packet.hh revision 12749:223c83ed9979
1/*
2 * Copyright (c) 2012-2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 *          Steve Reinhardt
43 *          Ali Saidi
44 *          Andreas Hansson
45 *          Nikos Nikoleris
46 */
47
48/**
49 * @file
50 * Declaration of the Packet class.
51 */
52
53#ifndef __MEM_PACKET_HH__
54#define __MEM_PACKET_HH__
55
56#include <bitset>
57#include <cassert>
58#include <list>
59
60#include "base/cast.hh"
61#include "base/compiler.hh"
62#include "base/flags.hh"
63#include "base/logging.hh"
64#include "base/printable.hh"
65#include "base/types.hh"
66#include "mem/request.hh"
67#include "sim/core.hh"
68
69class Packet;
70typedef Packet *PacketPtr;
71typedef uint8_t* PacketDataPtr;
72typedef std::list<PacketPtr> PacketList;
73typedef uint64_t PacketId;
74
75class MemCmd
76{
77    friend class Packet;
78
79  public:
80    /**
81     * List of all commands associated with a packet.
82     */
83    enum Command
84    {
85        InvalidCmd,
86        ReadReq,
87        ReadResp,
88        ReadRespWithInvalidate,
89        WriteReq,
90        WriteResp,
91        WritebackDirty,
92        WritebackClean,
93        WriteClean,            // writes dirty data below without evicting
94        CleanEvict,
95        SoftPFReq,
96        HardPFReq,
97        SoftPFResp,
98        HardPFResp,
99        WriteLineReq,
100        UpgradeReq,
101        SCUpgradeReq,           // Special "weak" upgrade for StoreCond
102        UpgradeResp,
103        SCUpgradeFailReq,       // Failed SCUpgradeReq in MSHR (never sent)
104        UpgradeFailResp,        // Valid for SCUpgradeReq only
105        ReadExReq,
106        ReadExResp,
107        ReadCleanReq,
108        ReadSharedReq,
109        LoadLockedReq,
110        StoreCondReq,
111        StoreCondFailReq,       // Failed StoreCondReq in MSHR (never sent)
112        StoreCondResp,
113        SwapReq,
114        SwapResp,
115        MessageReq,
116        MessageResp,
117        MemFenceReq,
118        MemFenceResp,
119        CleanSharedReq,
120        CleanSharedResp,
121        CleanInvalidReq,
122        CleanInvalidResp,
123        // Error responses
124        // @TODO these should be classified as responses rather than
125        // requests; coding them as requests initially for backwards
126        // compatibility
127        InvalidDestError,  // packet dest field invalid
128        BadAddressError,   // memory address invalid
129        FunctionalReadError, // unable to fulfill functional read
130        FunctionalWriteError, // unable to fulfill functional write
131        // Fake simulator-only commands
132        PrintReq,       // Print state matching address
133        FlushReq,      //request for a cache flush
134        InvalidateReq,   // request for address to be invalidated
135        InvalidateResp,
136        NUM_MEM_CMDS
137    };
138
139  private:
140    /**
141     * List of command attributes.
142     */
143    enum Attribute
144    {
145        IsRead,         //!< Data flows from responder to requester
146        IsWrite,        //!< Data flows from requester to responder
147        IsUpgrade,
148        IsInvalidate,
149        IsClean,        //!< Cleans any existing dirty blocks
150        NeedsWritable,  //!< Requires writable copy to complete in-cache
151        IsRequest,      //!< Issued by requester
152        IsResponse,     //!< Issue by responder
153        NeedsResponse,  //!< Requester needs response from target
154        IsEviction,
155        IsSWPrefetch,
156        IsHWPrefetch,
157        IsLlsc,         //!< Alpha/MIPS LL or SC access
158        HasData,        //!< There is an associated payload
159        IsError,        //!< Error response
160        IsPrint,        //!< Print state matching address (for debugging)
161        IsFlush,        //!< Flush the address from caches
162        FromCache,      //!< Request originated from a caching agent
163        NUM_COMMAND_ATTRIBUTES
164    };
165
166    /**
167     * Structure that defines attributes and other data associated
168     * with a Command.
169     */
170    struct CommandInfo
171    {
172        /// Set of attribute flags.
173        const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
174        /// Corresponding response for requests; InvalidCmd if no
175        /// response is applicable.
176        const Command response;
177        /// String representation (for printing)
178        const std::string str;
179    };
180
181    /// Array to map Command enum to associated info.
182    static const CommandInfo commandInfo[];
183
184  private:
185
186    Command cmd;
187
188    bool
189    testCmdAttrib(MemCmd::Attribute attrib) const
190    {
191        return commandInfo[cmd].attributes[attrib] != 0;
192    }
193
194  public:
195
196    bool isRead() const            { return testCmdAttrib(IsRead); }
197    bool isWrite() const           { return testCmdAttrib(IsWrite); }
198    bool isUpgrade() const         { return testCmdAttrib(IsUpgrade); }
199    bool isRequest() const         { return testCmdAttrib(IsRequest); }
200    bool isResponse() const        { return testCmdAttrib(IsResponse); }
201    bool needsWritable() const     { return testCmdAttrib(NeedsWritable); }
202    bool needsResponse() const     { return testCmdAttrib(NeedsResponse); }
203    bool isInvalidate() const      { return testCmdAttrib(IsInvalidate); }
204    bool isEviction() const        { return testCmdAttrib(IsEviction); }
205    bool isClean() const           { return testCmdAttrib(IsClean); }
206    bool fromCache() const         { return testCmdAttrib(FromCache); }
207
208    /**
209     * A writeback is an eviction that carries data.
210     */
211    bool isWriteback() const       { return testCmdAttrib(IsEviction) &&
212                                            testCmdAttrib(HasData); }
213
214    /**
215     * Check if this particular packet type carries payload data. Note
216     * that this does not reflect if the data pointer of the packet is
217     * valid or not.
218     */
219    bool hasData() const        { return testCmdAttrib(HasData); }
220    bool isLLSC() const         { return testCmdAttrib(IsLlsc); }
221    bool isSWPrefetch() const   { return testCmdAttrib(IsSWPrefetch); }
222    bool isHWPrefetch() const   { return testCmdAttrib(IsHWPrefetch); }
223    bool isPrefetch() const     { return testCmdAttrib(IsSWPrefetch) ||
224                                         testCmdAttrib(IsHWPrefetch); }
225    bool isError() const        { return testCmdAttrib(IsError); }
226    bool isPrint() const        { return testCmdAttrib(IsPrint); }
227    bool isFlush() const        { return testCmdAttrib(IsFlush); }
228
229    Command
230    responseCommand() const
231    {
232        return commandInfo[cmd].response;
233    }
234
235    /// Return the string to a cmd given by idx.
236    const std::string &toString() const { return commandInfo[cmd].str; }
237    int toInt() const { return (int)cmd; }
238
239    MemCmd(Command _cmd) : cmd(_cmd) { }
240    MemCmd(int _cmd) : cmd((Command)_cmd) { }
241    MemCmd() : cmd(InvalidCmd) { }
242
243    bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
244    bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
245};
246
247/**
248 * A Packet is used to encapsulate a transfer between two objects in
249 * the memory system (e.g., the L1 and L2 cache).  (In contrast, a
250 * single Request travels all the way from the requester to the
251 * ultimate destination and back, possibly being conveyed by several
252 * different Packets along the way.)
253 */
254class Packet : public Printable
255{
256  public:
257    typedef uint32_t FlagsType;
258    typedef ::Flags<FlagsType> Flags;
259
260  private:
261
262    enum : FlagsType {
263        // Flags to transfer across when copying a packet
264        COPY_FLAGS             = 0x0000003F,
265
266        // Does this packet have sharers (which means it should not be
267        // considered writable) or not. See setHasSharers below.
268        HAS_SHARERS            = 0x00000001,
269
270        // Special control flags
271        /// Special timing-mode atomic snoop for multi-level coherence.
272        EXPRESS_SNOOP          = 0x00000002,
273
274        /// Allow a responding cache to inform the cache hierarchy
275        /// that it had a writable copy before responding. See
276        /// setResponderHadWritable below.
277        RESPONDER_HAD_WRITABLE = 0x00000004,
278
279        // Snoop co-ordination flag to indicate that a cache is
280        // responding to a snoop. See setCacheResponding below.
281        CACHE_RESPONDING       = 0x00000008,
282
283        // The writeback/writeclean should be propagated further
284        // downstream by the receiver
285        WRITE_THROUGH          = 0x00000010,
286
287        // Response co-ordination flag for cache maintenance
288        // operations
289        SATISFIED              = 0x00000020,
290
291        /// Are the 'addr' and 'size' fields valid?
292        VALID_ADDR             = 0x00000100,
293        VALID_SIZE             = 0x00000200,
294
295        /// Is the data pointer set to a value that shouldn't be freed
296        /// when the packet is destroyed?
297        STATIC_DATA            = 0x00001000,
298        /// The data pointer points to a value that should be freed when
299        /// the packet is destroyed. The pointer is assumed to be pointing
300        /// to an array, and delete [] is consequently called
301        DYNAMIC_DATA           = 0x00002000,
302
303        /// suppress the error if this packet encounters a functional
304        /// access failure.
305        SUPPRESS_FUNC_ERROR    = 0x00008000,
306
307        // Signal block present to squash prefetch and cache evict packets
308        // through express snoop flag
309        BLOCK_CACHED          = 0x00010000
310    };
311
312    Flags flags;
313
314  public:
315    typedef MemCmd::Command Command;
316
317    /// The command field of the packet.
318    MemCmd cmd;
319
320    const PacketId id;
321
322    /// A pointer to the original request.
323    RequestPtr req;
324
325  private:
326   /**
327    * A pointer to the data being transferred. It can be different
328    * sizes at each level of the hierarchy so it belongs to the
329    * packet, not request. This may or may not be populated when a
330    * responder receives the packet. If not populated memory should
331    * be allocated.
332    */
333    PacketDataPtr data;
334
335    /// The address of the request.  This address could be virtual or
336    /// physical, depending on the system configuration.
337    Addr addr;
338
339    /// True if the request targets the secure memory space.
340    bool _isSecure;
341
342    /// The size of the request or transfer.
343    unsigned size;
344
345    /**
346     * Track the bytes found that satisfy a functional read.
347     */
348    std::vector<bool> bytesValid;
349
350  public:
351
352    /**
353     * The extra delay from seeing the packet until the header is
354     * transmitted. This delay is used to communicate the crossbar
355     * forwarding latency to the neighbouring object (e.g. a cache)
356     * that actually makes the packet wait. As the delay is relative,
357     * a 32-bit unsigned should be sufficient.
358     */
359    uint32_t headerDelay;
360
361    /**
362     * Keep track of the extra delay incurred by snooping upwards
363     * before sending a request down the memory system. This is used
364     * by the coherent crossbar to account for the additional request
365     * delay.
366     */
367    uint32_t snoopDelay;
368
369    /**
370     * The extra pipelining delay from seeing the packet until the end of
371     * payload is transmitted by the component that provided it (if
372     * any). This includes the header delay. Similar to the header
373     * delay, this is used to make up for the fact that the
374     * crossbar does not make the packet wait. As the delay is
375     * relative, a 32-bit unsigned should be sufficient.
376     */
377    uint32_t payloadDelay;
378
379    /**
380     * A virtual base opaque structure used to hold state associated
381     * with the packet (e.g., an MSHR), specific to a MemObject that
382     * sees the packet. A pointer to this state is returned in the
383     * packet's response so that the MemObject in question can quickly
384     * look up the state needed to process it. A specific subclass
385     * would be derived from this to carry state specific to a
386     * particular sending device.
387     *
388     * As multiple MemObjects may add their SenderState throughout the
389     * memory system, the SenderStates create a stack, where a
390     * MemObject can add a new Senderstate, as long as the
391     * predecessing SenderState is restored when the response comes
392     * back. For this reason, the predecessor should always be
393     * populated with the current SenderState of a packet before
394     * modifying the senderState field in the request packet.
395     */
396    struct SenderState
397    {
398        SenderState* predecessor;
399        SenderState() : predecessor(NULL) {}
400        virtual ~SenderState() {}
401    };
402
403    /**
404     * Object used to maintain state of a PrintReq.  The senderState
405     * field of a PrintReq should always be of this type.
406     */
407    class PrintReqState : public SenderState
408    {
409      private:
410        /**
411         * An entry in the label stack.
412         */
413        struct LabelStackEntry
414        {
415            const std::string label;
416            std::string *prefix;
417            bool labelPrinted;
418            LabelStackEntry(const std::string &_label, std::string *_prefix);
419        };
420
421        typedef std::list<LabelStackEntry> LabelStack;
422        LabelStack labelStack;
423
424        std::string *curPrefixPtr;
425
426      public:
427        std::ostream &os;
428        const int verbosity;
429
430        PrintReqState(std::ostream &os, int verbosity = 0);
431        ~PrintReqState();
432
433        /**
434         * Returns the current line prefix.
435         */
436        const std::string &curPrefix() { return *curPrefixPtr; }
437
438        /**
439         * Push a label onto the label stack, and prepend the given
440         * prefix string onto the current prefix.  Labels will only be
441         * printed if an object within the label's scope is printed.
442         */
443        void pushLabel(const std::string &lbl,
444                       const std::string &prefix = "  ");
445
446        /**
447         * Pop a label off the label stack.
448         */
449        void popLabel();
450
451        /**
452         * Print all of the pending unprinted labels on the
453         * stack. Called by printObj(), so normally not called by
454         * users unless bypassing printObj().
455         */
456        void printLabels();
457
458        /**
459         * Print a Printable object to os, because it matched the
460         * address on a PrintReq.
461         */
462        void printObj(Printable *obj);
463    };
464
465    /**
466     * This packet's sender state.  Devices should use dynamic_cast<>
467     * to cast to the state appropriate to the sender.  The intent of
468     * this variable is to allow a device to attach extra information
469     * to a request. A response packet must return the sender state
470     * that was attached to the original request (even if a new packet
471     * is created).
472     */
473    SenderState *senderState;
474
475    /**
476     * Push a new sender state to the packet and make the current
477     * sender state the predecessor of the new one. This should be
478     * prefered over direct manipulation of the senderState member
479     * variable.
480     *
481     * @param sender_state SenderState to push at the top of the stack
482     */
483    void pushSenderState(SenderState *sender_state);
484
485    /**
486     * Pop the top of the state stack and return a pointer to it. This
487     * assumes the current sender state is not NULL. This should be
488     * preferred over direct manipulation of the senderState member
489     * variable.
490     *
491     * @return The current top of the stack
492     */
493    SenderState *popSenderState();
494
495    /**
496     * Go through the sender state stack and return the first instance
497     * that is of type T (as determined by a dynamic_cast). If there
498     * is no sender state of type T, NULL is returned.
499     *
500     * @return The topmost state of type T
501     */
502    template <typename T>
503    T * findNextSenderState() const
504    {
505        T *t = NULL;
506        SenderState* sender_state = senderState;
507        while (t == NULL && sender_state != NULL) {
508            t = dynamic_cast<T*>(sender_state);
509            sender_state = sender_state->predecessor;
510        }
511        return t;
512    }
513
514    /// Return the string name of the cmd field (for debugging and
515    /// tracing).
516    const std::string &cmdString() const { return cmd.toString(); }
517
518    /// Return the index of this command.
519    inline int cmdToIndex() const { return cmd.toInt(); }
520
521    bool isRead() const              { return cmd.isRead(); }
522    bool isWrite() const             { return cmd.isWrite(); }
523    bool isUpgrade()  const          { return cmd.isUpgrade(); }
524    bool isRequest() const           { return cmd.isRequest(); }
525    bool isResponse() const          { return cmd.isResponse(); }
526    bool needsWritable() const
527    {
528        // we should never check if a response needsWritable, the
529        // request has this flag, and for a response we should rather
530        // look at the hasSharers flag (if not set, the response is to
531        // be considered writable)
532        assert(isRequest());
533        return cmd.needsWritable();
534    }
535    bool needsResponse() const       { return cmd.needsResponse(); }
536    bool isInvalidate() const        { return cmd.isInvalidate(); }
537    bool isEviction() const          { return cmd.isEviction(); }
538    bool isClean() const             { return cmd.isClean(); }
539    bool fromCache() const           { return cmd.fromCache(); }
540    bool isWriteback() const         { return cmd.isWriteback(); }
541    bool hasData() const             { return cmd.hasData(); }
542    bool hasRespData() const
543    {
544        MemCmd resp_cmd = cmd.responseCommand();
545        return resp_cmd.hasData();
546    }
547    bool isLLSC() const              { return cmd.isLLSC(); }
548    bool isError() const             { return cmd.isError(); }
549    bool isPrint() const             { return cmd.isPrint(); }
550    bool isFlush() const             { return cmd.isFlush(); }
551
552    //@{
553    /// Snoop flags
554    /**
555     * Set the cacheResponding flag. This is used by the caches to
556     * signal another cache that they are responding to a request. A
557     * cache will only respond to snoops if it has the line in either
558     * Modified or Owned state. Note that on snoop hits we always pass
559     * the line as Modified and never Owned. In the case of an Owned
560     * line we proceed to invalidate all other copies.
561     *
562     * On a cache fill (see Cache::handleFill), we check hasSharers
563     * first, ignoring the cacheResponding flag if hasSharers is set.
564     * A line is consequently allocated as:
565     *
566     * hasSharers cacheResponding state
567     * true       false           Shared
568     * true       true            Shared
569     * false      false           Exclusive
570     * false      true            Modified
571     */
572    void setCacheResponding()
573    {
574        assert(isRequest());
575        assert(!flags.isSet(CACHE_RESPONDING));
576        flags.set(CACHE_RESPONDING);
577    }
578    bool cacheResponding() const { return flags.isSet(CACHE_RESPONDING); }
579    /**
580     * On fills, the hasSharers flag is used by the caches in
581     * combination with the cacheResponding flag, as clarified
582     * above. If the hasSharers flag is not set, the packet is passing
583     * writable. Thus, a response from a memory passes the line as
584     * writable by default.
585     *
586     * The hasSharers flag is also used by upstream caches to inform a
587     * downstream cache that they have the block (by calling
588     * setHasSharers on snoop request packets that hit in upstream
589     * cachs tags or MSHRs). If the snoop packet has sharers, a
590     * downstream cache is prevented from passing a dirty line upwards
591     * if it was not explicitly asked for a writable copy. See
592     * Cache::satisfyCpuSideRequest.
593     *
594     * The hasSharers flag is also used on writebacks, in
595     * combination with the WritbackClean or WritebackDirty commands,
596     * to allocate the block downstream either as:
597     *
598     * command        hasSharers state
599     * WritebackDirty false      Modified
600     * WritebackDirty true       Owned
601     * WritebackClean false      Exclusive
602     * WritebackClean true       Shared
603     */
604    void setHasSharers()    { flags.set(HAS_SHARERS); }
605    bool hasSharers() const { return flags.isSet(HAS_SHARERS); }
606    //@}
607
608    /**
609     * The express snoop flag is used for two purposes. Firstly, it is
610     * used to bypass flow control for normal (non-snoop) requests
611     * going downstream in the memory system. In cases where a cache
612     * is responding to a snoop from another cache (it had a dirty
613     * line), but the line is not writable (and there are possibly
614     * other copies), the express snoop flag is set by the downstream
615     * cache to invalidate all other copies in zero time. Secondly,
616     * the express snoop flag is also set to be able to distinguish
617     * snoop packets that came from a downstream cache, rather than
618     * snoop packets from neighbouring caches.
619     */
620    void setExpressSnoop()      { flags.set(EXPRESS_SNOOP); }
621    bool isExpressSnoop() const { return flags.isSet(EXPRESS_SNOOP); }
622
623    /**
624     * On responding to a snoop request (which only happens for
625     * Modified or Owned lines), make sure that we can transform an
626     * Owned response to a Modified one. If this flag is not set, the
627     * responding cache had the line in the Owned state, and there are
628     * possibly other Shared copies in the memory system. A downstream
629     * cache helps in orchestrating the invalidation of these copies
630     * by sending out the appropriate express snoops.
631     */
632    void setResponderHadWritable()
633    {
634        assert(cacheResponding());
635        assert(!responderHadWritable());
636        flags.set(RESPONDER_HAD_WRITABLE);
637    }
638    bool responderHadWritable() const
639    { return flags.isSet(RESPONDER_HAD_WRITABLE); }
640
641    /**
642     * A writeback/writeclean cmd gets propagated further downstream
643     * by the receiver when the flag is set.
644     */
645    void setWriteThrough()
646    {
647        assert(cmd.isWrite() &&
648               (cmd.isEviction() || cmd == MemCmd::WriteClean));
649        flags.set(WRITE_THROUGH);
650    }
651    void clearWriteThrough() { flags.clear(WRITE_THROUGH); }
652    bool writeThrough() const { return flags.isSet(WRITE_THROUGH); }
653
654    /**
655     * Set when a request hits in a cache and the cache is not going
656     * to respond. This is used by the crossbar to coordinate
657     * responses for cache maintenance operations.
658     */
659    void setSatisfied()
660    {
661        assert(cmd.isClean());
662        assert(!flags.isSet(SATISFIED));
663        flags.set(SATISFIED);
664    }
665    bool satisfied() const { return flags.isSet(SATISFIED); }
666
667    void setSuppressFuncError()     { flags.set(SUPPRESS_FUNC_ERROR); }
668    bool suppressFuncError() const  { return flags.isSet(SUPPRESS_FUNC_ERROR); }
669    void setBlockCached()          { flags.set(BLOCK_CACHED); }
670    bool isBlockCached() const     { return flags.isSet(BLOCK_CACHED); }
671    void clearBlockCached()        { flags.clear(BLOCK_CACHED); }
672
673    // Network error conditions... encapsulate them as methods since
674    // their encoding keeps changing (from result field to command
675    // field, etc.)
676    void
677    setBadAddress()
678    {
679        assert(isResponse());
680        cmd = MemCmd::BadAddressError;
681    }
682
683    void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
684
685    Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
686    /**
687     * Update the address of this packet mid-transaction. This is used
688     * by the address mapper to change an already set address to a new
689     * one based on the system configuration. It is intended to remap
690     * an existing address, so it asserts that the current address is
691     * valid.
692     */
693    void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
694
695    unsigned getSize() const  { assert(flags.isSet(VALID_SIZE)); return size; }
696
697    Addr getOffset(unsigned int blk_size) const
698    {
699        return getAddr() & Addr(blk_size - 1);
700    }
701
702    Addr getBlockAddr(unsigned int blk_size) const
703    {
704        return getAddr() & ~(Addr(blk_size - 1));
705    }
706
707    bool isSecure() const
708    {
709        assert(flags.isSet(VALID_ADDR));
710        return _isSecure;
711    }
712
713    /**
714     * Accessor function to atomic op.
715     */
716    AtomicOpFunctor *getAtomicOp() const { return req->getAtomicOpFunctor(); }
717    bool isAtomicOp() const { return req->isAtomic(); }
718
719    /**
720     * It has been determined that the SC packet should successfully update
721     * memory. Therefore, convert this SC packet to a normal write.
722     */
723    void
724    convertScToWrite()
725    {
726        assert(isLLSC());
727        assert(isWrite());
728        cmd = MemCmd::WriteReq;
729    }
730
731    /**
732     * When ruby is in use, Ruby will monitor the cache line and the
733     * phys memory should treat LL ops as normal reads.
734     */
735    void
736    convertLlToRead()
737    {
738        assert(isLLSC());
739        assert(isRead());
740        cmd = MemCmd::ReadReq;
741    }
742
743    /**
744     * Constructor. Note that a Request object must be constructed
745     * first, but the Requests's physical address and size fields need
746     * not be valid. The command must be supplied.
747     */
748    Packet(const RequestPtr &_req, MemCmd _cmd)
749        :  cmd(_cmd), id((PacketId)_req.get()), req(_req), data(nullptr),
750           addr(0), _isSecure(false), size(0), headerDelay(0), snoopDelay(0),
751           payloadDelay(0), senderState(NULL)
752    {
753        if (req->hasPaddr()) {
754            addr = req->getPaddr();
755            flags.set(VALID_ADDR);
756            _isSecure = req->isSecure();
757        }
758        if (req->hasSize()) {
759            size = req->getSize();
760            flags.set(VALID_SIZE);
761        }
762    }
763
764    /**
765     * Alternate constructor if you are trying to create a packet with
766     * a request that is for a whole block, not the address from the
767     * req.  this allows for overriding the size/addr of the req.
768     */
769    Packet(const RequestPtr &_req, MemCmd _cmd, int _blkSize, PacketId _id = 0)
770        :  cmd(_cmd), id(_id ? _id : (PacketId)_req.get()), req(_req),
771           data(nullptr), addr(0), _isSecure(false), headerDelay(0),
772           snoopDelay(0), payloadDelay(0), senderState(NULL)
773    {
774        if (req->hasPaddr()) {
775            addr = req->getPaddr() & ~(_blkSize - 1);
776            flags.set(VALID_ADDR);
777            _isSecure = req->isSecure();
778        }
779        size = _blkSize;
780        flags.set(VALID_SIZE);
781    }
782
783    /**
784     * Alternate constructor for copying a packet.  Copy all fields
785     * *except* if the original packet's data was dynamic, don't copy
786     * that, as we can't guarantee that the new packet's lifetime is
787     * less than that of the original packet.  In this case the new
788     * packet should allocate its own data.
789     */
790    Packet(const PacketPtr pkt, bool clear_flags, bool alloc_data)
791        :  cmd(pkt->cmd), id(pkt->id), req(pkt->req),
792           data(nullptr),
793           addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
794           bytesValid(pkt->bytesValid),
795           headerDelay(pkt->headerDelay),
796           snoopDelay(0),
797           payloadDelay(pkt->payloadDelay),
798           senderState(pkt->senderState)
799    {
800        if (!clear_flags)
801            flags.set(pkt->flags & COPY_FLAGS);
802
803        flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
804
805        // should we allocate space for data, or not, the express
806        // snoops do not need to carry any data as they only serve to
807        // co-ordinate state changes
808        if (alloc_data) {
809            // even if asked to allocate data, if the original packet
810            // holds static data, then the sender will not be doing
811            // any memcpy on receiving the response, thus we simply
812            // carry the pointer forward
813            if (pkt->flags.isSet(STATIC_DATA)) {
814                data = pkt->data;
815                flags.set(STATIC_DATA);
816            } else {
817                allocate();
818            }
819        }
820    }
821
822    /**
823     * Generate the appropriate read MemCmd based on the Request flags.
824     */
825    static MemCmd
826    makeReadCmd(const RequestPtr &req)
827    {
828        if (req->isLLSC())
829            return MemCmd::LoadLockedReq;
830        else if (req->isPrefetch())
831            return MemCmd::SoftPFReq;
832        else
833            return MemCmd::ReadReq;
834    }
835
836    /**
837     * Generate the appropriate write MemCmd based on the Request flags.
838     */
839    static MemCmd
840    makeWriteCmd(const RequestPtr &req)
841    {
842        if (req->isLLSC())
843            return MemCmd::StoreCondReq;
844        else if (req->isSwap())
845            return MemCmd::SwapReq;
846        else if (req->isCacheInvalidate()) {
847          return req->isCacheClean() ? MemCmd::CleanInvalidReq :
848              MemCmd::InvalidateReq;
849        } else if (req->isCacheClean()) {
850            return MemCmd::CleanSharedReq;
851        } else
852            return MemCmd::WriteReq;
853    }
854
855    /**
856     * Constructor-like methods that return Packets based on Request objects.
857     * Fine-tune the MemCmd type if it's not a vanilla read or write.
858     */
859    static PacketPtr
860    createRead(const RequestPtr &req)
861    {
862        return new Packet(req, makeReadCmd(req));
863    }
864
865    static PacketPtr
866    createWrite(const RequestPtr &req)
867    {
868        return new Packet(req, makeWriteCmd(req));
869    }
870
871    /**
872     * clean up packet variables
873     */
874    ~Packet()
875    {
876        deleteData();
877    }
878
879    /**
880     * Take a request packet and modify it in place to be suitable for
881     * returning as a response to that request.
882     */
883    void
884    makeResponse()
885    {
886        assert(needsResponse());
887        assert(isRequest());
888        cmd = cmd.responseCommand();
889
890        // responses are never express, even if the snoop that
891        // triggered them was
892        flags.clear(EXPRESS_SNOOP);
893    }
894
895    void
896    makeAtomicResponse()
897    {
898        makeResponse();
899    }
900
901    void
902    makeTimingResponse()
903    {
904        makeResponse();
905    }
906
907    void
908    setFunctionalResponseStatus(bool success)
909    {
910        if (!success) {
911            if (isWrite()) {
912                cmd = MemCmd::FunctionalWriteError;
913            } else {
914                cmd = MemCmd::FunctionalReadError;
915            }
916        }
917    }
918
919    void
920    setSize(unsigned size)
921    {
922        assert(!flags.isSet(VALID_SIZE));
923
924        this->size = size;
925        flags.set(VALID_SIZE);
926    }
927
928
929  public:
930    /**
931     * @{
932     * @name Data accessor mehtods
933     */
934
935    /**
936     * Set the data pointer to the following value that should not be
937     * freed. Static data allows us to do a single memcpy even if
938     * multiple packets are required to get from source to destination
939     * and back. In essence the pointer is set calling dataStatic on
940     * the original packet, and whenever this packet is copied and
941     * forwarded the same pointer is passed on. When a packet
942     * eventually reaches the destination holding the data, it is
943     * copied once into the location originally set. On the way back
944     * to the source, no copies are necessary.
945     */
946    template <typename T>
947    void
948    dataStatic(T *p)
949    {
950        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
951        data = (PacketDataPtr)p;
952        flags.set(STATIC_DATA);
953    }
954
955    /**
956     * Set the data pointer to the following value that should not be
957     * freed. This version of the function allows the pointer passed
958     * to us to be const. To avoid issues down the line we cast the
959     * constness away, the alternative would be to keep both a const
960     * and non-const data pointer and cleverly choose between
961     * them. Note that this is only allowed for static data.
962     */
963    template <typename T>
964    void
965    dataStaticConst(const T *p)
966    {
967        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
968        data = const_cast<PacketDataPtr>(p);
969        flags.set(STATIC_DATA);
970    }
971
972    /**
973     * Set the data pointer to a value that should have delete []
974     * called on it. Dynamic data is local to this packet, and as the
975     * packet travels from source to destination, forwarded packets
976     * will allocate their own data. When a packet reaches the final
977     * destination it will populate the dynamic data of that specific
978     * packet, and on the way back towards the source, memcpy will be
979     * invoked in every step where a new packet was created e.g. in
980     * the caches. Ultimately when the response reaches the source a
981     * final memcpy is needed to extract the data from the packet
982     * before it is deallocated.
983     */
984    template <typename T>
985    void
986    dataDynamic(T *p)
987    {
988        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
989        data = (PacketDataPtr)p;
990        flags.set(DYNAMIC_DATA);
991    }
992
993    /**
994     * get a pointer to the data ptr.
995     */
996    template <typename T>
997    T*
998    getPtr()
999    {
1000        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
1001        return (T*)data;
1002    }
1003
1004    template <typename T>
1005    const T*
1006    getConstPtr() const
1007    {
1008        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
1009        return (const T*)data;
1010    }
1011
1012    /**
1013     * Get the data in the packet byte swapped from big endian to
1014     * host endian.
1015     */
1016    template <typename T>
1017    T getBE() const;
1018
1019    /**
1020     * Get the data in the packet byte swapped from little endian to
1021     * host endian.
1022     */
1023    template <typename T>
1024    T getLE() const;
1025
1026    /**
1027     * Get the data in the packet byte swapped from the specified
1028     * endianness.
1029     */
1030    template <typename T>
1031    T get(ByteOrder endian) const;
1032
1033    /**
1034     * Get the data in the packet byte swapped from guest to host
1035     * endian.
1036     */
1037    template <typename T>
1038    T get() const;
1039
1040    /** Set the value in the data pointer to v as big endian. */
1041    template <typename T>
1042    void setBE(T v);
1043
1044    /** Set the value in the data pointer to v as little endian. */
1045    template <typename T>
1046    void setLE(T v);
1047
1048    /**
1049     * Set the value in the data pointer to v using the specified
1050     * endianness.
1051     */
1052    template <typename T>
1053    void set(T v, ByteOrder endian);
1054
1055    /** Set the value in the data pointer to v as guest endian. */
1056    template <typename T>
1057    void set(T v);
1058
1059
1060    /**
1061     * Get the data in the packet byte swapped from the specified
1062     * endianness and zero-extended to 64 bits.
1063     */
1064    uint64_t getUintX(ByteOrder endian) const;
1065
1066    /**
1067     * Set the value in the word w after truncating it to the length
1068     * of the packet and then byteswapping it to the desired
1069     * endianness.
1070     */
1071    void setUintX(uint64_t w, ByteOrder endian);
1072
1073    /**
1074     * Copy data into the packet from the provided pointer.
1075     */
1076    void
1077    setData(const uint8_t *p)
1078    {
1079        // we should never be copying data onto itself, which means we
1080        // must idenfity packets with static data, as they carry the
1081        // same pointer from source to destination and back
1082        assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
1083
1084        if (p != getPtr<uint8_t>())
1085            // for packet with allocated dynamic data, we copy data from
1086            // one to the other, e.g. a forwarded response to a response
1087            std::memcpy(getPtr<uint8_t>(), p, getSize());
1088    }
1089
1090    /**
1091     * Copy data into the packet from the provided block pointer,
1092     * which is aligned to the given block size.
1093     */
1094    void
1095    setDataFromBlock(const uint8_t *blk_data, int blkSize)
1096    {
1097        setData(blk_data + getOffset(blkSize));
1098    }
1099
1100    /**
1101     * Copy data from the packet to the memory at the provided pointer.
1102     * @param p Pointer to which data will be copied.
1103     */
1104    void
1105    writeData(uint8_t *p) const
1106    {
1107        std::memcpy(p, getConstPtr<uint8_t>(), getSize());
1108    }
1109
1110    /**
1111     * Copy data from the packet to the provided block pointer, which
1112     * is aligned to the given block size.
1113     * @param blk_data Pointer to block to which data will be copied.
1114     * @param blkSize Block size in bytes.
1115     */
1116    void
1117    writeDataToBlock(uint8_t *blk_data, int blkSize) const
1118    {
1119        writeData(blk_data + getOffset(blkSize));
1120    }
1121
1122    /**
1123     * delete the data pointed to in the data pointer. Ok to call to
1124     * matter how data was allocted.
1125     */
1126    void
1127    deleteData()
1128    {
1129        if (flags.isSet(DYNAMIC_DATA))
1130            delete [] data;
1131
1132        flags.clear(STATIC_DATA|DYNAMIC_DATA);
1133        data = NULL;
1134    }
1135
1136    /** Allocate memory for the packet. */
1137    void
1138    allocate()
1139    {
1140        // if either this command or the response command has a data
1141        // payload, actually allocate space
1142        if (hasData() || hasRespData()) {
1143            assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
1144            flags.set(DYNAMIC_DATA);
1145            data = new uint8_t[getSize()];
1146        }
1147    }
1148
1149    /** @} */
1150
1151  private: // Private data accessor methods
1152    /** Get the data in the packet without byte swapping. */
1153    template <typename T>
1154    T getRaw() const;
1155
1156    /** Set the value in the data pointer to v without byte swapping. */
1157    template <typename T>
1158    void setRaw(T v);
1159
1160  public:
1161    /**
1162     * Check a functional request against a memory value stored in
1163     * another packet (i.e. an in-transit request or
1164     * response). Returns true if the current packet is a read, and
1165     * the other packet provides the data, which is then copied to the
1166     * current packet. If the current packet is a write, and the other
1167     * packet intersects this one, then we update the data
1168     * accordingly.
1169     */
1170    bool
1171    checkFunctional(PacketPtr other)
1172    {
1173        // all packets that are carrying a payload should have a valid
1174        // data pointer
1175        return checkFunctional(other, other->getAddr(), other->isSecure(),
1176                               other->getSize(),
1177                               other->hasData() ?
1178                               other->getPtr<uint8_t>() : NULL);
1179    }
1180
1181    /**
1182     * Does the request need to check for cached copies of the same block
1183     * in the memory hierarchy above.
1184     **/
1185    bool
1186    mustCheckAbove() const
1187    {
1188        return cmd == MemCmd::HardPFReq || isEviction();
1189    }
1190
1191    /**
1192     * Is this packet a clean eviction, including both actual clean
1193     * evict packets, but also clean writebacks.
1194     */
1195    bool
1196    isCleanEviction() const
1197    {
1198        return cmd == MemCmd::CleanEvict || cmd == MemCmd::WritebackClean;
1199    }
1200
1201    /**
1202     * Check a functional request against a memory value represented
1203     * by a base/size pair and an associated data array. If the
1204     * current packet is a read, it may be satisfied by the memory
1205     * value. If the current packet is a write, it may update the
1206     * memory value.
1207     */
1208    bool
1209    checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
1210                    uint8_t *_data);
1211
1212    /**
1213     * Push label for PrintReq (safe to call unconditionally).
1214     */
1215    void
1216    pushLabel(const std::string &lbl)
1217    {
1218        if (isPrint())
1219            safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
1220    }
1221
1222    /**
1223     * Pop label for PrintReq (safe to call unconditionally).
1224     */
1225    void
1226    popLabel()
1227    {
1228        if (isPrint())
1229            safe_cast<PrintReqState*>(senderState)->popLabel();
1230    }
1231
1232    void print(std::ostream &o, int verbosity = 0,
1233               const std::string &prefix = "") const;
1234
1235    /**
1236     * A no-args wrapper of print(std::ostream...)
1237     * meant to be invoked from DPRINTFs
1238     * avoiding string overheads in fast mode
1239     * @return string with the request's type and start<->end addresses
1240     */
1241    std::string print() const;
1242};
1243
1244#endif //__MEM_PACKET_HH
1245