Histogram.cc revision 6154
1 2/* 3 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions are 8 * met: redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer; 10 * redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution; 13 * neither the name of the copyright holders nor the names of its 14 * contributors may be used to endorse or promote products derived from 15 * this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30/* 31 * $Id$ 32 * 33 */ 34 35#include "mem/ruby/common/Histogram.hh" 36 37Histogram::Histogram(int binsize, int bins) 38{ 39 m_binsize = binsize; 40 m_bins = bins; 41 clear(); 42} 43 44Histogram::~Histogram() 45{ 46} 47 48void Histogram::clear(int binsize, int bins) 49{ 50 m_binsize = binsize; 51 clear(bins); 52} 53 54void Histogram::clear(int bins) 55{ 56 m_bins = bins; 57 m_largest_bin = 0; 58 m_max = 0; 59 m_data.setSize(m_bins); 60 for (int i = 0; i < m_bins; i++) { 61 m_data[i] = 0; 62 } 63 m_count = 0; 64 m_max = 0; 65 66 m_sumSamples = 0; 67 m_sumSquaredSamples = 0; 68} 69 70 71void Histogram::add(int64 value) 72{ 73 assert(value >= 0); 74 m_max = max(m_max, value); 75 m_count++; 76 77 m_sumSamples += value; 78 m_sumSquaredSamples += (value*value); 79 80 int index; 81 if (m_binsize == -1) { 82 // This is a log base 2 histogram 83 if (value == 0) { 84 index = 0; 85 } else { 86 index = int(log(double(value))/log(2.0))+1; 87 if (index >= m_data.size()) { 88 index = m_data.size()-1; 89 } 90 } 91 } else { 92 // This is a linear histogram 93 while (m_max >= (m_bins * m_binsize)) { 94 for (int i = 0; i < m_bins/2; i++) { 95 m_data[i] = m_data[i*2] + m_data[i*2 + 1]; 96 } 97 for (int i = m_bins/2; i < m_bins; i++) { 98 m_data[i] = 0; 99 } 100 m_binsize *= 2; 101 } 102 index = value/m_binsize; 103 } 104 assert(index >= 0); 105 m_data[index]++; 106 m_largest_bin = max(m_largest_bin, index); 107} 108 109void Histogram::add(const Histogram& hist) 110{ 111 assert(hist.getBins() == m_bins); 112 assert(hist.getBinSize() == -1); // assume log histogram 113 assert(m_binsize == -1); 114 115 for (int j = 0; j < hist.getData(0); j++) { 116 add(0); 117 } 118 119 for (int i = 1; i < m_bins; i++) { 120 for (int j = 0; j < hist.getData(i); j++) { 121 add(1<<(i-1)); // account for the + 1 index 122 } 123 } 124 125} 126 127// Computation of standard deviation of samples a1, a2, ... aN 128// variance = [SUM {ai^2} - (SUM {ai})^2/N]/(N-1) 129// std deviation equals square root of variance 130double Histogram::getStandardDeviation() const 131{ 132 double variance; 133 if(m_count > 1){ 134 variance = (double)(m_sumSquaredSamples - m_sumSamples*m_sumSamples/m_count)/(m_count - 1); 135 } else { 136 return 0; 137 } 138 return sqrt(variance); 139} 140 141void Histogram::print(ostream& out) const 142{ 143 printWithMultiplier(out, 1.0); 144} 145 146void Histogram::printPercent(ostream& out) const 147{ 148 if (m_count == 0) { 149 printWithMultiplier(out, 0.0); 150 } else { 151 printWithMultiplier(out, 100.0/double(m_count)); 152 } 153} 154 155void Histogram::printWithMultiplier(ostream& out, double multiplier) const 156{ 157 if (m_binsize == -1) { 158 out << "[binsize: log2 "; 159 } else { 160 out << "[binsize: " << m_binsize << " "; 161 } 162 out << "max: " << m_max << " "; 163 out << "count: " << m_count << " "; 164 // out << "total: " << m_sumSamples << " "; 165 if (m_count == 0) { 166 out << "average: NaN |"; 167 out << "standard deviation: NaN |"; 168 } else { 169 out << "average: " << setw(5) << ((double) m_sumSamples)/m_count << " | "; 170 out << "standard deviation: " << getStandardDeviation() << " |"; 171 } 172 for (int i = 0; i < m_bins && i <= m_largest_bin; i++) { 173 if (multiplier == 1.0) { 174 out << " " << m_data[i]; 175 } else { 176 out << " " << double(m_data[i]) * multiplier; 177 } 178 } 179 out << " ]"; 180} 181 182bool node_less_then_eq(const Histogram* n1, const Histogram* n2) 183{ 184 return (n1->size() > n2->size()); 185} 186