packet.hh revision 10883
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 *          Steve Reinhardt
43 *          Ali Saidi
44 *          Andreas Hansson
45 */
46
47/**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52#ifndef __MEM_PACKET_HH__
53#define __MEM_PACKET_HH__
54
55#include <bitset>
56#include <cassert>
57#include <list>
58
59#include "base/cast.hh"
60#include "base/compiler.hh"
61#include "base/flags.hh"
62#include "base/misc.hh"
63#include "base/printable.hh"
64#include "base/types.hh"
65#include "mem/request.hh"
66#include "sim/core.hh"
67
68class Packet;
69typedef Packet *PacketPtr;
70typedef uint8_t* PacketDataPtr;
71typedef std::list<PacketPtr> PacketList;
72
73class MemCmd
74{
75    friend class Packet;
76
77  public:
78    /**
79     * List of all commands associated with a packet.
80     */
81    enum Command
82    {
83        InvalidCmd,
84        ReadReq,
85        ReadResp,
86        ReadRespWithInvalidate,
87        WriteReq,
88        WriteResp,
89        Writeback,
90        CleanEvict,
91        SoftPFReq,
92        HardPFReq,
93        SoftPFResp,
94        HardPFResp,
95        WriteInvalidateReq,
96        WriteInvalidateResp,
97        UpgradeReq,
98        SCUpgradeReq,           // Special "weak" upgrade for StoreCond
99        UpgradeResp,
100        SCUpgradeFailReq,       // Failed SCUpgradeReq in MSHR (never sent)
101        UpgradeFailResp,        // Valid for SCUpgradeReq only
102        ReadExReq,
103        ReadExResp,
104        LoadLockedReq,
105        StoreCondReq,
106        StoreCondFailReq,       // Failed StoreCondReq in MSHR (never sent)
107        StoreCondResp,
108        SwapReq,
109        SwapResp,
110        MessageReq,
111        MessageResp,
112        // Error responses
113        // @TODO these should be classified as responses rather than
114        // requests; coding them as requests initially for backwards
115        // compatibility
116        InvalidDestError,  // packet dest field invalid
117        BadAddressError,   // memory address invalid
118        FunctionalReadError, // unable to fulfill functional read
119        FunctionalWriteError, // unable to fulfill functional write
120        // Fake simulator-only commands
121        PrintReq,       // Print state matching address
122        FlushReq,      //request for a cache flush
123        InvalidationReq,   // request for address to be invalidated from lsq
124        NUM_MEM_CMDS
125    };
126
127  private:
128    /**
129     * List of command attributes.
130     */
131    enum Attribute
132    {
133        IsRead,         //!< Data flows from responder to requester
134        IsWrite,        //!< Data flows from requester to responder
135        IsUpgrade,
136        IsInvalidate,
137        NeedsExclusive, //!< Requires exclusive copy to complete in-cache
138        IsRequest,      //!< Issued by requester
139        IsResponse,     //!< Issue by responder
140        NeedsResponse,  //!< Requester needs response from target
141        IsSWPrefetch,
142        IsHWPrefetch,
143        IsLlsc,         //!< Alpha/MIPS LL or SC access
144        HasData,        //!< There is an associated payload
145        IsError,        //!< Error response
146        IsPrint,        //!< Print state matching address (for debugging)
147        IsFlush,        //!< Flush the address from caches
148        NUM_COMMAND_ATTRIBUTES
149    };
150
151    /**
152     * Structure that defines attributes and other data associated
153     * with a Command.
154     */
155    struct CommandInfo
156    {
157        /// Set of attribute flags.
158        const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
159        /// Corresponding response for requests; InvalidCmd if no
160        /// response is applicable.
161        const Command response;
162        /// String representation (for printing)
163        const std::string str;
164    };
165
166    /// Array to map Command enum to associated info.
167    static const CommandInfo commandInfo[];
168
169  private:
170
171    Command cmd;
172
173    bool
174    testCmdAttrib(MemCmd::Attribute attrib) const
175    {
176        return commandInfo[cmd].attributes[attrib] != 0;
177    }
178
179  public:
180
181    bool isRead() const            { return testCmdAttrib(IsRead); }
182    bool isWrite() const           { return testCmdAttrib(IsWrite); }
183    bool isUpgrade() const         { return testCmdAttrib(IsUpgrade); }
184    bool isRequest() const         { return testCmdAttrib(IsRequest); }
185    bool isResponse() const        { return testCmdAttrib(IsResponse); }
186    bool needsExclusive() const    { return testCmdAttrib(NeedsExclusive); }
187    bool needsResponse() const     { return testCmdAttrib(NeedsResponse); }
188    bool isInvalidate() const      { return testCmdAttrib(IsInvalidate); }
189    bool isWriteInvalidate() const { return testCmdAttrib(IsWrite) &&
190                                            testCmdAttrib(IsInvalidate); }
191
192    /**
193     * Check if this particular packet type carries payload data. Note
194     * that this does not reflect if the data pointer of the packet is
195     * valid or not.
196     */
197    bool hasData() const        { return testCmdAttrib(HasData); }
198    bool isLLSC() const         { return testCmdAttrib(IsLlsc); }
199    bool isSWPrefetch() const   { return testCmdAttrib(IsSWPrefetch); }
200    bool isHWPrefetch() const   { return testCmdAttrib(IsHWPrefetch); }
201    bool isPrefetch() const     { return testCmdAttrib(IsSWPrefetch) ||
202                                         testCmdAttrib(IsHWPrefetch); }
203    bool isError() const        { return testCmdAttrib(IsError); }
204    bool isPrint() const        { return testCmdAttrib(IsPrint); }
205    bool isFlush() const        { return testCmdAttrib(IsFlush); }
206
207    const Command
208    responseCommand() const
209    {
210        return commandInfo[cmd].response;
211    }
212
213    /// Return the string to a cmd given by idx.
214    const std::string &toString() const { return commandInfo[cmd].str; }
215    int toInt() const { return (int)cmd; }
216
217    MemCmd(Command _cmd) : cmd(_cmd) { }
218    MemCmd(int _cmd) : cmd((Command)_cmd) { }
219    MemCmd() : cmd(InvalidCmd) { }
220
221    bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
222    bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
223};
224
225/**
226 * A Packet is used to encapsulate a transfer between two objects in
227 * the memory system (e.g., the L1 and L2 cache).  (In contrast, a
228 * single Request travels all the way from the requester to the
229 * ultimate destination and back, possibly being conveyed by several
230 * different Packets along the way.)
231 */
232class Packet : public Printable
233{
234  public:
235    typedef uint32_t FlagsType;
236    typedef ::Flags<FlagsType> Flags;
237
238  private:
239    static const FlagsType PUBLIC_FLAGS           = 0x00000000;
240    static const FlagsType PRIVATE_FLAGS          = 0x00007F0F;
241    static const FlagsType COPY_FLAGS             = 0x0000000F;
242
243    static const FlagsType SHARED                 = 0x00000001;
244    // Special control flags
245    /// Special timing-mode atomic snoop for multi-level coherence.
246    static const FlagsType EXPRESS_SNOOP          = 0x00000002;
247    /// Does supplier have exclusive copy?
248    /// Useful for multi-level coherence.
249    static const FlagsType SUPPLY_EXCLUSIVE       = 0x00000004;
250    // Snoop response flags
251    static const FlagsType MEM_INHIBIT            = 0x00000008;
252    /// Are the 'addr' and 'size' fields valid?
253    static const FlagsType VALID_ADDR             = 0x00000100;
254    static const FlagsType VALID_SIZE             = 0x00000200;
255    /// Is the data pointer set to a value that shouldn't be freed
256    /// when the packet is destroyed?
257    static const FlagsType STATIC_DATA            = 0x00001000;
258    /// The data pointer points to a value that should be freed when
259    /// the packet is destroyed. The pointer is assumed to be pointing
260    /// to an array, and delete [] is consequently called
261    static const FlagsType DYNAMIC_DATA           = 0x00002000;
262    /// suppress the error if this packet encounters a functional
263    /// access failure.
264    static const FlagsType SUPPRESS_FUNC_ERROR    = 0x00008000;
265    // Signal block present to squash prefetch and cache evict packets
266    // through express snoop flag
267    static const FlagsType BLOCK_CACHED          = 0x00010000;
268
269    Flags flags;
270
271  public:
272    typedef MemCmd::Command Command;
273
274    /// The command field of the packet.
275    MemCmd cmd;
276
277    /// A pointer to the original request.
278    const RequestPtr req;
279
280  private:
281   /**
282    * A pointer to the data being transfered.  It can be differnt
283    * sizes at each level of the heirarchy so it belongs in the
284    * packet, not request. This may or may not be populated when a
285    * responder recieves the packet. If not populated it memory should
286    * be allocated.
287    */
288    PacketDataPtr data;
289
290    /// The address of the request.  This address could be virtual or
291    /// physical, depending on the system configuration.
292    Addr addr;
293
294    /// True if the request targets the secure memory space.
295    bool _isSecure;
296
297    /// The size of the request or transfer.
298    unsigned size;
299
300    /**
301     * The original value of the command field.  Only valid when the
302     * current command field is an error condition; in that case, the
303     * previous contents of the command field are copied here.  This
304     * field is *not* set on non-error responses.
305     */
306    MemCmd origCmd;
307
308    /**
309     * Track the bytes found that satisfy a functional read.
310     */
311    std::vector<bool> bytesValid;
312
313  public:
314
315    /**
316     * The extra delay from seeing the packet until the header is
317     * transmitted. This delay is used to communicate the crossbar
318     * forwarding latency to the neighbouring object (e.g. a cache)
319     * that actually makes the packet wait. As the delay is relative,
320     * a 32-bit unsigned should be sufficient.
321     */
322    uint32_t headerDelay;
323
324    /**
325     * The extra pipelining delay from seeing the packet until the end of
326     * payload is transmitted by the component that provided it (if
327     * any). This includes the header delay. Similar to the header
328     * delay, this is used to make up for the fact that the
329     * crossbar does not make the packet wait. As the delay is
330     * relative, a 32-bit unsigned should be sufficient.
331     */
332    uint32_t payloadDelay;
333
334    /**
335     * A virtual base opaque structure used to hold state associated
336     * with the packet (e.g., an MSHR), specific to a MemObject that
337     * sees the packet. A pointer to this state is returned in the
338     * packet's response so that the MemObject in question can quickly
339     * look up the state needed to process it. A specific subclass
340     * would be derived from this to carry state specific to a
341     * particular sending device.
342     *
343     * As multiple MemObjects may add their SenderState throughout the
344     * memory system, the SenderStates create a stack, where a
345     * MemObject can add a new Senderstate, as long as the
346     * predecessing SenderState is restored when the response comes
347     * back. For this reason, the predecessor should always be
348     * populated with the current SenderState of a packet before
349     * modifying the senderState field in the request packet.
350     */
351    struct SenderState
352    {
353        SenderState* predecessor;
354        SenderState() : predecessor(NULL) {}
355        virtual ~SenderState() {}
356    };
357
358    /**
359     * Object used to maintain state of a PrintReq.  The senderState
360     * field of a PrintReq should always be of this type.
361     */
362    class PrintReqState : public SenderState
363    {
364      private:
365        /**
366         * An entry in the label stack.
367         */
368        struct LabelStackEntry
369        {
370            const std::string label;
371            std::string *prefix;
372            bool labelPrinted;
373            LabelStackEntry(const std::string &_label, std::string *_prefix);
374        };
375
376        typedef std::list<LabelStackEntry> LabelStack;
377        LabelStack labelStack;
378
379        std::string *curPrefixPtr;
380
381      public:
382        std::ostream &os;
383        const int verbosity;
384
385        PrintReqState(std::ostream &os, int verbosity = 0);
386        ~PrintReqState();
387
388        /**
389         * Returns the current line prefix.
390         */
391        const std::string &curPrefix() { return *curPrefixPtr; }
392
393        /**
394         * Push a label onto the label stack, and prepend the given
395         * prefix string onto the current prefix.  Labels will only be
396         * printed if an object within the label's scope is printed.
397         */
398        void pushLabel(const std::string &lbl,
399                       const std::string &prefix = "  ");
400
401        /**
402         * Pop a label off the label stack.
403         */
404        void popLabel();
405
406        /**
407         * Print all of the pending unprinted labels on the
408         * stack. Called by printObj(), so normally not called by
409         * users unless bypassing printObj().
410         */
411        void printLabels();
412
413        /**
414         * Print a Printable object to os, because it matched the
415         * address on a PrintReq.
416         */
417        void printObj(Printable *obj);
418    };
419
420    /**
421     * This packet's sender state.  Devices should use dynamic_cast<>
422     * to cast to the state appropriate to the sender.  The intent of
423     * this variable is to allow a device to attach extra information
424     * to a request. A response packet must return the sender state
425     * that was attached to the original request (even if a new packet
426     * is created).
427     */
428    SenderState *senderState;
429
430    /**
431     * Push a new sender state to the packet and make the current
432     * sender state the predecessor of the new one. This should be
433     * prefered over direct manipulation of the senderState member
434     * variable.
435     *
436     * @param sender_state SenderState to push at the top of the stack
437     */
438    void pushSenderState(SenderState *sender_state);
439
440    /**
441     * Pop the top of the state stack and return a pointer to it. This
442     * assumes the current sender state is not NULL. This should be
443     * preferred over direct manipulation of the senderState member
444     * variable.
445     *
446     * @return The current top of the stack
447     */
448    SenderState *popSenderState();
449
450    /**
451     * Go through the sender state stack and return the first instance
452     * that is of type T (as determined by a dynamic_cast). If there
453     * is no sender state of type T, NULL is returned.
454     *
455     * @return The topmost state of type T
456     */
457    template <typename T>
458    T * findNextSenderState() const
459    {
460        T *t = NULL;
461        SenderState* sender_state = senderState;
462        while (t == NULL && sender_state != NULL) {
463            t = dynamic_cast<T*>(sender_state);
464            sender_state = sender_state->predecessor;
465        }
466        return t;
467    }
468
469    /// Return the string name of the cmd field (for debugging and
470    /// tracing).
471    const std::string &cmdString() const { return cmd.toString(); }
472
473    /// Return the index of this command.
474    inline int cmdToIndex() const { return cmd.toInt(); }
475
476    bool isRead() const              { return cmd.isRead(); }
477    bool isWrite() const             { return cmd.isWrite(); }
478    bool isUpgrade()  const          { return cmd.isUpgrade(); }
479    bool isRequest() const           { return cmd.isRequest(); }
480    bool isResponse() const          { return cmd.isResponse(); }
481    bool needsExclusive() const      { return cmd.needsExclusive(); }
482    bool needsResponse() const       { return cmd.needsResponse(); }
483    bool isInvalidate() const        { return cmd.isInvalidate(); }
484    bool isWriteInvalidate() const   { return cmd.isWriteInvalidate(); }
485    bool hasData() const             { return cmd.hasData(); }
486    bool isLLSC() const              { return cmd.isLLSC(); }
487    bool isError() const             { return cmd.isError(); }
488    bool isPrint() const             { return cmd.isPrint(); }
489    bool isFlush() const             { return cmd.isFlush(); }
490
491    // Snoop flags
492    void assertMemInhibit()
493    {
494        assert(isRequest());
495        assert(!flags.isSet(MEM_INHIBIT));
496        flags.set(MEM_INHIBIT);
497    }
498    bool memInhibitAsserted() const { return flags.isSet(MEM_INHIBIT); }
499    void assertShared()             { flags.set(SHARED); }
500    bool sharedAsserted() const     { return flags.isSet(SHARED); }
501
502    // Special control flags
503    void setExpressSnoop()          { flags.set(EXPRESS_SNOOP); }
504    bool isExpressSnoop() const     { return flags.isSet(EXPRESS_SNOOP); }
505    void setSupplyExclusive()       { flags.set(SUPPLY_EXCLUSIVE); }
506    void clearSupplyExclusive()     { flags.clear(SUPPLY_EXCLUSIVE); }
507    bool isSupplyExclusive() const  { return flags.isSet(SUPPLY_EXCLUSIVE); }
508    void setSuppressFuncError()     { flags.set(SUPPRESS_FUNC_ERROR); }
509    bool suppressFuncError() const  { return flags.isSet(SUPPRESS_FUNC_ERROR); }
510    void setBlockCached()          { flags.set(BLOCK_CACHED); }
511    bool isBlockCached() const     { return flags.isSet(BLOCK_CACHED); }
512    void clearBlockCached()        { flags.clear(BLOCK_CACHED); }
513
514    // Network error conditions... encapsulate them as methods since
515    // their encoding keeps changing (from result field to command
516    // field, etc.)
517    void
518    setBadAddress()
519    {
520        assert(isResponse());
521        cmd = MemCmd::BadAddressError;
522    }
523
524    bool hadBadAddress() const { return cmd == MemCmd::BadAddressError; }
525    void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
526
527    Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
528    /**
529     * Update the address of this packet mid-transaction. This is used
530     * by the address mapper to change an already set address to a new
531     * one based on the system configuration. It is intended to remap
532     * an existing address, so it asserts that the current address is
533     * valid.
534     */
535    void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
536
537    unsigned getSize() const  { assert(flags.isSet(VALID_SIZE)); return size; }
538    Addr getOffset(int blkSize) const { return getAddr() & (Addr)(blkSize - 1); }
539
540    bool isSecure() const
541    {
542        assert(flags.isSet(VALID_ADDR));
543        return _isSecure;
544    }
545
546    /**
547     * It has been determined that the SC packet should successfully update
548     * memory.  Therefore, convert this SC packet to a normal write.
549     */
550    void
551    convertScToWrite()
552    {
553        assert(isLLSC());
554        assert(isWrite());
555        cmd = MemCmd::WriteReq;
556    }
557
558    /**
559     * When ruby is in use, Ruby will monitor the cache line and thus M5
560     * phys memory should treat LL ops as normal reads.
561     */
562    void
563    convertLlToRead()
564    {
565        assert(isLLSC());
566        assert(isRead());
567        cmd = MemCmd::ReadReq;
568    }
569
570    /**
571     * Constructor.  Note that a Request object must be constructed
572     * first, but the Requests's physical address and size fields need
573     * not be valid. The command must be supplied.
574     */
575    Packet(const RequestPtr _req, MemCmd _cmd)
576        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
577           size(0), headerDelay(0), payloadDelay(0),
578           senderState(NULL)
579    {
580        if (req->hasPaddr()) {
581            addr = req->getPaddr();
582            flags.set(VALID_ADDR);
583            _isSecure = req->isSecure();
584        }
585        if (req->hasSize()) {
586            size = req->getSize();
587            flags.set(VALID_SIZE);
588        }
589    }
590
591    /**
592     * Alternate constructor if you are trying to create a packet with
593     * a request that is for a whole block, not the address from the
594     * req.  this allows for overriding the size/addr of the req.
595     */
596    Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
597        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
598           headerDelay(0), payloadDelay(0),
599           senderState(NULL)
600    {
601        if (req->hasPaddr()) {
602            addr = req->getPaddr() & ~(_blkSize - 1);
603            flags.set(VALID_ADDR);
604            _isSecure = req->isSecure();
605        }
606        size = _blkSize;
607        flags.set(VALID_SIZE);
608    }
609
610    /**
611     * Alternate constructor for copying a packet.  Copy all fields
612     * *except* if the original packet's data was dynamic, don't copy
613     * that, as we can't guarantee that the new packet's lifetime is
614     * less than that of the original packet.  In this case the new
615     * packet should allocate its own data.
616     */
617    Packet(PacketPtr pkt, bool clear_flags, bool alloc_data)
618        :  cmd(pkt->cmd), req(pkt->req),
619           data(nullptr),
620           addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
621           bytesValid(pkt->bytesValid),
622           headerDelay(pkt->headerDelay),
623           payloadDelay(pkt->payloadDelay),
624           senderState(pkt->senderState)
625    {
626        if (!clear_flags)
627            flags.set(pkt->flags & COPY_FLAGS);
628
629        flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
630
631        // should we allocate space for data, or not, the express
632        // snoops do not need to carry any data as they only serve to
633        // co-ordinate state changes
634        if (alloc_data) {
635            // even if asked to allocate data, if the original packet
636            // holds static data, then the sender will not be doing
637            // any memcpy on receiving the response, thus we simply
638            // carry the pointer forward
639            if (pkt->flags.isSet(STATIC_DATA)) {
640                data = pkt->data;
641                flags.set(STATIC_DATA);
642            } else {
643                allocate();
644            }
645        }
646    }
647
648    /**
649     * Generate the appropriate read MemCmd based on the Request flags.
650     */
651    static MemCmd
652    makeReadCmd(const RequestPtr req)
653    {
654        if (req->isLLSC())
655            return MemCmd::LoadLockedReq;
656        else if (req->isPrefetch())
657            return MemCmd::SoftPFReq;
658        else
659            return MemCmd::ReadReq;
660    }
661
662    /**
663     * Generate the appropriate write MemCmd based on the Request flags.
664     */
665    static MemCmd
666    makeWriteCmd(const RequestPtr req)
667    {
668        if (req->isLLSC())
669            return MemCmd::StoreCondReq;
670        else if (req->isSwap())
671            return MemCmd::SwapReq;
672        else
673            return MemCmd::WriteReq;
674    }
675
676    /**
677     * Constructor-like methods that return Packets based on Request objects.
678     * Fine-tune the MemCmd type if it's not a vanilla read or write.
679     */
680    static PacketPtr
681    createRead(const RequestPtr req)
682    {
683        return new Packet(req, makeReadCmd(req));
684    }
685
686    static PacketPtr
687    createWrite(const RequestPtr req)
688    {
689        return new Packet(req, makeWriteCmd(req));
690    }
691
692    /**
693     * clean up packet variables
694     */
695    ~Packet()
696    {
697        // Delete the request object if this is a request packet which
698        // does not need a response, because the requester will not get
699        // a chance. If the request packet needs a response then the
700        // request will be deleted on receipt of the response
701        // packet. We also make sure to never delete the request for
702        // express snoops, even for cases when responses are not
703        // needed (CleanEvict and Writeback), since the snoop packet
704        // re-uses the same request.
705        if (req && isRequest() && !needsResponse() &&
706            !isExpressSnoop()) {
707            delete req;
708        }
709        deleteData();
710    }
711
712    /**
713     * Take a request packet and modify it in place to be suitable for
714     * returning as a response to that request.
715     */
716    void
717    makeResponse()
718    {
719        assert(needsResponse());
720        assert(isRequest());
721        origCmd = cmd;
722        cmd = cmd.responseCommand();
723
724        // responses are never express, even if the snoop that
725        // triggered them was
726        flags.clear(EXPRESS_SNOOP);
727    }
728
729    void
730    makeAtomicResponse()
731    {
732        makeResponse();
733    }
734
735    void
736    makeTimingResponse()
737    {
738        makeResponse();
739    }
740
741    void
742    setFunctionalResponseStatus(bool success)
743    {
744        if (!success) {
745            if (isWrite()) {
746                cmd = MemCmd::FunctionalWriteError;
747            } else {
748                cmd = MemCmd::FunctionalReadError;
749            }
750        }
751    }
752
753    void
754    setSize(unsigned size)
755    {
756        assert(!flags.isSet(VALID_SIZE));
757
758        this->size = size;
759        flags.set(VALID_SIZE);
760    }
761
762
763    /**
764     * Set the data pointer to the following value that should not be
765     * freed. Static data allows us to do a single memcpy even if
766     * multiple packets are required to get from source to destination
767     * and back. In essence the pointer is set calling dataStatic on
768     * the original packet, and whenever this packet is copied and
769     * forwarded the same pointer is passed on. When a packet
770     * eventually reaches the destination holding the data, it is
771     * copied once into the location originally set. On the way back
772     * to the source, no copies are necessary.
773     */
774    template <typename T>
775    void
776    dataStatic(T *p)
777    {
778        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
779        data = (PacketDataPtr)p;
780        flags.set(STATIC_DATA);
781    }
782
783    /**
784     * Set the data pointer to the following value that should not be
785     * freed. This version of the function allows the pointer passed
786     * to us to be const. To avoid issues down the line we cast the
787     * constness away, the alternative would be to keep both a const
788     * and non-const data pointer and cleverly choose between
789     * them. Note that this is only allowed for static data.
790     */
791    template <typename T>
792    void
793    dataStaticConst(const T *p)
794    {
795        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
796        data = const_cast<PacketDataPtr>(p);
797        flags.set(STATIC_DATA);
798    }
799
800    /**
801     * Set the data pointer to a value that should have delete []
802     * called on it. Dynamic data is local to this packet, and as the
803     * packet travels from source to destination, forwarded packets
804     * will allocate their own data. When a packet reaches the final
805     * destination it will populate the dynamic data of that specific
806     * packet, and on the way back towards the source, memcpy will be
807     * invoked in every step where a new packet was created e.g. in
808     * the caches. Ultimately when the response reaches the source a
809     * final memcpy is needed to extract the data from the packet
810     * before it is deallocated.
811     */
812    template <typename T>
813    void
814    dataDynamic(T *p)
815    {
816        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
817        data = (PacketDataPtr)p;
818        flags.set(DYNAMIC_DATA);
819    }
820
821    /**
822     * get a pointer to the data ptr.
823     */
824    template <typename T>
825    T*
826    getPtr()
827    {
828        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
829        return (T*)data;
830    }
831
832    template <typename T>
833    const T*
834    getConstPtr() const
835    {
836        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
837        return (const T*)data;
838    }
839
840    /**
841     * return the value of what is pointed to in the packet.
842     */
843    template <typename T>
844    T get() const;
845
846    /**
847     * set the value in the data pointer to v.
848     */
849    template <typename T>
850    void set(T v);
851
852    /**
853     * Copy data into the packet from the provided pointer.
854     */
855    void
856    setData(const uint8_t *p)
857    {
858        // we should never be copying data onto itself, which means we
859        // must idenfity packets with static data, as they carry the
860        // same pointer from source to destination and back
861        assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
862
863        if (p != getPtr<uint8_t>())
864            // for packet with allocated dynamic data, we copy data from
865            // one to the other, e.g. a forwarded response to a response
866            std::memcpy(getPtr<uint8_t>(), p, getSize());
867    }
868
869    /**
870     * Copy data into the packet from the provided block pointer,
871     * which is aligned to the given block size.
872     */
873    void
874    setDataFromBlock(const uint8_t *blk_data, int blkSize)
875    {
876        setData(blk_data + getOffset(blkSize));
877    }
878
879    /**
880     * Copy data from the packet to the provided block pointer, which
881     * is aligned to the given block size.
882     */
883    void
884    writeData(uint8_t *p) const
885    {
886        std::memcpy(p, getConstPtr<uint8_t>(), getSize());
887    }
888
889    /**
890     * Copy data from the packet to the memory at the provided pointer.
891     */
892    void
893    writeDataToBlock(uint8_t *blk_data, int blkSize) const
894    {
895        writeData(blk_data + getOffset(blkSize));
896    }
897
898    /**
899     * delete the data pointed to in the data pointer. Ok to call to
900     * matter how data was allocted.
901     */
902    void
903    deleteData()
904    {
905        if (flags.isSet(DYNAMIC_DATA))
906            delete [] data;
907
908        flags.clear(STATIC_DATA|DYNAMIC_DATA);
909        data = NULL;
910    }
911
912    /** Allocate memory for the packet. */
913    void
914    allocate()
915    {
916        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
917        flags.set(DYNAMIC_DATA);
918        data = new uint8_t[getSize()];
919    }
920
921    /**
922     * Check a functional request against a memory value stored in
923     * another packet (i.e. an in-transit request or
924     * response). Returns true if the current packet is a read, and
925     * the other packet provides the data, which is then copied to the
926     * current packet. If the current packet is a write, and the other
927     * packet intersects this one, then we update the data
928     * accordingly.
929     */
930    bool
931    checkFunctional(PacketPtr other)
932    {
933        // all packets that are carrying a payload should have a valid
934        // data pointer
935        return checkFunctional(other, other->getAddr(), other->isSecure(),
936                               other->getSize(),
937                               other->hasData() ?
938                               other->getPtr<uint8_t>() : NULL);
939    }
940
941    /**
942     * Is this request notification of a clean or dirty eviction from the cache.
943     **/
944    bool
945    evictingBlock() const
946    {
947        return (cmd == MemCmd::Writeback ||
948                cmd == MemCmd::CleanEvict);
949    }
950
951    /**
952     * Does the request need to check for cached copies of the same block
953     * in the memory hierarchy above.
954     **/
955    bool
956    mustCheckAbove() const
957    {
958        return (cmd == MemCmd::HardPFReq ||
959                evictingBlock());
960    }
961
962    /**
963     * Check a functional request against a memory value represented
964     * by a base/size pair and an associated data array. If the
965     * current packet is a read, it may be satisfied by the memory
966     * value. If the current packet is a write, it may update the
967     * memory value.
968     */
969    bool
970    checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
971                    uint8_t *_data);
972
973    /**
974     * Push label for PrintReq (safe to call unconditionally).
975     */
976    void
977    pushLabel(const std::string &lbl)
978    {
979        if (isPrint())
980            safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
981    }
982
983    /**
984     * Pop label for PrintReq (safe to call unconditionally).
985     */
986    void
987    popLabel()
988    {
989        if (isPrint())
990            safe_cast<PrintReqState*>(senderState)->popLabel();
991    }
992
993    void print(std::ostream &o, int verbosity = 0,
994               const std::string &prefix = "") const;
995
996    /**
997     * A no-args wrapper of print(std::ostream...)
998     * meant to be invoked from DPRINTFs
999     * avoiding string overheads in fast mode
1000     * @return string with the request's type and start<->end addresses
1001     */
1002    std::string print() const;
1003};
1004
1005#endif //__MEM_PACKET_HH
1006