision 10301:44839e8febbd
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <cassert>
30
31#include "base/cprintf.hh"
32#include "base/misc.hh"
33#include "base/stl_helpers.hh"
34#include "debug/RubyQueue.hh"
35#include "mem/ruby/network/MessageBuffer.hh"
36#include "mem/ruby/system/System.hh"
37
38using namespace std;
39using m5::stl_helpers::operator<<;
40
41MessageBuffer::MessageBuffer(const string &name)
42    : m_time_last_time_size_checked(0), m_time_last_time_enqueue(0),
43    m_time_last_time_pop(0), m_last_arrival_time(0)
44{
45    m_msg_counter = 0;
46    m_consumer = NULL;
47    m_sender = NULL;
48    m_receiver = NULL;
49
50    m_ordering_set = false;
51    m_strict_fifo = true;
52    m_max_size = 0;
53    m_randomization = true;
54    m_size_last_time_size_checked = 0;
55    m_size_at_cycle_start = 0;
56    m_msgs_this_cycle = 0;
57    m_not_avail_count = 0;
58    m_priority_rank = 0;
59    m_name = name;
60
61    m_stall_msg_map.clear();
62    m_input_link_id = 0;
63    m_vnet_id = 0;
64}
65
66unsigned int
67MessageBuffer::getSize()
68{
69    if (m_time_last_time_size_checked != m_receiver->curCycle()) {
70        m_time_last_time_size_checked = m_receiver->curCycle();
71        m_size_last_time_size_checked = m_prio_heap.size();
72    }
73
74    return m_size_last_time_size_checked;
75}
76
77bool
78MessageBuffer::areNSlotsAvailable(unsigned int n)
79{
80
81    // fast path when message buffers have infinite size
82    if (m_max_size == 0) {
83        return true;
84    }
85
86    // determine the correct size for the current cycle
87    // pop operations shouldn't effect the network's visible size
88    // until next cycle, but enqueue operations effect the visible
89    // size immediately
90    unsigned int current_size = 0;
91
92    if (m_time_last_time_pop < m_sender->clockEdge()) {
93        // no pops this cycle - heap size is correct
94        current_size = m_prio_heap.size();
95    } else {
96        if (m_time_last_time_enqueue < m_sender->curCycle()) {
97            // no enqueues this cycle - m_size_at_cycle_start is correct
98            current_size = m_size_at_cycle_start;
99        } else {
100            // both pops and enqueues occured this cycle - add new
101            // enqueued msgs to m_size_at_cycle_start
102            current_size = m_size_at_cycle_start + m_msgs_this_cycle;
103        }
104    }
105
106    // now compare the new size with our max size
107    if (current_size + n <= m_max_size) {
108        return true;
109    } else {
110        DPRINTF(RubyQueue, "n: %d, current_size: %d, heap size: %d, "
111                "m_max_size: %d\n",
112                n, current_size, m_prio_heap.size(), m_max_size);
113        m_not_avail_count++;
114        return false;
115    }
116}
117
118const Message*
119MessageBuffer::peek() const
120{
121    DPRINTF(RubyQueue, "Peeking at head of queue.\n");
122    assert(isReady());
123
124    const Message* msg_ptr = m_prio_heap.front().m_msgptr.get();
125    assert(msg_ptr);
126
127    DPRINTF(RubyQueue, "Message: %s\n", (*msg_ptr));
128    return msg_ptr;
129}
130
131// FIXME - move me somewhere else
132Cycles
133random_time()
134{
135    Cycles time(1);
136    time += Cycles(random() & 0x3);  // [0...3]
137    if ((random() & 0x7) == 0) {  // 1 in 8 chance
138        time += Cycles(100 + (random() % 0xf)); // 100 + [1...15]
139    }
140    return time;
141}
142
143void
144MessageBuffer::enqueue(MsgPtr message, Cycles delta)
145{
146    m_msg_counter++;
147
148    // record current time incase we have a pop that also adjusts my size
149    if (m_time_last_time_enqueue < m_sender->curCycle()) {
150        m_msgs_this_cycle = 0;  // first msg this cycle
151        m_time_last_time_enqueue = m_sender->curCycle();
152    }
153    m_msgs_this_cycle++;
154
155    assert(m_ordering_set);
156
157    // Calculate the arrival time of the message, that is, the first
158    // cycle the message can be dequeued.
159    assert(delta > 0);
160    Tick current_time = m_sender->clockEdge();
161    Tick arrival_time = 0;
162
163    if (!RubySystem::getRandomization() || !m_randomization) {
164        // No randomization
165        arrival_time = current_time + delta * m_sender->clockPeriod();
166    } else {
167        // Randomization - ignore delta
168        if (m_strict_fifo) {
169            if (m_last_arrival_time < current_time) {
170                m_last_arrival_time = current_time;
171            }
172            arrival_time = m_last_arrival_time +
173                           random_time() * m_sender->clockPeriod();
174        } else {
175            arrival_time = current_time +
176                           random_time() * m_sender->clockPeriod();
177        }
178    }
179
180    // Check the arrival time
181    assert(arrival_time > current_time);
182    if (m_strict_fifo) {
183        if (arrival_time < m_last_arrival_time) {
184            panic("FIFO ordering violated: %s name: %s current time: %d "
185                  "delta: %d arrival_time: %d last arrival_time: %d\n",
186                  *this, m_name, current_time,
187                  delta * m_sender->clockPeriod(),
188                  arrival_time, m_last_arrival_time);
189        }
190    }
191
192    // If running a cache trace, don't worry about the last arrival checks
193    if (!g_system_ptr->m_warmup_enabled) {
194        m_last_arrival_time = arrival_time;
195    }
196
197    // compute the delay cycles and set enqueue time
198    Message* msg_ptr = message.get();
199    assert(msg_ptr != NULL);
200
201    assert(m_sender->clockEdge() >= msg_ptr->getLastEnqueueTime() &&
202           "ensure we aren't dequeued early");
203
204    msg_ptr->updateDelayedTicks(m_sender->clockEdge());
205    msg_ptr->setLastEnqueueTime(arrival_time);
206
207    // Insert the message into the priority heap
208    MessageBufferNode thisNode(arrival_time, m_msg_counter, message);
209    m_prio_heap.push_back(thisNode);
210    push_heap(m_prio_heap.begin(), m_prio_heap.end(),
211        greater<MessageBufferNode>());
212
213    DPRINTF(RubyQueue, "Enqueue arrival_time: %lld, Message: %s\n",
214            arrival_time, *(message.get()));
215
216    // Schedule the wakeup
217    assert(m_consumer != NULL);
218    m_consumer->scheduleEventAbsolute(arrival_time);
219    m_consumer->storeEventInfo(m_vnet_id);
220}
221
222Cycles
223MessageBuffer::dequeue()
224{
225    DPRINTF(RubyQueue, "Popping\n");
226    assert(isReady());
227
228    // get MsgPtr of the message about to be dequeued
229    MsgPtr message = m_prio_heap.front().m_msgptr;
230
231    // get the delay cycles
232    message->updateDelayedTicks(m_receiver->clockEdge());
233    Cycles delayCycles =
234        m_receiver->ticksToCycles(message->getDelayedTicks());
235
236    // record previous size and time so the current buffer size isn't
237    // adjusted until next cycle
238    if (m_time_last_time_pop < m_receiver->clockEdge()) {
239        m_size_at_cycle_start = m_prio_heap.size();
240        m_time_last_time_pop = m_receiver->clockEdge();
241    }
242
243    pop_heap(m_prio_heap.begin(), m_prio_heap.end(),
244        greater<MessageBufferNode>());
245    m_prio_heap.pop_back();
246
247    return delayCycles;
248}
249
250void
251MessageBuffer::clear()
252{
253    m_prio_heap.clear();
254
255    m_msg_counter = 0;
256    m_time_last_time_enqueue = Cycles(0);
257    m_time_last_time_pop = 0;
258    m_size_at_cycle_start = 0;
259    m_msgs_this_cycle = 0;
260}
261
262void
263MessageBuffer::recycle()
264{
265    DPRINTF(RubyQueue, "Recycling.\n");
266    assert(isReady());
267    MessageBufferNode node = m_prio_heap.front();
268    pop_heap(m_prio_heap.begin(), m_prio_heap.end(),
269        greater<MessageBufferNode>());
270
271    node.m_time = m_receiver->clockEdge(m_recycle_latency);
272    m_prio_heap.back() = node;
273    push_heap(m_prio_heap.begin(), m_prio_heap.end(),
274        greater<MessageBufferNode>());
275    m_consumer->
276        scheduleEventAbsolute(m_receiver->clockEdge(m_recycle_latency));
277}
278
279void
280MessageBuffer::reanalyzeList(list<MsgPtr> &lt, Tick nextTick)
281{
282    while(!lt.empty()) {
283        m_msg_counter++;
284        MessageBufferNode msgNode(nextTick, m_msg_counter, lt.front());
285
286        m_prio_heap.push_back(msgNode);
287        push_heap(m_prio_heap.begin(), m_prio_heap.end(),
288                  greater<MessageBufferNode>());
289
290        m_consumer->scheduleEventAbsolute(nextTick);
291        lt.pop_front();
292    }
293}
294
295void
296MessageBuffer::reanalyzeMessages(const Address& addr)
297{
298    DPRINTF(RubyQueue, "ReanalyzeMessages\n");
299    assert(m_stall_msg_map.count(addr) > 0);
300    Tick nextTick = m_receiver->clockEdge(Cycles(1));
301
302    //
303    // Put all stalled messages associated with this address back on the
304    // prio heap
305    //
306    reanalyzeList(m_stall_msg_map[addr], nextTick);
307    m_stall_msg_map.erase(addr);
308}
309
310void
311MessageBuffer::reanalyzeAllMessages()
312{
313    DPRINTF(RubyQueue, "ReanalyzeAllMessages\n");
314    Tick nextTick = m_receiver->clockEdge(Cycles(1));
315
316    //
317    // Put all stalled messages associated with this address back on the
318    // prio heap
319    //
320    for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
321         map_iter != m_stall_msg_map.end(); ++map_iter) {
322        reanalyzeList(map_iter->second, nextTick);
323    }
324    m_stall_msg_map.clear();
325}
326
327void
328MessageBuffer::stallMessage(const Address& addr)
329{
330    DPRINTF(RubyQueue, "Stalling due to %s\n", addr);
331    assert(isReady());
332    assert(addr.getOffset() == 0);
333    MsgPtr message = m_prio_heap.front().m_msgptr;
334
335    dequeue();
336
337    //
338    // Note: no event is scheduled to analyze the map at a later time.
339    // Instead the controller is responsible to call reanalyzeMessages when
340    // these addresses change state.
341    //
342    (m_stall_msg_map[addr]).push_back(message);
343}
344
345void
346MessageBuffer::print(ostream& out) const
347{
348    ccprintf(out, "[MessageBuffer: ");
349    if (m_consumer != NULL) {
350        ccprintf(out, " consumer-yes ");
351    }
352
353    vector<MessageBufferNode> copy(m_prio_heap);
354    sort_heap(copy.begin(), copy.end(), greater<MessageBufferNode>());
355    ccprintf(out, "%s] %s", copy, m_name);
356}
357
358bool
359MessageBuffer::isReady() const
360{
361    return ((m_prio_heap.size() > 0) &&
362            (m_prio_heap.front().m_time <= m_receiver->clockEdge()));
363}
364
365bool
366MessageBuffer::functionalRead(Packet *pkt)
367{
368    // Check the priority heap and read any messages that may
369    // correspond to the address in the packet.
370    for (unsigned int i = 0; i < m_prio_heap.size(); ++i) {
371        Message *msg = m_prio_heap[i].m_msgptr.get();
372        if (msg->functionalRead(pkt)) return true;
373    }
374
375    // Read the messages in the stall queue that correspond
376    // to the address in the packet.
377    for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
378         map_iter != m_stall_msg_map.end();
379         ++map_iter) {
380
381        for (std::list<MsgPtr>::iterator it = (map_iter->second).begin();
382            it != (map_iter->second).end(); ++it) {
383
384            Message *msg = (*it).get();
385            if (msg->functionalRead(pkt)) return true;
386        }
387    }
388    return false;
389}
390
391uint32_t
392MessageBuffer::functionalWrite(Packet *pkt)
393{
394    uint32_t num_functional_writes = 0;
395
396    // Check the priority heap and write any messages that may
397    // correspond to the address in the packet.
398    for (unsigned int i = 0; i < m_prio_heap.size(); ++i) {
399        Message *msg = m_prio_heap[i].m_msgptr.get();
400        if (msg->functionalWrite(pkt)) {
401            num_functional_writes++;
402        }
403    }
404
405    // Check the stall queue and write any messages that may
406    // correspond to the address in the packet.
407    for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
408         map_iter != m_stall_msg_map.end();
409         ++map_iter) {
410
411        for (std::list<MsgPtr>::iterator it = (map_iter->second).begin();
412            it != (map_iter->second).end(); ++it) {
413
414            Message *msg = (*it).get();
415            if (msg->functionalWrite(pkt)) {
416                num_functional_writes++;
417            }
418        }
419    }
420
421    return num_functional_writes;
422}
423