request.hh revision 12766:1c347e60c7fd
1/*
2 * Copyright (c) 2012-2013,2017 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 *          Steve Reinhardt
43 *          Ali Saidi
44 */
45
46/**
47 * @file
48 * Declaration of a request, the overall memory request consisting of
49 the parts of the request that are persistent throughout the transaction.
50 */
51
52#ifndef __MEM_REQUEST_HH__
53#define __MEM_REQUEST_HH__
54
55#include <cassert>
56#include <climits>
57
58#include "base/flags.hh"
59#include "base/logging.hh"
60#include "base/types.hh"
61#include "cpu/inst_seq.hh"
62#include "sim/core.hh"
63
64/**
65 * Special TaskIds that are used for per-context-switch stats dumps
66 * and Cache Occupancy. Having too many tasks seems to be a problem
67 * with vector stats. 1024 seems to be a reasonable number that
68 * doesn't cause a problem with stats and is large enough to realistic
69 * benchmarks (Linux/Android boot, BBench, etc.)
70 */
71
72namespace ContextSwitchTaskId {
73    enum TaskId {
74        MaxNormalTaskId = 1021, /* Maximum number of normal tasks */
75        Prefetcher = 1022, /* For cache lines brought in by prefetcher */
76        DMA = 1023, /* Mostly Table Walker */
77        Unknown = 1024,
78        NumTaskId
79    };
80}
81
82class Request;
83
84typedef std::shared_ptr<Request> RequestPtr;
85typedef uint16_t MasterID;
86
87class Request
88{
89  public:
90    typedef uint64_t FlagsType;
91    typedef uint8_t ArchFlagsType;
92    typedef ::Flags<FlagsType> Flags;
93
94    enum : FlagsType {
95        /**
96         * Architecture specific flags.
97         *
98         * These bits int the flag field are reserved for
99         * architecture-specific code. For example, SPARC uses them to
100         * represent ASIs.
101         */
102        ARCH_BITS                   = 0x000000FF,
103        /** The request was an instruction fetch. */
104        INST_FETCH                  = 0x00000100,
105        /** The virtual address is also the physical address. */
106        PHYSICAL                    = 0x00000200,
107        /**
108         * The request is to an uncacheable address.
109         *
110         * @note Uncacheable accesses may be reordered by CPU models. The
111         * STRICT_ORDER flag should be set if such reordering is
112         * undesirable.
113         */
114        UNCACHEABLE                = 0x00000400,
115        /**
116         * The request is required to be strictly ordered by <i>CPU
117         * models</i> and is non-speculative.
118         *
119         * A strictly ordered request is guaranteed to never be
120         * re-ordered or executed speculatively by a CPU model. The
121         * memory system may still reorder requests in caches unless
122         * the UNCACHEABLE flag is set as well.
123         */
124        STRICT_ORDER                = 0x00000800,
125        /** This request is to a memory mapped register. */
126        MMAPPED_IPR                 = 0x00002000,
127        /** This request is made in privileged mode. */
128        PRIVILEGED                  = 0x00008000,
129
130        /**
131         * This is a write that is targeted and zeroing an entire
132         * cache block.  There is no need for a read/modify/write
133         */
134        CACHE_BLOCK_ZERO            = 0x00010000,
135
136        /** The request should not cause a memory access. */
137        NO_ACCESS                   = 0x00080000,
138        /**
139         * This request will lock or unlock the accessed memory. When
140         * used with a load, the access locks the particular chunk of
141         * memory. When used with a store, it unlocks. The rule is
142         * that locked accesses have to be made up of a locked load,
143         * some operation on the data, and then a locked store.
144         */
145        LOCKED_RMW                  = 0x00100000,
146        /** The request is a Load locked/store conditional. */
147        LLSC                        = 0x00200000,
148        /** This request is for a memory swap. */
149        MEM_SWAP                    = 0x00400000,
150        MEM_SWAP_COND               = 0x00800000,
151
152        /** The request is a prefetch. */
153        PREFETCH                    = 0x01000000,
154        /** The request should be prefetched into the exclusive state. */
155        PF_EXCLUSIVE                = 0x02000000,
156        /** The request should be marked as LRU. */
157        EVICT_NEXT                  = 0x04000000,
158        /** The request should be marked with ACQUIRE. */
159        ACQUIRE                     = 0x00020000,
160        /** The request should be marked with RELEASE. */
161        RELEASE                     = 0x00040000,
162
163        /** The request is an atomic that returns data. */
164        ATOMIC_RETURN_OP            = 0x40000000,
165        /** The request is an atomic that does not return data. */
166        ATOMIC_NO_RETURN_OP         = 0x80000000,
167
168        /** The request should be marked with KERNEL.
169          * Used to indicate the synchronization associated with a GPU kernel
170          * launch or completion.
171          */
172        KERNEL                      = 0x00001000,
173
174        /**
175         * The request should be handled by the generic IPR code (only
176         * valid together with MMAPPED_IPR)
177         */
178        GENERIC_IPR                 = 0x08000000,
179
180        /** The request targets the secure memory space. */
181        SECURE                      = 0x10000000,
182        /** The request is a page table walk */
183        PT_WALK                     = 0x20000000,
184
185        /** The request invalidates a memory location */
186        INVALIDATE                  = 0x0000000100000000,
187        /** The request cleans a memory location */
188        CLEAN                       = 0x0000000200000000,
189
190        /** The request targets the point of unification */
191        DST_POU                     = 0x0000001000000000,
192
193        /** The request targets the point of coherence */
194        DST_POC                     = 0x0000002000000000,
195
196        /** Bits to define the destination of a request */
197        DST_BITS                    = 0x0000003000000000,
198
199        /**
200         * These flags are *not* cleared when a Request object is
201         * reused (assigned a new address).
202         */
203        STICKY_FLAGS = INST_FETCH
204    };
205    static const FlagsType STORE_NO_DATA = CACHE_BLOCK_ZERO |
206        CLEAN | INVALIDATE;
207
208    /** Master Ids that are statically allocated
209     * @{*/
210    enum : MasterID {
211        /** This master id is used for writeback requests by the caches */
212        wbMasterId = 0,
213        /**
214         * This master id is used for functional requests that
215         * don't come from a particular device
216         */
217        funcMasterId = 1,
218        /** This master id is used for message signaled interrupts */
219        intMasterId = 2,
220        /**
221         * Invalid master id for assertion checking only. It is
222         * invalid behavior to ever send this id as part of a request.
223         */
224        invldMasterId = std::numeric_limits<MasterID>::max()
225    };
226    /** @} */
227
228    typedef uint32_t MemSpaceConfigFlagsType;
229    typedef ::Flags<MemSpaceConfigFlagsType> MemSpaceConfigFlags;
230
231    enum : MemSpaceConfigFlagsType {
232        /** Has a synchronization scope been set? */
233        SCOPE_VALID            = 0x00000001,
234        /** Access has Wavefront scope visibility */
235        WAVEFRONT_SCOPE        = 0x00000002,
236        /** Access has Workgroup scope visibility */
237        WORKGROUP_SCOPE        = 0x00000004,
238        /** Access has Device (e.g., GPU) scope visibility */
239        DEVICE_SCOPE           = 0x00000008,
240        /** Access has System (e.g., CPU + GPU) scope visibility */
241        SYSTEM_SCOPE           = 0x00000010,
242
243        /** Global Segment */
244        GLOBAL_SEGMENT         = 0x00000020,
245        /** Group Segment */
246        GROUP_SEGMENT          = 0x00000040,
247        /** Private Segment */
248        PRIVATE_SEGMENT        = 0x00000080,
249        /** Kergarg Segment */
250        KERNARG_SEGMENT        = 0x00000100,
251        /** Readonly Segment */
252        READONLY_SEGMENT       = 0x00000200,
253        /** Spill Segment */
254        SPILL_SEGMENT          = 0x00000400,
255        /** Arg Segment */
256        ARG_SEGMENT            = 0x00000800,
257    };
258
259  private:
260    typedef uint8_t PrivateFlagsType;
261    typedef ::Flags<PrivateFlagsType> PrivateFlags;
262
263    enum : PrivateFlagsType {
264        /** Whether or not the size is valid. */
265        VALID_SIZE           = 0x00000001,
266        /** Whether or not paddr is valid (has been written yet). */
267        VALID_PADDR          = 0x00000002,
268        /** Whether or not the vaddr & asid are valid. */
269        VALID_VADDR          = 0x00000004,
270        /** Whether or not the instruction sequence number is valid. */
271        VALID_INST_SEQ_NUM   = 0x00000008,
272        /** Whether or not the pc is valid. */
273        VALID_PC             = 0x00000010,
274        /** Whether or not the context ID is valid. */
275        VALID_CONTEXT_ID     = 0x00000020,
276        /** Whether or not the sc result is valid. */
277        VALID_EXTRA_DATA     = 0x00000080,
278        /**
279         * These flags are *not* cleared when a Request object is reused
280         * (assigned a new address).
281         */
282        STICKY_PRIVATE_FLAGS = VALID_CONTEXT_ID
283    };
284
285  private:
286
287    /**
288     * Set up a physical (e.g. device) request in a previously
289     * allocated Request object.
290     */
291    void
292    setPhys(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time)
293    {
294        _paddr = paddr;
295        _size = size;
296        _time = time;
297        _masterId = mid;
298        _flags.clear(~STICKY_FLAGS);
299        _flags.set(flags);
300        privateFlags.clear(~STICKY_PRIVATE_FLAGS);
301        privateFlags.set(VALID_PADDR|VALID_SIZE);
302        depth = 0;
303        accessDelta = 0;
304        //translateDelta = 0;
305    }
306
307    /**
308     * The physical address of the request. Valid only if validPaddr
309     * is set.
310     */
311    Addr _paddr;
312
313    /**
314     * The size of the request. This field must be set when vaddr or
315     * paddr is written via setVirt() or setPhys(), so it is always
316     * valid as long as one of the address fields is valid.
317     */
318    unsigned _size;
319
320    /** The requestor ID which is unique in the system for all ports
321     * that are capable of issuing a transaction
322     */
323    MasterID _masterId;
324
325    /** Flag structure for the request. */
326    Flags _flags;
327
328    /** Memory space configuraiton flag structure for the request. */
329    MemSpaceConfigFlags _memSpaceConfigFlags;
330
331    /** Private flags for field validity checking. */
332    PrivateFlags privateFlags;
333
334    /**
335     * The time this request was started. Used to calculate
336     * latencies. This field is set to curTick() any time paddr or vaddr
337     * is written.
338     */
339    Tick _time;
340
341    /**
342     * The task id associated with this request
343     */
344    uint32_t _taskId;
345
346    /** The address space ID. */
347    int _asid;
348
349    /** The virtual address of the request. */
350    Addr _vaddr;
351
352    /**
353     * Extra data for the request, such as the return value of
354     * store conditional or the compare value for a CAS. */
355    uint64_t _extraData;
356
357    /** The context ID (for statistics, locks, and wakeups). */
358    ContextID _contextId;
359
360    /** program counter of initiating access; for tracing/debugging */
361    Addr _pc;
362
363    /** Sequence number of the instruction that creates the request */
364    InstSeqNum _reqInstSeqNum;
365
366    /** A pointer to an atomic operation */
367    AtomicOpFunctor *atomicOpFunctor;
368
369  public:
370
371    /**
372     * Minimal constructor. No fields are initialized. (Note that
373     *  _flags and privateFlags are cleared by Flags default
374     *  constructor.)
375     */
376    Request()
377        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
378          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
379          _extraData(0), _contextId(0), _pc(0),
380          _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
381          accessDelta(0), depth(0)
382    {}
383
384    Request(Addr paddr, unsigned size, Flags flags, MasterID mid,
385            InstSeqNum seq_num, ContextID cid)
386        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
387          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
388          _extraData(0), _contextId(0), _pc(0),
389          _reqInstSeqNum(seq_num), atomicOpFunctor(nullptr), translateDelta(0),
390          accessDelta(0), depth(0)
391    {
392        setPhys(paddr, size, flags, mid, curTick());
393        setContext(cid);
394        privateFlags.set(VALID_INST_SEQ_NUM);
395    }
396
397    /**
398     * Constructor for physical (e.g. device) requests.  Initializes
399     * just physical address, size, flags, and timestamp (to curTick()).
400     * These fields are adequate to perform a request.
401     */
402    Request(Addr paddr, unsigned size, Flags flags, MasterID mid)
403        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
404          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
405          _extraData(0), _contextId(0), _pc(0),
406          _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
407          accessDelta(0), depth(0)
408    {
409        setPhys(paddr, size, flags, mid, curTick());
410    }
411
412    Request(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time)
413        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
414          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
415          _extraData(0), _contextId(0), _pc(0),
416          _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
417          accessDelta(0), depth(0)
418    {
419        setPhys(paddr, size, flags, mid, time);
420    }
421
422    Request(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time,
423            Addr pc)
424        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
425          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
426          _extraData(0), _contextId(0), _pc(pc),
427          _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
428          accessDelta(0), depth(0)
429    {
430        setPhys(paddr, size, flags, mid, time);
431        privateFlags.set(VALID_PC);
432    }
433
434    Request(int asid, Addr vaddr, unsigned size, Flags flags, MasterID mid,
435            Addr pc, ContextID cid)
436        : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
437          _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
438          _extraData(0), _contextId(0), _pc(0),
439          _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
440          accessDelta(0), depth(0)
441    {
442        setVirt(asid, vaddr, size, flags, mid, pc);
443        setContext(cid);
444    }
445
446    Request(int asid, Addr vaddr, unsigned size, Flags flags, MasterID mid,
447            Addr pc, ContextID cid, AtomicOpFunctor *atomic_op)
448    {
449        setVirt(asid, vaddr, size, flags, mid, pc, atomic_op);
450        setContext(cid);
451    }
452
453    Request(const Request& other)
454        : _paddr(other._paddr), _size(other._size),
455          _masterId(other._masterId),
456          _flags(other._flags),
457          _memSpaceConfigFlags(other._memSpaceConfigFlags),
458          privateFlags(other.privateFlags),
459          _time(other._time),
460          _taskId(other._taskId), _asid(other._asid), _vaddr(other._vaddr),
461          _extraData(other._extraData), _contextId(other._contextId),
462          _pc(other._pc), _reqInstSeqNum(other._reqInstSeqNum),
463          translateDelta(other.translateDelta),
464          accessDelta(other.accessDelta), depth(other.depth)
465    {
466        if (other.atomicOpFunctor)
467            atomicOpFunctor = (other.atomicOpFunctor)->clone();
468        else
469            atomicOpFunctor = nullptr;
470    }
471
472    ~Request()
473    {
474        if (hasAtomicOpFunctor()) {
475            delete atomicOpFunctor;
476        }
477    }
478
479    /**
480     * Set up Context numbers.
481     */
482    void
483    setContext(ContextID context_id)
484    {
485        _contextId = context_id;
486        privateFlags.set(VALID_CONTEXT_ID);
487    }
488
489    /**
490     * Set up a virtual (e.g., CPU) request in a previously
491     * allocated Request object.
492     */
493    void
494    setVirt(int asid, Addr vaddr, unsigned size, Flags flags, MasterID mid,
495            Addr pc, AtomicOpFunctor *amo_op = nullptr)
496    {
497        _asid = asid;
498        _vaddr = vaddr;
499        _size = size;
500        _masterId = mid;
501        _pc = pc;
502        _time = curTick();
503
504        _flags.clear(~STICKY_FLAGS);
505        _flags.set(flags);
506        privateFlags.clear(~STICKY_PRIVATE_FLAGS);
507        privateFlags.set(VALID_VADDR|VALID_SIZE|VALID_PC);
508        depth = 0;
509        accessDelta = 0;
510        translateDelta = 0;
511        atomicOpFunctor = amo_op;
512    }
513
514    /**
515     * Set just the physical address.  This usually used to record the
516     * result of a translation. However, when using virtualized CPUs
517     * setPhys() is sometimes called to finalize a physical address
518     * without a virtual address, so we can't check if the virtual
519     * address is valid.
520     */
521    void
522    setPaddr(Addr paddr)
523    {
524        _paddr = paddr;
525        privateFlags.set(VALID_PADDR);
526    }
527
528    /**
529     * Generate two requests as if this request had been split into two
530     * pieces. The original request can't have been translated already.
531     */
532    void splitOnVaddr(Addr split_addr, RequestPtr &req1, RequestPtr &req2)
533    {
534        assert(privateFlags.isSet(VALID_VADDR));
535        assert(privateFlags.noneSet(VALID_PADDR));
536        assert(split_addr > _vaddr && split_addr < _vaddr + _size);
537        req1 = std::make_shared<Request>(*this);
538        req2 = std::make_shared<Request>(*this);
539        req1->_size = split_addr - _vaddr;
540        req2->_vaddr = split_addr;
541        req2->_size = _size - req1->_size;
542    }
543
544    /**
545     * Accessor for paddr.
546     */
547    bool
548    hasPaddr() const
549    {
550        return privateFlags.isSet(VALID_PADDR);
551    }
552
553    Addr
554    getPaddr() const
555    {
556        assert(privateFlags.isSet(VALID_PADDR));
557        return _paddr;
558    }
559
560    /**
561     * Time for the TLB/table walker to successfully translate this request.
562     */
563    Tick translateDelta;
564
565    /**
566     * Access latency to complete this memory transaction not including
567     * translation time.
568     */
569    Tick accessDelta;
570
571    /**
572     * Level of the cache hierachy where this request was responded to
573     * (e.g. 0 = L1; 1 = L2).
574     */
575    mutable int depth;
576
577    /**
578     *  Accessor for size.
579     */
580    bool
581    hasSize() const
582    {
583        return privateFlags.isSet(VALID_SIZE);
584    }
585
586    unsigned
587    getSize() const
588    {
589        assert(privateFlags.isSet(VALID_SIZE));
590        return _size;
591    }
592
593    /** Accessor for time. */
594    Tick
595    time() const
596    {
597        assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
598        return _time;
599    }
600
601    /**
602     * Accessor for atomic-op functor.
603     */
604    bool
605    hasAtomicOpFunctor()
606    {
607        return atomicOpFunctor != NULL;
608    }
609
610    AtomicOpFunctor *
611    getAtomicOpFunctor()
612    {
613        assert(atomicOpFunctor != NULL);
614        return atomicOpFunctor;
615    }
616
617    /** Accessor for flags. */
618    Flags
619    getFlags()
620    {
621        assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
622        return _flags;
623    }
624
625    /** Note that unlike other accessors, this function sets *specific
626        flags* (ORs them in); it does not assign its argument to the
627        _flags field.  Thus this method should rightly be called
628        setFlags() and not just flags(). */
629    void
630    setFlags(Flags flags)
631    {
632        assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
633        _flags.set(flags);
634    }
635
636    void
637    setMemSpaceConfigFlags(MemSpaceConfigFlags extraFlags)
638    {
639        assert(privateFlags.isSet(VALID_PADDR | VALID_VADDR));
640        _memSpaceConfigFlags.set(extraFlags);
641    }
642
643    /** Accessor function for vaddr.*/
644    bool
645    hasVaddr() const
646    {
647        return privateFlags.isSet(VALID_VADDR);
648    }
649
650    Addr
651    getVaddr() const
652    {
653        assert(privateFlags.isSet(VALID_VADDR));
654        return _vaddr;
655    }
656
657    /** Accesssor for the requestor id. */
658    MasterID
659    masterId() const
660    {
661        return _masterId;
662    }
663
664    uint32_t
665    taskId() const
666    {
667        return _taskId;
668    }
669
670    void
671    taskId(uint32_t id) {
672        _taskId = id;
673    }
674
675    /** Accessor function for asid.*/
676    int
677    getAsid() const
678    {
679        assert(privateFlags.isSet(VALID_VADDR));
680        return _asid;
681    }
682
683    /** Accessor function for asid.*/
684    void
685    setAsid(int asid)
686    {
687        _asid = asid;
688    }
689
690    /** Accessor function for architecture-specific flags.*/
691    ArchFlagsType
692    getArchFlags() const
693    {
694        assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
695        return _flags & ARCH_BITS;
696    }
697
698    /** Accessor function to check if sc result is valid. */
699    bool
700    extraDataValid() const
701    {
702        return privateFlags.isSet(VALID_EXTRA_DATA);
703    }
704
705    /** Accessor function for store conditional return value.*/
706    uint64_t
707    getExtraData() const
708    {
709        assert(privateFlags.isSet(VALID_EXTRA_DATA));
710        return _extraData;
711    }
712
713    /** Accessor function for store conditional return value.*/
714    void
715    setExtraData(uint64_t extraData)
716    {
717        _extraData = extraData;
718        privateFlags.set(VALID_EXTRA_DATA);
719    }
720
721    bool
722    hasContextId() const
723    {
724        return privateFlags.isSet(VALID_CONTEXT_ID);
725    }
726
727    /** Accessor function for context ID.*/
728    ContextID
729    contextId() const
730    {
731        assert(privateFlags.isSet(VALID_CONTEXT_ID));
732        return _contextId;
733    }
734
735    void
736    setPC(Addr pc)
737    {
738        privateFlags.set(VALID_PC);
739        _pc = pc;
740    }
741
742    bool
743    hasPC() const
744    {
745        return privateFlags.isSet(VALID_PC);
746    }
747
748    /** Accessor function for pc.*/
749    Addr
750    getPC() const
751    {
752        assert(privateFlags.isSet(VALID_PC));
753        return _pc;
754    }
755
756    /**
757     * Increment/Get the depth at which this request is responded to.
758     * This currently happens when the request misses in any cache level.
759     */
760    void incAccessDepth() const { depth++; }
761    int getAccessDepth() const { return depth; }
762
763    /**
764     * Set/Get the time taken for this request to be successfully translated.
765     */
766    void setTranslateLatency() { translateDelta = curTick() - _time; }
767    Tick getTranslateLatency() const { return translateDelta; }
768
769    /**
770     * Set/Get the time taken to complete this request's access, not including
771     *  the time to successfully translate the request.
772     */
773    void setAccessLatency() { accessDelta = curTick() - _time - translateDelta; }
774    Tick getAccessLatency() const { return accessDelta; }
775
776    /**
777     * Accessor for the sequence number of instruction that creates the
778     * request.
779     */
780    bool
781    hasInstSeqNum() const
782    {
783        return privateFlags.isSet(VALID_INST_SEQ_NUM);
784    }
785
786    InstSeqNum
787    getReqInstSeqNum() const
788    {
789        assert(privateFlags.isSet(VALID_INST_SEQ_NUM));
790        return _reqInstSeqNum;
791    }
792
793    void
794    setReqInstSeqNum(const InstSeqNum seq_num)
795    {
796        privateFlags.set(VALID_INST_SEQ_NUM);
797        _reqInstSeqNum = seq_num;
798    }
799
800    /** Accessor functions for flags. Note that these are for testing
801        only; setting flags should be done via setFlags(). */
802    bool isUncacheable() const { return _flags.isSet(UNCACHEABLE); }
803    bool isStrictlyOrdered() const { return _flags.isSet(STRICT_ORDER); }
804    bool isInstFetch() const { return _flags.isSet(INST_FETCH); }
805    bool isPrefetch() const { return _flags.isSet(PREFETCH); }
806    bool isLLSC() const { return _flags.isSet(LLSC); }
807    bool isPriv() const { return _flags.isSet(PRIVILEGED); }
808    bool isLockedRMW() const { return _flags.isSet(LOCKED_RMW); }
809    bool isSwap() const { return _flags.isSet(MEM_SWAP|MEM_SWAP_COND); }
810    bool isCondSwap() const { return _flags.isSet(MEM_SWAP_COND); }
811    bool isMmappedIpr() const { return _flags.isSet(MMAPPED_IPR); }
812    bool isSecure() const { return _flags.isSet(SECURE); }
813    bool isPTWalk() const { return _flags.isSet(PT_WALK); }
814    bool isAcquire() const { return _flags.isSet(ACQUIRE); }
815    bool isRelease() const { return _flags.isSet(RELEASE); }
816    bool isKernel() const { return _flags.isSet(KERNEL); }
817    bool isAtomicReturn() const { return _flags.isSet(ATOMIC_RETURN_OP); }
818    bool isAtomicNoReturn() const { return _flags.isSet(ATOMIC_NO_RETURN_OP); }
819
820    bool
821    isAtomic() const
822    {
823        return _flags.isSet(ATOMIC_RETURN_OP) ||
824               _flags.isSet(ATOMIC_NO_RETURN_OP);
825    }
826
827    /**
828     * Accessor functions for the destination of a memory request. The
829     * destination flag can specify a point of reference for the
830     * operation (e.g. a cache block clean to the the point of
831     * unification). At the moment the destination is only used by the
832     * cache maintenance operations.
833     */
834    bool isToPOU() const { return _flags.isSet(DST_POU); }
835    bool isToPOC() const { return _flags.isSet(DST_POC); }
836    Flags getDest() const { return _flags & DST_BITS; }
837
838    /**
839     * Accessor functions for the memory space configuration flags and used by
840     * GPU ISAs such as the Heterogeneous System Architecture (HSA). Note that
841     * these are for testing only; setting extraFlags should be done via
842     * setMemSpaceConfigFlags().
843     */
844    bool isScoped() const { return _memSpaceConfigFlags.isSet(SCOPE_VALID); }
845
846    bool
847    isWavefrontScope() const
848    {
849        assert(isScoped());
850        return _memSpaceConfigFlags.isSet(WAVEFRONT_SCOPE);
851    }
852
853    bool
854    isWorkgroupScope() const
855    {
856        assert(isScoped());
857        return _memSpaceConfigFlags.isSet(WORKGROUP_SCOPE);
858    }
859
860    bool
861    isDeviceScope() const
862    {
863        assert(isScoped());
864        return _memSpaceConfigFlags.isSet(DEVICE_SCOPE);
865    }
866
867    bool
868    isSystemScope() const
869    {
870        assert(isScoped());
871        return _memSpaceConfigFlags.isSet(SYSTEM_SCOPE);
872    }
873
874    bool
875    isGlobalSegment() const
876    {
877        return _memSpaceConfigFlags.isSet(GLOBAL_SEGMENT) ||
878               (!isGroupSegment() && !isPrivateSegment() &&
879                !isKernargSegment() && !isReadonlySegment() &&
880                !isSpillSegment() && !isArgSegment());
881    }
882
883    bool
884    isGroupSegment() const
885    {
886        return _memSpaceConfigFlags.isSet(GROUP_SEGMENT);
887    }
888
889    bool
890    isPrivateSegment() const
891    {
892        return _memSpaceConfigFlags.isSet(PRIVATE_SEGMENT);
893    }
894
895    bool
896    isKernargSegment() const
897    {
898        return _memSpaceConfigFlags.isSet(KERNARG_SEGMENT);
899    }
900
901    bool
902    isReadonlySegment() const
903    {
904        return _memSpaceConfigFlags.isSet(READONLY_SEGMENT);
905    }
906
907    bool
908    isSpillSegment() const
909    {
910        return _memSpaceConfigFlags.isSet(SPILL_SEGMENT);
911    }
912
913    bool
914    isArgSegment() const
915    {
916        return _memSpaceConfigFlags.isSet(ARG_SEGMENT);
917    }
918
919    /**
920     * Accessor functions to determine whether this request is part of
921     * a cache maintenance operation. At the moment three operations
922     * are supported:
923
924     * 1) A cache clean operation updates all copies of a memory
925     * location to the point of reference,
926     * 2) A cache invalidate operation invalidates all copies of the
927     * specified block in the memory above the point of reference,
928     * 3) A clean and invalidate operation is a combination of the two
929     * operations.
930     * @{ */
931    bool isCacheClean() const { return _flags.isSet(CLEAN); }
932    bool isCacheInvalidate() const { return _flags.isSet(INVALIDATE); }
933    bool isCacheMaintenance() const { return _flags.isSet(CLEAN|INVALIDATE); }
934    /** @} */
935};
936
937#endif // __MEM_REQUEST_HH__
938