packet.hh revision 11284:b3926db25371
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 *          Steve Reinhardt
43 *          Ali Saidi
44 *          Andreas Hansson
45 */
46
47/**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52#ifndef __MEM_PACKET_HH__
53#define __MEM_PACKET_HH__
54
55#include <bitset>
56#include <cassert>
57#include <list>
58
59#include "base/cast.hh"
60#include "base/compiler.hh"
61#include "base/flags.hh"
62#include "base/misc.hh"
63#include "base/printable.hh"
64#include "base/types.hh"
65#include "mem/request.hh"
66#include "sim/core.hh"
67
68class Packet;
69typedef Packet *PacketPtr;
70typedef uint8_t* PacketDataPtr;
71typedef std::list<PacketPtr> PacketList;
72
73class MemCmd
74{
75    friend class Packet;
76
77  public:
78    /**
79     * List of all commands associated with a packet.
80     */
81    enum Command
82    {
83        InvalidCmd,
84        ReadReq,
85        ReadResp,
86        ReadRespWithInvalidate,
87        WriteReq,
88        WriteResp,
89        WritebackDirty,
90        WritebackClean,
91        CleanEvict,
92        SoftPFReq,
93        HardPFReq,
94        SoftPFResp,
95        HardPFResp,
96        WriteLineReq,
97        UpgradeReq,
98        SCUpgradeReq,           // Special "weak" upgrade for StoreCond
99        UpgradeResp,
100        SCUpgradeFailReq,       // Failed SCUpgradeReq in MSHR (never sent)
101        UpgradeFailResp,        // Valid for SCUpgradeReq only
102        ReadExReq,
103        ReadExResp,
104        ReadCleanReq,
105        ReadSharedReq,
106        LoadLockedReq,
107        StoreCondReq,
108        StoreCondFailReq,       // Failed StoreCondReq in MSHR (never sent)
109        StoreCondResp,
110        SwapReq,
111        SwapResp,
112        MessageReq,
113        MessageResp,
114        MemFenceReq,
115        MemFenceResp,
116        // Error responses
117        // @TODO these should be classified as responses rather than
118        // requests; coding them as requests initially for backwards
119        // compatibility
120        InvalidDestError,  // packet dest field invalid
121        BadAddressError,   // memory address invalid
122        FunctionalReadError, // unable to fulfill functional read
123        FunctionalWriteError, // unable to fulfill functional write
124        // Fake simulator-only commands
125        PrintReq,       // Print state matching address
126        FlushReq,      //request for a cache flush
127        InvalidateReq,   // request for address to be invalidated
128        InvalidateResp,
129        NUM_MEM_CMDS
130    };
131
132  private:
133    /**
134     * List of command attributes.
135     */
136    enum Attribute
137    {
138        IsRead,         //!< Data flows from responder to requester
139        IsWrite,        //!< Data flows from requester to responder
140        IsUpgrade,
141        IsInvalidate,
142        NeedsWritable,  //!< Requires writable copy to complete in-cache
143        IsRequest,      //!< Issued by requester
144        IsResponse,     //!< Issue by responder
145        NeedsResponse,  //!< Requester needs response from target
146        IsEviction,
147        IsSWPrefetch,
148        IsHWPrefetch,
149        IsLlsc,         //!< Alpha/MIPS LL or SC access
150        HasData,        //!< There is an associated payload
151        IsError,        //!< Error response
152        IsPrint,        //!< Print state matching address (for debugging)
153        IsFlush,        //!< Flush the address from caches
154        NUM_COMMAND_ATTRIBUTES
155    };
156
157    /**
158     * Structure that defines attributes and other data associated
159     * with a Command.
160     */
161    struct CommandInfo
162    {
163        /// Set of attribute flags.
164        const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
165        /// Corresponding response for requests; InvalidCmd if no
166        /// response is applicable.
167        const Command response;
168        /// String representation (for printing)
169        const std::string str;
170    };
171
172    /// Array to map Command enum to associated info.
173    static const CommandInfo commandInfo[];
174
175  private:
176
177    Command cmd;
178
179    bool
180    testCmdAttrib(MemCmd::Attribute attrib) const
181    {
182        return commandInfo[cmd].attributes[attrib] != 0;
183    }
184
185  public:
186
187    bool isRead() const            { return testCmdAttrib(IsRead); }
188    bool isWrite() const           { return testCmdAttrib(IsWrite); }
189    bool isUpgrade() const         { return testCmdAttrib(IsUpgrade); }
190    bool isRequest() const         { return testCmdAttrib(IsRequest); }
191    bool isResponse() const        { return testCmdAttrib(IsResponse); }
192    bool needsWritable() const     { return testCmdAttrib(NeedsWritable); }
193    bool needsResponse() const     { return testCmdAttrib(NeedsResponse); }
194    bool isInvalidate() const      { return testCmdAttrib(IsInvalidate); }
195    bool isEviction() const        { return testCmdAttrib(IsEviction); }
196
197    /**
198     * A writeback is an eviction that carries data.
199     */
200    bool isWriteback() const       { return testCmdAttrib(IsEviction) &&
201                                            testCmdAttrib(HasData); }
202
203    /**
204     * Check if this particular packet type carries payload data. Note
205     * that this does not reflect if the data pointer of the packet is
206     * valid or not.
207     */
208    bool hasData() const        { return testCmdAttrib(HasData); }
209    bool isLLSC() const         { return testCmdAttrib(IsLlsc); }
210    bool isSWPrefetch() const   { return testCmdAttrib(IsSWPrefetch); }
211    bool isHWPrefetch() const   { return testCmdAttrib(IsHWPrefetch); }
212    bool isPrefetch() const     { return testCmdAttrib(IsSWPrefetch) ||
213                                         testCmdAttrib(IsHWPrefetch); }
214    bool isError() const        { return testCmdAttrib(IsError); }
215    bool isPrint() const        { return testCmdAttrib(IsPrint); }
216    bool isFlush() const        { return testCmdAttrib(IsFlush); }
217
218    const Command
219    responseCommand() const
220    {
221        return commandInfo[cmd].response;
222    }
223
224    /// Return the string to a cmd given by idx.
225    const std::string &toString() const { return commandInfo[cmd].str; }
226    int toInt() const { return (int)cmd; }
227
228    MemCmd(Command _cmd) : cmd(_cmd) { }
229    MemCmd(int _cmd) : cmd((Command)_cmd) { }
230    MemCmd() : cmd(InvalidCmd) { }
231
232    bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
233    bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
234};
235
236/**
237 * A Packet is used to encapsulate a transfer between two objects in
238 * the memory system (e.g., the L1 and L2 cache).  (In contrast, a
239 * single Request travels all the way from the requester to the
240 * ultimate destination and back, possibly being conveyed by several
241 * different Packets along the way.)
242 */
243class Packet : public Printable
244{
245  public:
246    typedef uint32_t FlagsType;
247    typedef ::Flags<FlagsType> Flags;
248
249  private:
250
251    enum : FlagsType {
252        // Flags to transfer across when copying a packet
253        COPY_FLAGS             = 0x0000000F,
254
255        // Does this packet have sharers (which means it should not be
256        // considered writable) or not. See setHasSharers below.
257        HAS_SHARERS            = 0x00000001,
258
259        // Special control flags
260        /// Special timing-mode atomic snoop for multi-level coherence.
261        EXPRESS_SNOOP          = 0x00000002,
262
263        /// Allow a responding cache to inform the cache hierarchy
264        /// that it had a writable copy before responding. See
265        /// setResponderHadWritable below.
266        RESPONDER_HAD_WRITABLE = 0x00000004,
267
268        // Snoop co-ordination flag to indicate that a cache is
269        // responding to a snoop. See setCacheResponding below.
270        CACHE_RESPONDING       = 0x00000008,
271
272        /// Are the 'addr' and 'size' fields valid?
273        VALID_ADDR             = 0x00000100,
274        VALID_SIZE             = 0x00000200,
275
276        /// Is the data pointer set to a value that shouldn't be freed
277        /// when the packet is destroyed?
278        STATIC_DATA            = 0x00001000,
279        /// The data pointer points to a value that should be freed when
280        /// the packet is destroyed. The pointer is assumed to be pointing
281        /// to an array, and delete [] is consequently called
282        DYNAMIC_DATA           = 0x00002000,
283
284        /// suppress the error if this packet encounters a functional
285        /// access failure.
286        SUPPRESS_FUNC_ERROR    = 0x00008000,
287
288        // Signal block present to squash prefetch and cache evict packets
289        // through express snoop flag
290        BLOCK_CACHED          = 0x00010000
291    };
292
293    Flags flags;
294
295  public:
296    typedef MemCmd::Command Command;
297
298    /// The command field of the packet.
299    MemCmd cmd;
300
301    /// A pointer to the original request.
302    const RequestPtr req;
303
304  private:
305   /**
306    * A pointer to the data being transfered.  It can be differnt
307    * sizes at each level of the heirarchy so it belongs in the
308    * packet, not request. This may or may not be populated when a
309    * responder recieves the packet. If not populated it memory should
310    * be allocated.
311    */
312    PacketDataPtr data;
313
314    /// The address of the request.  This address could be virtual or
315    /// physical, depending on the system configuration.
316    Addr addr;
317
318    /// True if the request targets the secure memory space.
319    bool _isSecure;
320
321    /// The size of the request or transfer.
322    unsigned size;
323
324    /**
325     * Track the bytes found that satisfy a functional read.
326     */
327    std::vector<bool> bytesValid;
328
329  public:
330
331    /**
332     * The extra delay from seeing the packet until the header is
333     * transmitted. This delay is used to communicate the crossbar
334     * forwarding latency to the neighbouring object (e.g. a cache)
335     * that actually makes the packet wait. As the delay is relative,
336     * a 32-bit unsigned should be sufficient.
337     */
338    uint32_t headerDelay;
339
340    /**
341     * Keep track of the extra delay incurred by snooping upwards
342     * before sending a request down the memory system. This is used
343     * by the coherent crossbar to account for the additional request
344     * delay.
345     */
346    uint32_t snoopDelay;
347
348    /**
349     * The extra pipelining delay from seeing the packet until the end of
350     * payload is transmitted by the component that provided it (if
351     * any). This includes the header delay. Similar to the header
352     * delay, this is used to make up for the fact that the
353     * crossbar does not make the packet wait. As the delay is
354     * relative, a 32-bit unsigned should be sufficient.
355     */
356    uint32_t payloadDelay;
357
358    /**
359     * A virtual base opaque structure used to hold state associated
360     * with the packet (e.g., an MSHR), specific to a MemObject that
361     * sees the packet. A pointer to this state is returned in the
362     * packet's response so that the MemObject in question can quickly
363     * look up the state needed to process it. A specific subclass
364     * would be derived from this to carry state specific to a
365     * particular sending device.
366     *
367     * As multiple MemObjects may add their SenderState throughout the
368     * memory system, the SenderStates create a stack, where a
369     * MemObject can add a new Senderstate, as long as the
370     * predecessing SenderState is restored when the response comes
371     * back. For this reason, the predecessor should always be
372     * populated with the current SenderState of a packet before
373     * modifying the senderState field in the request packet.
374     */
375    struct SenderState
376    {
377        SenderState* predecessor;
378        SenderState() : predecessor(NULL) {}
379        virtual ~SenderState() {}
380    };
381
382    /**
383     * Object used to maintain state of a PrintReq.  The senderState
384     * field of a PrintReq should always be of this type.
385     */
386    class PrintReqState : public SenderState
387    {
388      private:
389        /**
390         * An entry in the label stack.
391         */
392        struct LabelStackEntry
393        {
394            const std::string label;
395            std::string *prefix;
396            bool labelPrinted;
397            LabelStackEntry(const std::string &_label, std::string *_prefix);
398        };
399
400        typedef std::list<LabelStackEntry> LabelStack;
401        LabelStack labelStack;
402
403        std::string *curPrefixPtr;
404
405      public:
406        std::ostream &os;
407        const int verbosity;
408
409        PrintReqState(std::ostream &os, int verbosity = 0);
410        ~PrintReqState();
411
412        /**
413         * Returns the current line prefix.
414         */
415        const std::string &curPrefix() { return *curPrefixPtr; }
416
417        /**
418         * Push a label onto the label stack, and prepend the given
419         * prefix string onto the current prefix.  Labels will only be
420         * printed if an object within the label's scope is printed.
421         */
422        void pushLabel(const std::string &lbl,
423                       const std::string &prefix = "  ");
424
425        /**
426         * Pop a label off the label stack.
427         */
428        void popLabel();
429
430        /**
431         * Print all of the pending unprinted labels on the
432         * stack. Called by printObj(), so normally not called by
433         * users unless bypassing printObj().
434         */
435        void printLabels();
436
437        /**
438         * Print a Printable object to os, because it matched the
439         * address on a PrintReq.
440         */
441        void printObj(Printable *obj);
442    };
443
444    /**
445     * This packet's sender state.  Devices should use dynamic_cast<>
446     * to cast to the state appropriate to the sender.  The intent of
447     * this variable is to allow a device to attach extra information
448     * to a request. A response packet must return the sender state
449     * that was attached to the original request (even if a new packet
450     * is created).
451     */
452    SenderState *senderState;
453
454    /**
455     * Push a new sender state to the packet and make the current
456     * sender state the predecessor of the new one. This should be
457     * prefered over direct manipulation of the senderState member
458     * variable.
459     *
460     * @param sender_state SenderState to push at the top of the stack
461     */
462    void pushSenderState(SenderState *sender_state);
463
464    /**
465     * Pop the top of the state stack and return a pointer to it. This
466     * assumes the current sender state is not NULL. This should be
467     * preferred over direct manipulation of the senderState member
468     * variable.
469     *
470     * @return The current top of the stack
471     */
472    SenderState *popSenderState();
473
474    /**
475     * Go through the sender state stack and return the first instance
476     * that is of type T (as determined by a dynamic_cast). If there
477     * is no sender state of type T, NULL is returned.
478     *
479     * @return The topmost state of type T
480     */
481    template <typename T>
482    T * findNextSenderState() const
483    {
484        T *t = NULL;
485        SenderState* sender_state = senderState;
486        while (t == NULL && sender_state != NULL) {
487            t = dynamic_cast<T*>(sender_state);
488            sender_state = sender_state->predecessor;
489        }
490        return t;
491    }
492
493    /// Return the string name of the cmd field (for debugging and
494    /// tracing).
495    const std::string &cmdString() const { return cmd.toString(); }
496
497    /// Return the index of this command.
498    inline int cmdToIndex() const { return cmd.toInt(); }
499
500    bool isRead() const              { return cmd.isRead(); }
501    bool isWrite() const             { return cmd.isWrite(); }
502    bool isUpgrade()  const          { return cmd.isUpgrade(); }
503    bool isRequest() const           { return cmd.isRequest(); }
504    bool isResponse() const          { return cmd.isResponse(); }
505    bool needsWritable() const       { return cmd.needsWritable(); }
506    bool needsResponse() const       { return cmd.needsResponse(); }
507    bool isInvalidate() const        { return cmd.isInvalidate(); }
508    bool isEviction() const          { return cmd.isEviction(); }
509    bool isWriteback() const         { return cmd.isWriteback(); }
510    bool hasData() const             { return cmd.hasData(); }
511    bool isLLSC() const              { return cmd.isLLSC(); }
512    bool isError() const             { return cmd.isError(); }
513    bool isPrint() const             { return cmd.isPrint(); }
514    bool isFlush() const             { return cmd.isFlush(); }
515
516    //@{
517    /// Snoop flags
518    /**
519     * Set the cacheResponding flag. This is used by the caches to
520     * signal another cache that they are responding to a request. A
521     * cache will only respond to snoops if it has the line in either
522     * Modified or Owned state. Note that on snoop hits we always pass
523     * the line as Modified and never Owned. In the case of an Owned
524     * line we proceed to invalidate all other copies.
525     *
526     * On a cache fill (see Cache::handleFill), we check hasSharers
527     * first, ignoring the cacheResponding flag if hasSharers is set.
528     * A line is consequently allocated as:
529     *
530     * hasSharers cacheResponding state
531     * true       false           Shared
532     * true       true            Shared
533     * false      false           Exclusive
534     * false      true            Modified
535     */
536    void setCacheResponding()
537    {
538        assert(isRequest());
539        assert(!flags.isSet(CACHE_RESPONDING));
540        flags.set(CACHE_RESPONDING);
541    }
542    bool cacheResponding() const { return flags.isSet(CACHE_RESPONDING); }
543    /**
544     * On fills, the hasSharers flag is used by the caches in
545     * combination with the cacheResponding flag, as clarified
546     * above. If the hasSharers flag is not set, the packet is passing
547     * writable. Thus, a response from a memory passes the line as
548     * writable by default.
549     *
550     * The hasSharers flag is also used by upstream caches to inform a
551     * downstream cache that they have the block (by calling
552     * setHasSharers on snoop request packets that hit in upstream
553     * cachs tags or MSHRs). If the snoop packet has sharers, a
554     * downstream cache is prevented from passing a dirty line upwards
555     * if it was not explicitly asked for a writable copy. See
556     * Cache::satisfyCpuSideRequest.
557     *
558     * The hasSharers flag is also used on writebacks, in
559     * combination with the WritbackClean or WritebackDirty commands,
560     * to allocate the block downstream either as:
561     *
562     * command        hasSharers state
563     * WritebackDirty false      Modified
564     * WritebackDirty true       Owned
565     * WritebackClean false      Exclusive
566     * WritebackClean true       Shared
567     */
568    void setHasSharers()    { flags.set(HAS_SHARERS); }
569    bool hasSharers() const { return flags.isSet(HAS_SHARERS); }
570    //@}
571
572    /**
573     * The express snoop flag is used for two purposes. Firstly, it is
574     * used to bypass flow control for normal (non-snoop) requests
575     * going downstream in the memory system. In cases where a cache
576     * is responding to a snoop from another cache (it had a dirty
577     * line), but the line is not writable (and there are possibly
578     * other copies), the express snoop flag is set by the downstream
579     * cache to invalidate all other copies in zero time. Secondly,
580     * the express snoop flag is also set to be able to distinguish
581     * snoop packets that came from a downstream cache, rather than
582     * snoop packets from neighbouring caches.
583     */
584    void setExpressSnoop()      { flags.set(EXPRESS_SNOOP); }
585    bool isExpressSnoop() const { return flags.isSet(EXPRESS_SNOOP); }
586
587    /**
588     * On responding to a snoop request (which only happens for
589     * Modified or Owned lines), make sure that we can transform an
590     * Owned response to a Modified one. If this flag is not set, the
591     * responding cache had the line in the Owned state, and there are
592     * possibly other Shared copies in the memory system. A downstream
593     * cache helps in orchestrating the invalidation of these copies
594     * by sending out the appropriate express snoops.
595     */
596    void setResponderHadWritable()
597    {
598        assert(cacheResponding());
599        flags.set(RESPONDER_HAD_WRITABLE);
600    }
601    bool responderHadWritable() const
602    { return flags.isSet(RESPONDER_HAD_WRITABLE); }
603
604    void setSuppressFuncError()     { flags.set(SUPPRESS_FUNC_ERROR); }
605    bool suppressFuncError() const  { return flags.isSet(SUPPRESS_FUNC_ERROR); }
606    void setBlockCached()          { flags.set(BLOCK_CACHED); }
607    bool isBlockCached() const     { return flags.isSet(BLOCK_CACHED); }
608    void clearBlockCached()        { flags.clear(BLOCK_CACHED); }
609
610    // Network error conditions... encapsulate them as methods since
611    // their encoding keeps changing (from result field to command
612    // field, etc.)
613    void
614    setBadAddress()
615    {
616        assert(isResponse());
617        cmd = MemCmd::BadAddressError;
618    }
619
620    void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
621
622    Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
623    /**
624     * Update the address of this packet mid-transaction. This is used
625     * by the address mapper to change an already set address to a new
626     * one based on the system configuration. It is intended to remap
627     * an existing address, so it asserts that the current address is
628     * valid.
629     */
630    void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
631
632    unsigned getSize() const  { assert(flags.isSet(VALID_SIZE)); return size; }
633
634    Addr getOffset(unsigned int blk_size) const
635    {
636        return getAddr() & Addr(blk_size - 1);
637    }
638
639    Addr getBlockAddr(unsigned int blk_size) const
640    {
641        return getAddr() & ~(Addr(blk_size - 1));
642    }
643
644    bool isSecure() const
645    {
646        assert(flags.isSet(VALID_ADDR));
647        return _isSecure;
648    }
649
650    /**
651     * It has been determined that the SC packet should successfully update
652     * memory. Therefore, convert this SC packet to a normal write.
653     */
654    void
655    convertScToWrite()
656    {
657        assert(isLLSC());
658        assert(isWrite());
659        cmd = MemCmd::WriteReq;
660    }
661
662    /**
663     * When ruby is in use, Ruby will monitor the cache line and the
664     * phys memory should treat LL ops as normal reads.
665     */
666    void
667    convertLlToRead()
668    {
669        assert(isLLSC());
670        assert(isRead());
671        cmd = MemCmd::ReadReq;
672    }
673
674    /**
675     * Constructor. Note that a Request object must be constructed
676     * first, but the Requests's physical address and size fields need
677     * not be valid. The command must be supplied.
678     */
679    Packet(const RequestPtr _req, MemCmd _cmd)
680        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
681           size(0), headerDelay(0), snoopDelay(0), payloadDelay(0),
682           senderState(NULL)
683    {
684        if (req->hasPaddr()) {
685            addr = req->getPaddr();
686            flags.set(VALID_ADDR);
687            _isSecure = req->isSecure();
688        }
689        if (req->hasSize()) {
690            size = req->getSize();
691            flags.set(VALID_SIZE);
692        }
693    }
694
695    /**
696     * Alternate constructor if you are trying to create a packet with
697     * a request that is for a whole block, not the address from the
698     * req.  this allows for overriding the size/addr of the req.
699     */
700    Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
701        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
702           headerDelay(0), snoopDelay(0), payloadDelay(0),
703           senderState(NULL)
704    {
705        if (req->hasPaddr()) {
706            addr = req->getPaddr() & ~(_blkSize - 1);
707            flags.set(VALID_ADDR);
708            _isSecure = req->isSecure();
709        }
710        size = _blkSize;
711        flags.set(VALID_SIZE);
712    }
713
714    /**
715     * Alternate constructor for copying a packet.  Copy all fields
716     * *except* if the original packet's data was dynamic, don't copy
717     * that, as we can't guarantee that the new packet's lifetime is
718     * less than that of the original packet.  In this case the new
719     * packet should allocate its own data.
720     */
721    Packet(const PacketPtr pkt, bool clear_flags, bool alloc_data)
722        :  cmd(pkt->cmd), req(pkt->req),
723           data(nullptr),
724           addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
725           bytesValid(pkt->bytesValid),
726           headerDelay(pkt->headerDelay),
727           snoopDelay(0),
728           payloadDelay(pkt->payloadDelay),
729           senderState(pkt->senderState)
730    {
731        if (!clear_flags)
732            flags.set(pkt->flags & COPY_FLAGS);
733
734        flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
735
736        // should we allocate space for data, or not, the express
737        // snoops do not need to carry any data as they only serve to
738        // co-ordinate state changes
739        if (alloc_data) {
740            // even if asked to allocate data, if the original packet
741            // holds static data, then the sender will not be doing
742            // any memcpy on receiving the response, thus we simply
743            // carry the pointer forward
744            if (pkt->flags.isSet(STATIC_DATA)) {
745                data = pkt->data;
746                flags.set(STATIC_DATA);
747            } else {
748                allocate();
749            }
750        }
751    }
752
753    /**
754     * Generate the appropriate read MemCmd based on the Request flags.
755     */
756    static MemCmd
757    makeReadCmd(const RequestPtr req)
758    {
759        if (req->isLLSC())
760            return MemCmd::LoadLockedReq;
761        else if (req->isPrefetch())
762            return MemCmd::SoftPFReq;
763        else
764            return MemCmd::ReadReq;
765    }
766
767    /**
768     * Generate the appropriate write MemCmd based on the Request flags.
769     */
770    static MemCmd
771    makeWriteCmd(const RequestPtr req)
772    {
773        if (req->isLLSC())
774            return MemCmd::StoreCondReq;
775        else if (req->isSwap())
776            return MemCmd::SwapReq;
777        else
778            return MemCmd::WriteReq;
779    }
780
781    /**
782     * Constructor-like methods that return Packets based on Request objects.
783     * Fine-tune the MemCmd type if it's not a vanilla read or write.
784     */
785    static PacketPtr
786    createRead(const RequestPtr req)
787    {
788        return new Packet(req, makeReadCmd(req));
789    }
790
791    static PacketPtr
792    createWrite(const RequestPtr req)
793    {
794        return new Packet(req, makeWriteCmd(req));
795    }
796
797    /**
798     * clean up packet variables
799     */
800    ~Packet()
801    {
802        // Delete the request object if this is a request packet which
803        // does not need a response, because the requester will not get
804        // a chance. If the request packet needs a response then the
805        // request will be deleted on receipt of the response
806        // packet. We also make sure to never delete the request for
807        // express snoops, even for cases when responses are not
808        // needed (CleanEvict and Writeback), since the snoop packet
809        // re-uses the same request.
810        if (req && isRequest() && !needsResponse() &&
811            !isExpressSnoop()) {
812            delete req;
813        }
814        deleteData();
815    }
816
817    /**
818     * Take a request packet and modify it in place to be suitable for
819     * returning as a response to that request.
820     */
821    void
822    makeResponse()
823    {
824        assert(needsResponse());
825        assert(isRequest());
826        cmd = cmd.responseCommand();
827
828        // responses are never express, even if the snoop that
829        // triggered them was
830        flags.clear(EXPRESS_SNOOP);
831    }
832
833    void
834    makeAtomicResponse()
835    {
836        makeResponse();
837    }
838
839    void
840    makeTimingResponse()
841    {
842        makeResponse();
843    }
844
845    void
846    setFunctionalResponseStatus(bool success)
847    {
848        if (!success) {
849            if (isWrite()) {
850                cmd = MemCmd::FunctionalWriteError;
851            } else {
852                cmd = MemCmd::FunctionalReadError;
853            }
854        }
855    }
856
857    void
858    setSize(unsigned size)
859    {
860        assert(!flags.isSet(VALID_SIZE));
861
862        this->size = size;
863        flags.set(VALID_SIZE);
864    }
865
866
867  public:
868    /**
869     * @{
870     * @name Data accessor mehtods
871     */
872
873    /**
874     * Set the data pointer to the following value that should not be
875     * freed. Static data allows us to do a single memcpy even if
876     * multiple packets are required to get from source to destination
877     * and back. In essence the pointer is set calling dataStatic on
878     * the original packet, and whenever this packet is copied and
879     * forwarded the same pointer is passed on. When a packet
880     * eventually reaches the destination holding the data, it is
881     * copied once into the location originally set. On the way back
882     * to the source, no copies are necessary.
883     */
884    template <typename T>
885    void
886    dataStatic(T *p)
887    {
888        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
889        data = (PacketDataPtr)p;
890        flags.set(STATIC_DATA);
891    }
892
893    /**
894     * Set the data pointer to the following value that should not be
895     * freed. This version of the function allows the pointer passed
896     * to us to be const. To avoid issues down the line we cast the
897     * constness away, the alternative would be to keep both a const
898     * and non-const data pointer and cleverly choose between
899     * them. Note that this is only allowed for static data.
900     */
901    template <typename T>
902    void
903    dataStaticConst(const T *p)
904    {
905        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
906        data = const_cast<PacketDataPtr>(p);
907        flags.set(STATIC_DATA);
908    }
909
910    /**
911     * Set the data pointer to a value that should have delete []
912     * called on it. Dynamic data is local to this packet, and as the
913     * packet travels from source to destination, forwarded packets
914     * will allocate their own data. When a packet reaches the final
915     * destination it will populate the dynamic data of that specific
916     * packet, and on the way back towards the source, memcpy will be
917     * invoked in every step where a new packet was created e.g. in
918     * the caches. Ultimately when the response reaches the source a
919     * final memcpy is needed to extract the data from the packet
920     * before it is deallocated.
921     */
922    template <typename T>
923    void
924    dataDynamic(T *p)
925    {
926        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
927        data = (PacketDataPtr)p;
928        flags.set(DYNAMIC_DATA);
929    }
930
931    /**
932     * get a pointer to the data ptr.
933     */
934    template <typename T>
935    T*
936    getPtr()
937    {
938        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
939        return (T*)data;
940    }
941
942    template <typename T>
943    const T*
944    getConstPtr() const
945    {
946        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
947        return (const T*)data;
948    }
949
950    /**
951     * Get the data in the packet byte swapped from big endian to
952     * host endian.
953     */
954    template <typename T>
955    T getBE() const;
956
957    /**
958     * Get the data in the packet byte swapped from little endian to
959     * host endian.
960     */
961    template <typename T>
962    T getLE() const;
963
964    /**
965     * Get the data in the packet byte swapped from the specified
966     * endianness.
967     */
968    template <typename T>
969    T get(ByteOrder endian) const;
970
971    /**
972     * Get the data in the packet byte swapped from guest to host
973     * endian.
974     */
975    template <typename T>
976    T get() const;
977
978    /** Set the value in the data pointer to v as big endian. */
979    template <typename T>
980    void setBE(T v);
981
982    /** Set the value in the data pointer to v as little endian. */
983    template <typename T>
984    void setLE(T v);
985
986    /**
987     * Set the value in the data pointer to v using the specified
988     * endianness.
989     */
990    template <typename T>
991    void set(T v, ByteOrder endian);
992
993    /** Set the value in the data pointer to v as guest endian. */
994    template <typename T>
995    void set(T v);
996
997    /**
998     * Copy data into the packet from the provided pointer.
999     */
1000    void
1001    setData(const uint8_t *p)
1002    {
1003        // we should never be copying data onto itself, which means we
1004        // must idenfity packets with static data, as they carry the
1005        // same pointer from source to destination and back
1006        assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
1007
1008        if (p != getPtr<uint8_t>())
1009            // for packet with allocated dynamic data, we copy data from
1010            // one to the other, e.g. a forwarded response to a response
1011            std::memcpy(getPtr<uint8_t>(), p, getSize());
1012    }
1013
1014    /**
1015     * Copy data into the packet from the provided block pointer,
1016     * which is aligned to the given block size.
1017     */
1018    void
1019    setDataFromBlock(const uint8_t *blk_data, int blkSize)
1020    {
1021        setData(blk_data + getOffset(blkSize));
1022    }
1023
1024    /**
1025     * Copy data from the packet to the provided block pointer, which
1026     * is aligned to the given block size.
1027     */
1028    void
1029    writeData(uint8_t *p) const
1030    {
1031        std::memcpy(p, getConstPtr<uint8_t>(), getSize());
1032    }
1033
1034    /**
1035     * Copy data from the packet to the memory at the provided pointer.
1036     */
1037    void
1038    writeDataToBlock(uint8_t *blk_data, int blkSize) const
1039    {
1040        writeData(blk_data + getOffset(blkSize));
1041    }
1042
1043    /**
1044     * delete the data pointed to in the data pointer. Ok to call to
1045     * matter how data was allocted.
1046     */
1047    void
1048    deleteData()
1049    {
1050        if (flags.isSet(DYNAMIC_DATA))
1051            delete [] data;
1052
1053        flags.clear(STATIC_DATA|DYNAMIC_DATA);
1054        data = NULL;
1055    }
1056
1057    /** Allocate memory for the packet. */
1058    void
1059    allocate()
1060    {
1061        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
1062        flags.set(DYNAMIC_DATA);
1063        data = new uint8_t[getSize()];
1064    }
1065
1066    /** @} */
1067
1068  private: // Private data accessor methods
1069    /** Get the data in the packet without byte swapping. */
1070    template <typename T>
1071    T getRaw() const;
1072
1073    /** Set the value in the data pointer to v without byte swapping. */
1074    template <typename T>
1075    void setRaw(T v);
1076
1077  public:
1078    /**
1079     * Check a functional request against a memory value stored in
1080     * another packet (i.e. an in-transit request or
1081     * response). Returns true if the current packet is a read, and
1082     * the other packet provides the data, which is then copied to the
1083     * current packet. If the current packet is a write, and the other
1084     * packet intersects this one, then we update the data
1085     * accordingly.
1086     */
1087    bool
1088    checkFunctional(PacketPtr other)
1089    {
1090        // all packets that are carrying a payload should have a valid
1091        // data pointer
1092        return checkFunctional(other, other->getAddr(), other->isSecure(),
1093                               other->getSize(),
1094                               other->hasData() ?
1095                               other->getPtr<uint8_t>() : NULL);
1096    }
1097
1098    /**
1099     * Does the request need to check for cached copies of the same block
1100     * in the memory hierarchy above.
1101     **/
1102    bool
1103    mustCheckAbove() const
1104    {
1105        return cmd == MemCmd::HardPFReq || isEviction();
1106    }
1107
1108    /**
1109     * Is this packet a clean eviction, including both actual clean
1110     * evict packets, but also clean writebacks.
1111     */
1112    bool
1113    isCleanEviction() const
1114    {
1115        return cmd == MemCmd::CleanEvict || cmd == MemCmd::WritebackClean;
1116    }
1117
1118    /**
1119     * Check a functional request against a memory value represented
1120     * by a base/size pair and an associated data array. If the
1121     * current packet is a read, it may be satisfied by the memory
1122     * value. If the current packet is a write, it may update the
1123     * memory value.
1124     */
1125    bool
1126    checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
1127                    uint8_t *_data);
1128
1129    /**
1130     * Push label for PrintReq (safe to call unconditionally).
1131     */
1132    void
1133    pushLabel(const std::string &lbl)
1134    {
1135        if (isPrint())
1136            safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
1137    }
1138
1139    /**
1140     * Pop label for PrintReq (safe to call unconditionally).
1141     */
1142    void
1143    popLabel()
1144    {
1145        if (isPrint())
1146            safe_cast<PrintReqState*>(senderState)->popLabel();
1147    }
1148
1149    void print(std::ostream &o, int verbosity = 0,
1150               const std::string &prefix = "") const;
1151
1152    /**
1153     * A no-args wrapper of print(std::ostream...)
1154     * meant to be invoked from DPRINTFs
1155     * avoiding string overheads in fast mode
1156     * @return string with the request's type and start<->end addresses
1157     */
1158    std::string print() const;
1159};
1160
1161#endif //__MEM_PACKET_HH
1162