packet.hh revision 11056:842f56345a42
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 *          Steve Reinhardt
43 *          Ali Saidi
44 *          Andreas Hansson
45 */
46
47/**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52#ifndef __MEM_PACKET_HH__
53#define __MEM_PACKET_HH__
54
55#include <bitset>
56#include <cassert>
57#include <list>
58
59#include "base/cast.hh"
60#include "base/compiler.hh"
61#include "base/flags.hh"
62#include "base/misc.hh"
63#include "base/printable.hh"
64#include "base/types.hh"
65#include "mem/request.hh"
66#include "sim/core.hh"
67
68class Packet;
69typedef Packet *PacketPtr;
70typedef uint8_t* PacketDataPtr;
71typedef std::list<PacketPtr> PacketList;
72
73class MemCmd
74{
75    friend class Packet;
76
77  public:
78    /**
79     * List of all commands associated with a packet.
80     */
81    enum Command
82    {
83        InvalidCmd,
84        ReadReq,
85        ReadResp,
86        ReadRespWithInvalidate,
87        WriteReq,
88        WriteResp,
89        Writeback,
90        CleanEvict,
91        SoftPFReq,
92        HardPFReq,
93        SoftPFResp,
94        HardPFResp,
95        WriteLineReq,
96        UpgradeReq,
97        SCUpgradeReq,           // Special "weak" upgrade for StoreCond
98        UpgradeResp,
99        SCUpgradeFailReq,       // Failed SCUpgradeReq in MSHR (never sent)
100        UpgradeFailResp,        // Valid for SCUpgradeReq only
101        ReadExReq,
102        ReadExResp,
103        ReadCleanReq,
104        ReadSharedReq,
105        LoadLockedReq,
106        StoreCondReq,
107        StoreCondFailReq,       // Failed StoreCondReq in MSHR (never sent)
108        StoreCondResp,
109        SwapReq,
110        SwapResp,
111        MessageReq,
112        MessageResp,
113        ReleaseReq,
114        ReleaseResp,
115        AcquireReq,
116        AcquireResp,
117        // Error responses
118        // @TODO these should be classified as responses rather than
119        // requests; coding them as requests initially for backwards
120        // compatibility
121        InvalidDestError,  // packet dest field invalid
122        BadAddressError,   // memory address invalid
123        FunctionalReadError, // unable to fulfill functional read
124        FunctionalWriteError, // unable to fulfill functional write
125        // Fake simulator-only commands
126        PrintReq,       // Print state matching address
127        FlushReq,      //request for a cache flush
128        InvalidateReq,   // request for address to be invalidated
129        InvalidateResp,
130        NUM_MEM_CMDS
131    };
132
133  private:
134    /**
135     * List of command attributes.
136     */
137    enum Attribute
138    {
139        IsRead,         //!< Data flows from responder to requester
140        IsWrite,        //!< Data flows from requester to responder
141        IsUpgrade,
142        IsInvalidate,
143        NeedsExclusive, //!< Requires exclusive copy to complete in-cache
144        IsRequest,      //!< Issued by requester
145        IsResponse,     //!< Issue by responder
146        NeedsResponse,  //!< Requester needs response from target
147        IsSWPrefetch,
148        IsHWPrefetch,
149        IsLlsc,         //!< Alpha/MIPS LL or SC access
150        HasData,        //!< There is an associated payload
151        IsError,        //!< Error response
152        IsPrint,        //!< Print state matching address (for debugging)
153        IsFlush,        //!< Flush the address from caches
154        NUM_COMMAND_ATTRIBUTES
155    };
156
157    /**
158     * Structure that defines attributes and other data associated
159     * with a Command.
160     */
161    struct CommandInfo
162    {
163        /// Set of attribute flags.
164        const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
165        /// Corresponding response for requests; InvalidCmd if no
166        /// response is applicable.
167        const Command response;
168        /// String representation (for printing)
169        const std::string str;
170    };
171
172    /// Array to map Command enum to associated info.
173    static const CommandInfo commandInfo[];
174
175  private:
176
177    Command cmd;
178
179    bool
180    testCmdAttrib(MemCmd::Attribute attrib) const
181    {
182        return commandInfo[cmd].attributes[attrib] != 0;
183    }
184
185  public:
186
187    bool isRead() const            { return testCmdAttrib(IsRead); }
188    bool isWrite() const           { return testCmdAttrib(IsWrite); }
189    bool isUpgrade() const         { return testCmdAttrib(IsUpgrade); }
190    bool isRequest() const         { return testCmdAttrib(IsRequest); }
191    bool isResponse() const        { return testCmdAttrib(IsResponse); }
192    bool needsExclusive() const    { return testCmdAttrib(NeedsExclusive); }
193    bool needsResponse() const     { return testCmdAttrib(NeedsResponse); }
194    bool isInvalidate() const      { return testCmdAttrib(IsInvalidate); }
195
196    /**
197     * Check if this particular packet type carries payload data. Note
198     * that this does not reflect if the data pointer of the packet is
199     * valid or not.
200     */
201    bool hasData() const        { return testCmdAttrib(HasData); }
202    bool isLLSC() const         { return testCmdAttrib(IsLlsc); }
203    bool isSWPrefetch() const   { return testCmdAttrib(IsSWPrefetch); }
204    bool isHWPrefetch() const   { return testCmdAttrib(IsHWPrefetch); }
205    bool isPrefetch() const     { return testCmdAttrib(IsSWPrefetch) ||
206                                         testCmdAttrib(IsHWPrefetch); }
207    bool isError() const        { return testCmdAttrib(IsError); }
208    bool isPrint() const        { return testCmdAttrib(IsPrint); }
209    bool isFlush() const        { return testCmdAttrib(IsFlush); }
210
211    const Command
212    responseCommand() const
213    {
214        return commandInfo[cmd].response;
215    }
216
217    /// Return the string to a cmd given by idx.
218    const std::string &toString() const { return commandInfo[cmd].str; }
219    int toInt() const { return (int)cmd; }
220
221    MemCmd(Command _cmd) : cmd(_cmd) { }
222    MemCmd(int _cmd) : cmd((Command)_cmd) { }
223    MemCmd() : cmd(InvalidCmd) { }
224
225    bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
226    bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
227};
228
229/**
230 * A Packet is used to encapsulate a transfer between two objects in
231 * the memory system (e.g., the L1 and L2 cache).  (In contrast, a
232 * single Request travels all the way from the requester to the
233 * ultimate destination and back, possibly being conveyed by several
234 * different Packets along the way.)
235 */
236class Packet : public Printable
237{
238  public:
239    typedef uint32_t FlagsType;
240    typedef ::Flags<FlagsType> Flags;
241
242  private:
243
244    enum : FlagsType {
245        // Flags to transfer across when copying a packet
246        COPY_FLAGS             = 0x0000000F,
247
248        SHARED                 = 0x00000001,
249        // Special control flags
250        /// Special timing-mode atomic snoop for multi-level coherence.
251        EXPRESS_SNOOP          = 0x00000002,
252        /// Does supplier have exclusive copy?
253        /// Useful for multi-level coherence.
254        SUPPLY_EXCLUSIVE       = 0x00000004,
255        // Snoop response flags
256        MEM_INHIBIT            = 0x00000008,
257
258        /// Is the data pointer set to a value that shouldn't be freed
259        /// when the packet is destroyed?
260        STATIC_DATA            = 0x00001000,
261        /// The data pointer points to a value that should be freed when
262        /// the packet is destroyed. The pointer is assumed to be pointing
263        /// to an array, and delete [] is consequently called
264        DYNAMIC_DATA           = 0x00002000,
265
266        /// suppress the error if this packet encounters a functional
267        /// access failure.
268        SUPPRESS_FUNC_ERROR    = 0x00008000,
269
270        // Signal block present to squash prefetch and cache evict packets
271        // through express snoop flag
272        BLOCK_CACHED          = 0x00010000
273    };
274
275    Flags flags;
276
277  public:
278    typedef MemCmd::Command Command;
279
280    /// The command field of the packet.
281    MemCmd cmd;
282
283    /// A pointer to the original request.
284    const RequestPtr req;
285
286  private:
287   /**
288    * A pointer to the data being transfered.  It can be differnt
289    * sizes at each level of the heirarchy so it belongs in the
290    * packet, not request. This may or may not be populated when a
291    * responder recieves the packet. If not populated it memory should
292    * be allocated.
293    */
294    PacketDataPtr data;
295
296    /// The address of the request.  This address could be virtual or
297    /// physical, depending on the system configuration.
298    Addr addr;
299
300    /// True if the request targets the secure memory space.
301    bool _isSecure;
302
303    /// The size of the request or transfer.
304    unsigned size;
305
306    /**
307     * Track the bytes found that satisfy a functional read.
308     */
309    std::vector<bool> bytesValid;
310
311  public:
312
313    /**
314     * The extra delay from seeing the packet until the header is
315     * transmitted. This delay is used to communicate the crossbar
316     * forwarding latency to the neighbouring object (e.g. a cache)
317     * that actually makes the packet wait. As the delay is relative,
318     * a 32-bit unsigned should be sufficient.
319     */
320    uint32_t headerDelay;
321
322    /**
323     * The extra pipelining delay from seeing the packet until the end of
324     * payload is transmitted by the component that provided it (if
325     * any). This includes the header delay. Similar to the header
326     * delay, this is used to make up for the fact that the
327     * crossbar does not make the packet wait. As the delay is
328     * relative, a 32-bit unsigned should be sufficient.
329     */
330    uint32_t payloadDelay;
331
332    /**
333     * A virtual base opaque structure used to hold state associated
334     * with the packet (e.g., an MSHR), specific to a MemObject that
335     * sees the packet. A pointer to this state is returned in the
336     * packet's response so that the MemObject in question can quickly
337     * look up the state needed to process it. A specific subclass
338     * would be derived from this to carry state specific to a
339     * particular sending device.
340     *
341     * As multiple MemObjects may add their SenderState throughout the
342     * memory system, the SenderStates create a stack, where a
343     * MemObject can add a new Senderstate, as long as the
344     * predecessing SenderState is restored when the response comes
345     * back. For this reason, the predecessor should always be
346     * populated with the current SenderState of a packet before
347     * modifying the senderState field in the request packet.
348     */
349    struct SenderState
350    {
351        SenderState* predecessor;
352        SenderState() : predecessor(NULL) {}
353        virtual ~SenderState() {}
354    };
355
356    /**
357     * Object used to maintain state of a PrintReq.  The senderState
358     * field of a PrintReq should always be of this type.
359     */
360    class PrintReqState : public SenderState
361    {
362      private:
363        /**
364         * An entry in the label stack.
365         */
366        struct LabelStackEntry
367        {
368            const std::string label;
369            std::string *prefix;
370            bool labelPrinted;
371            LabelStackEntry(const std::string &_label, std::string *_prefix);
372        };
373
374        typedef std::list<LabelStackEntry> LabelStack;
375        LabelStack labelStack;
376
377        std::string *curPrefixPtr;
378
379      public:
380        std::ostream &os;
381        const int verbosity;
382
383        PrintReqState(std::ostream &os, int verbosity = 0);
384        ~PrintReqState();
385
386        /**
387         * Returns the current line prefix.
388         */
389        const std::string &curPrefix() { return *curPrefixPtr; }
390
391        /**
392         * Push a label onto the label stack, and prepend the given
393         * prefix string onto the current prefix.  Labels will only be
394         * printed if an object within the label's scope is printed.
395         */
396        void pushLabel(const std::string &lbl,
397                       const std::string &prefix = "  ");
398
399        /**
400         * Pop a label off the label stack.
401         */
402        void popLabel();
403
404        /**
405         * Print all of the pending unprinted labels on the
406         * stack. Called by printObj(), so normally not called by
407         * users unless bypassing printObj().
408         */
409        void printLabels();
410
411        /**
412         * Print a Printable object to os, because it matched the
413         * address on a PrintReq.
414         */
415        void printObj(Printable *obj);
416    };
417
418    /**
419     * This packet's sender state.  Devices should use dynamic_cast<>
420     * to cast to the state appropriate to the sender.  The intent of
421     * this variable is to allow a device to attach extra information
422     * to a request. A response packet must return the sender state
423     * that was attached to the original request (even if a new packet
424     * is created).
425     */
426    SenderState *senderState;
427
428    /**
429     * Push a new sender state to the packet and make the current
430     * sender state the predecessor of the new one. This should be
431     * prefered over direct manipulation of the senderState member
432     * variable.
433     *
434     * @param sender_state SenderState to push at the top of the stack
435     */
436    void pushSenderState(SenderState *sender_state);
437
438    /**
439     * Pop the top of the state stack and return a pointer to it. This
440     * assumes the current sender state is not NULL. This should be
441     * preferred over direct manipulation of the senderState member
442     * variable.
443     *
444     * @return The current top of the stack
445     */
446    SenderState *popSenderState();
447
448    /**
449     * Go through the sender state stack and return the first instance
450     * that is of type T (as determined by a dynamic_cast). If there
451     * is no sender state of type T, NULL is returned.
452     *
453     * @return The topmost state of type T
454     */
455    template <typename T>
456    T * findNextSenderState() const
457    {
458        T *t = NULL;
459        SenderState* sender_state = senderState;
460        while (t == NULL && sender_state != NULL) {
461            t = dynamic_cast<T*>(sender_state);
462            sender_state = sender_state->predecessor;
463        }
464        return t;
465    }
466
467    /// Return the string name of the cmd field (for debugging and
468    /// tracing).
469    const std::string &cmdString() const { return cmd.toString(); }
470
471    /// Return the index of this command.
472    inline int cmdToIndex() const { return cmd.toInt(); }
473
474    bool isRead() const              { return cmd.isRead(); }
475    bool isWrite() const             { return cmd.isWrite(); }
476    bool isUpgrade()  const          { return cmd.isUpgrade(); }
477    bool isRequest() const           { return cmd.isRequest(); }
478    bool isResponse() const          { return cmd.isResponse(); }
479    bool needsExclusive() const      { return cmd.needsExclusive(); }
480    bool needsResponse() const       { return cmd.needsResponse(); }
481    bool isInvalidate() const        { return cmd.isInvalidate(); }
482    bool hasData() const             { return cmd.hasData(); }
483    bool isLLSC() const              { return cmd.isLLSC(); }
484    bool isError() const             { return cmd.isError(); }
485    bool isPrint() const             { return cmd.isPrint(); }
486    bool isFlush() const             { return cmd.isFlush(); }
487
488    // Snoop flags
489    void assertMemInhibit()
490    {
491        assert(isRequest());
492        assert(!flags.isSet(MEM_INHIBIT));
493        flags.set(MEM_INHIBIT);
494    }
495    bool memInhibitAsserted() const { return flags.isSet(MEM_INHIBIT); }
496    void assertShared()             { flags.set(SHARED); }
497    bool sharedAsserted() const     { return flags.isSet(SHARED); }
498
499    // Special control flags
500    void setExpressSnoop()          { flags.set(EXPRESS_SNOOP); }
501    bool isExpressSnoop() const     { return flags.isSet(EXPRESS_SNOOP); }
502    void setSupplyExclusive()       { flags.set(SUPPLY_EXCLUSIVE); }
503    bool isSupplyExclusive() const  { return flags.isSet(SUPPLY_EXCLUSIVE); }
504    void setSuppressFuncError()     { flags.set(SUPPRESS_FUNC_ERROR); }
505    bool suppressFuncError() const  { return flags.isSet(SUPPRESS_FUNC_ERROR); }
506    void setBlockCached()          { flags.set(BLOCK_CACHED); }
507    bool isBlockCached() const     { return flags.isSet(BLOCK_CACHED); }
508    void clearBlockCached()        { flags.clear(BLOCK_CACHED); }
509
510    // Network error conditions... encapsulate them as methods since
511    // their encoding keeps changing (from result field to command
512    // field, etc.)
513    void
514    setBadAddress()
515    {
516        assert(isResponse());
517        cmd = MemCmd::BadAddressError;
518    }
519
520    void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
521
522    Addr getAddr() const { return addr; }
523    /**
524     * Update the address of this packet mid-transaction. This is used
525     * by the address mapper to change an already set address to a new
526     * one based on the system configuration. It is intended to remap
527     * an existing address, so it asserts that the current address is
528     * valid.
529     */
530    void setAddr(Addr _addr) { addr = _addr; }
531
532    unsigned getSize() const  { return size; }
533
534    Addr getOffset(unsigned int blk_size) const
535    {
536        return getAddr() & Addr(blk_size - 1);
537    }
538
539    Addr getBlockAddr(unsigned int blk_size) const
540    {
541        return getAddr() & ~(Addr(blk_size - 1));
542    }
543
544    bool isSecure() const { return _isSecure; }
545
546    /**
547     * It has been determined that the SC packet should successfully update
548     * memory. Therefore, convert this SC packet to a normal write.
549     */
550    void
551    convertScToWrite()
552    {
553        assert(isLLSC());
554        assert(isWrite());
555        cmd = MemCmd::WriteReq;
556    }
557
558    /**
559     * When ruby is in use, Ruby will monitor the cache line and the
560     * phys memory should treat LL ops as normal reads.
561     */
562    void
563    convertLlToRead()
564    {
565        assert(isLLSC());
566        assert(isRead());
567        cmd = MemCmd::ReadReq;
568    }
569
570    /**
571     * Constructor. Note that a Request object must be constructed
572     * first, and have a valid physical address and size. The command
573     * must be supplied.
574     */
575    Packet(const RequestPtr _req, MemCmd _cmd)
576        :  cmd(_cmd), req(_req), data(nullptr), addr(req->getPaddr()),
577           _isSecure(req->isSecure()), size(req->getSize()),
578           headerDelay(0), payloadDelay(0),
579           senderState(NULL)
580    { }
581
582    /**
583     * Alternate constructor when creating a packet that is for a
584     * whole block. This allows for overriding the size and addr of
585     * the request.
586     */
587    Packet(const RequestPtr _req, MemCmd _cmd, unsigned _blkSize)
588        :  cmd(_cmd), req(_req), data(nullptr),
589           addr(_req->getPaddr() & ~Addr(_blkSize - 1)),
590           _isSecure(_req->isSecure()), size(_blkSize),
591           headerDelay(0), payloadDelay(0),
592           senderState(NULL)
593    { }
594
595    /**
596     * Alternate constructor for copying a packet.  Copy all fields
597     * *except* if the original packet's data was dynamic, don't copy
598     * that, as we can't guarantee that the new packet's lifetime is
599     * less than that of the original packet.  In this case the new
600     * packet should allocate its own data.
601     */
602    Packet(const PacketPtr pkt, bool clear_flags, bool alloc_data)
603        :  cmd(pkt->cmd), req(pkt->req),
604           data(nullptr),
605           addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
606           bytesValid(pkt->bytesValid),
607           headerDelay(pkt->headerDelay),
608           payloadDelay(pkt->payloadDelay),
609           senderState(pkt->senderState)
610    {
611        if (!clear_flags)
612            flags.set(pkt->flags & COPY_FLAGS);
613
614        // should we allocate space for data, or not, the express
615        // snoops do not need to carry any data as they only serve to
616        // co-ordinate state changes
617        if (alloc_data) {
618            // even if asked to allocate data, if the original packet
619            // holds static data, then the sender will not be doing
620            // any memcpy on receiving the response, thus we simply
621            // carry the pointer forward
622            if (pkt->flags.isSet(STATIC_DATA)) {
623                data = pkt->data;
624                flags.set(STATIC_DATA);
625            } else {
626                allocate();
627            }
628        }
629    }
630
631    /**
632     * Generate the appropriate read MemCmd based on the Request flags.
633     */
634    static MemCmd
635    makeReadCmd(const RequestPtr req)
636    {
637        if (req->isLLSC())
638            return MemCmd::LoadLockedReq;
639        else if (req->isPrefetch())
640            return MemCmd::SoftPFReq;
641        else
642            return MemCmd::ReadReq;
643    }
644
645    /**
646     * Generate the appropriate write MemCmd based on the Request flags.
647     */
648    static MemCmd
649    makeWriteCmd(const RequestPtr req)
650    {
651        if (req->isLLSC())
652            return MemCmd::StoreCondReq;
653        else if (req->isSwap())
654            return MemCmd::SwapReq;
655        else
656            return MemCmd::WriteReq;
657    }
658
659    /**
660     * Constructor-like methods that return Packets based on Request objects.
661     * Fine-tune the MemCmd type if it's not a vanilla read or write.
662     */
663    static PacketPtr
664    createRead(const RequestPtr req)
665    {
666        return new Packet(req, makeReadCmd(req));
667    }
668
669    static PacketPtr
670    createWrite(const RequestPtr req)
671    {
672        return new Packet(req, makeWriteCmd(req));
673    }
674
675    /**
676     * clean up packet variables
677     */
678    ~Packet()
679    {
680        // Delete the request object if this is a request packet which
681        // does not need a response, because the requester will not get
682        // a chance. If the request packet needs a response then the
683        // request will be deleted on receipt of the response
684        // packet. We also make sure to never delete the request for
685        // express snoops, even for cases when responses are not
686        // needed (CleanEvict and Writeback), since the snoop packet
687        // re-uses the same request.
688        if (req && isRequest() && !needsResponse() &&
689            !isExpressSnoop()) {
690            delete req;
691        }
692        deleteData();
693    }
694
695    /**
696     * Take a request packet and modify it in place to be suitable for
697     * returning as a response to that request.
698     */
699    void
700    makeResponse()
701    {
702        assert(needsResponse());
703        assert(isRequest());
704        cmd = cmd.responseCommand();
705
706        // responses are never express, even if the snoop that
707        // triggered them was
708        flags.clear(EXPRESS_SNOOP);
709    }
710
711    void
712    makeAtomicResponse()
713    {
714        makeResponse();
715    }
716
717    void
718    makeTimingResponse()
719    {
720        makeResponse();
721    }
722
723    void
724    setFunctionalResponseStatus(bool success)
725    {
726        if (!success) {
727            if (isWrite()) {
728                cmd = MemCmd::FunctionalWriteError;
729            } else {
730                cmd = MemCmd::FunctionalReadError;
731            }
732        }
733    }
734
735  public:
736    /**
737     * @{
738     * @name Data accessor mehtods
739     */
740
741    /**
742     * Set the data pointer to the following value that should not be
743     * freed. Static data allows us to do a single memcpy even if
744     * multiple packets are required to get from source to destination
745     * and back. In essence the pointer is set calling dataStatic on
746     * the original packet, and whenever this packet is copied and
747     * forwarded the same pointer is passed on. When a packet
748     * eventually reaches the destination holding the data, it is
749     * copied once into the location originally set. On the way back
750     * to the source, no copies are necessary.
751     */
752    template <typename T>
753    void
754    dataStatic(T *p)
755    {
756        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
757        data = (PacketDataPtr)p;
758        flags.set(STATIC_DATA);
759    }
760
761    /**
762     * Set the data pointer to the following value that should not be
763     * freed. This version of the function allows the pointer passed
764     * to us to be const. To avoid issues down the line we cast the
765     * constness away, the alternative would be to keep both a const
766     * and non-const data pointer and cleverly choose between
767     * them. Note that this is only allowed for static data.
768     */
769    template <typename T>
770    void
771    dataStaticConst(const T *p)
772    {
773        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
774        data = const_cast<PacketDataPtr>(p);
775        flags.set(STATIC_DATA);
776    }
777
778    /**
779     * Set the data pointer to a value that should have delete []
780     * called on it. Dynamic data is local to this packet, and as the
781     * packet travels from source to destination, forwarded packets
782     * will allocate their own data. When a packet reaches the final
783     * destination it will populate the dynamic data of that specific
784     * packet, and on the way back towards the source, memcpy will be
785     * invoked in every step where a new packet was created e.g. in
786     * the caches. Ultimately when the response reaches the source a
787     * final memcpy is needed to extract the data from the packet
788     * before it is deallocated.
789     */
790    template <typename T>
791    void
792    dataDynamic(T *p)
793    {
794        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
795        data = (PacketDataPtr)p;
796        flags.set(DYNAMIC_DATA);
797    }
798
799    /**
800     * get a pointer to the data ptr.
801     */
802    template <typename T>
803    T*
804    getPtr()
805    {
806        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
807        return (T*)data;
808    }
809
810    template <typename T>
811    const T*
812    getConstPtr() const
813    {
814        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
815        return (const T*)data;
816    }
817
818    /**
819     * Get the data in the packet byte swapped from big endian to
820     * host endian.
821     */
822    template <typename T>
823    T getBE() const;
824
825    /**
826     * Get the data in the packet byte swapped from little endian to
827     * host endian.
828     */
829    template <typename T>
830    T getLE() const;
831
832    /**
833     * Get the data in the packet byte swapped from the specified
834     * endianness.
835     */
836    template <typename T>
837    T get(ByteOrder endian) const;
838
839    /**
840     * Get the data in the packet byte swapped from guest to host
841     * endian.
842     */
843    template <typename T>
844    T get() const;
845
846    /** Set the value in the data pointer to v as big endian. */
847    template <typename T>
848    void setBE(T v);
849
850    /** Set the value in the data pointer to v as little endian. */
851    template <typename T>
852    void setLE(T v);
853
854    /**
855     * Set the value in the data pointer to v using the specified
856     * endianness.
857     */
858    template <typename T>
859    void set(T v, ByteOrder endian);
860
861    /** Set the value in the data pointer to v as guest endian. */
862    template <typename T>
863    void set(T v);
864
865    /**
866     * Copy data into the packet from the provided pointer.
867     */
868    void
869    setData(const uint8_t *p)
870    {
871        // we should never be copying data onto itself, which means we
872        // must idenfity packets with static data, as they carry the
873        // same pointer from source to destination and back
874        assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
875
876        if (p != getPtr<uint8_t>())
877            // for packet with allocated dynamic data, we copy data from
878            // one to the other, e.g. a forwarded response to a response
879            std::memcpy(getPtr<uint8_t>(), p, getSize());
880    }
881
882    /**
883     * Copy data into the packet from the provided block pointer,
884     * which is aligned to the given block size.
885     */
886    void
887    setDataFromBlock(const uint8_t *blk_data, int blkSize)
888    {
889        setData(blk_data + getOffset(blkSize));
890    }
891
892    /**
893     * Copy data from the packet to the provided block pointer, which
894     * is aligned to the given block size.
895     */
896    void
897    writeData(uint8_t *p) const
898    {
899        std::memcpy(p, getConstPtr<uint8_t>(), getSize());
900    }
901
902    /**
903     * Copy data from the packet to the memory at the provided pointer.
904     */
905    void
906    writeDataToBlock(uint8_t *blk_data, int blkSize) const
907    {
908        writeData(blk_data + getOffset(blkSize));
909    }
910
911    /**
912     * delete the data pointed to in the data pointer. Ok to call to
913     * matter how data was allocted.
914     */
915    void
916    deleteData()
917    {
918        if (flags.isSet(DYNAMIC_DATA))
919            delete [] data;
920
921        flags.clear(STATIC_DATA|DYNAMIC_DATA);
922        data = NULL;
923    }
924
925    /** Allocate memory for the packet. */
926    void
927    allocate()
928    {
929        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
930        flags.set(DYNAMIC_DATA);
931        data = new uint8_t[getSize()];
932    }
933
934    /** @} */
935
936  private: // Private data accessor methods
937    /** Get the data in the packet without byte swapping. */
938    template <typename T>
939    T getRaw() const;
940
941    /** Set the value in the data pointer to v without byte swapping. */
942    template <typename T>
943    void setRaw(T v);
944
945  public:
946    /**
947     * Check a functional request against a memory value stored in
948     * another packet (i.e. an in-transit request or
949     * response). Returns true if the current packet is a read, and
950     * the other packet provides the data, which is then copied to the
951     * current packet. If the current packet is a write, and the other
952     * packet intersects this one, then we update the data
953     * accordingly.
954     */
955    bool
956    checkFunctional(PacketPtr other)
957    {
958        // all packets that are carrying a payload should have a valid
959        // data pointer
960        return checkFunctional(other, other->getAddr(), other->isSecure(),
961                               other->getSize(),
962                               other->hasData() ?
963                               other->getPtr<uint8_t>() : NULL);
964    }
965
966    /**
967     * Is this request notification of a clean or dirty eviction from the cache.
968     **/
969    bool
970    evictingBlock() const
971    {
972        return (cmd == MemCmd::Writeback ||
973                cmd == MemCmd::CleanEvict);
974    }
975
976    /**
977     * Does the request need to check for cached copies of the same block
978     * in the memory hierarchy above.
979     **/
980    bool
981    mustCheckAbove() const
982    {
983        return (cmd == MemCmd::HardPFReq ||
984                evictingBlock());
985    }
986
987    /**
988     * Check a functional request against a memory value represented
989     * by a base/size pair and an associated data array. If the
990     * current packet is a read, it may be satisfied by the memory
991     * value. If the current packet is a write, it may update the
992     * memory value.
993     */
994    bool
995    checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
996                    uint8_t *_data);
997
998    /**
999     * Push label for PrintReq (safe to call unconditionally).
1000     */
1001    void
1002    pushLabel(const std::string &lbl)
1003    {
1004        if (isPrint())
1005            safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
1006    }
1007
1008    /**
1009     * Pop label for PrintReq (safe to call unconditionally).
1010     */
1011    void
1012    popLabel()
1013    {
1014        if (isPrint())
1015            safe_cast<PrintReqState*>(senderState)->popLabel();
1016    }
1017
1018    void print(std::ostream &o, int verbosity = 0,
1019               const std::string &prefix = "") const;
1020
1021    /**
1022     * A no-args wrapper of print(std::ostream...)
1023     * meant to be invoked from DPRINTFs
1024     * avoiding string overheads in fast mode
1025     * @return string with the request's type and start<->end addresses
1026     */
1027    std::string print() const;
1028};
1029
1030#endif //__MEM_PACKET_HH
1031