packet.hh revision 10723
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 *          Steve Reinhardt
43 *          Ali Saidi
44 *          Andreas Hansson
45 */
46
47/**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52#ifndef __MEM_PACKET_HH__
53#define __MEM_PACKET_HH__
54
55#include <bitset>
56#include <cassert>
57#include <list>
58
59#include "base/cast.hh"
60#include "base/compiler.hh"
61#include "base/flags.hh"
62#include "base/misc.hh"
63#include "base/printable.hh"
64#include "base/types.hh"
65#include "mem/request.hh"
66#include "sim/core.hh"
67
68class Packet;
69typedef Packet *PacketPtr;
70typedef uint8_t* PacketDataPtr;
71typedef std::list<PacketPtr> PacketList;
72
73class MemCmd
74{
75    friend class Packet;
76
77  public:
78    /**
79     * List of all commands associated with a packet.
80     */
81    enum Command
82    {
83        InvalidCmd,
84        ReadReq,
85        ReadResp,
86        ReadRespWithInvalidate,
87        WriteReq,
88        WriteResp,
89        Writeback,
90        SoftPFReq,
91        HardPFReq,
92        SoftPFResp,
93        HardPFResp,
94        WriteInvalidateReq,
95        WriteInvalidateResp,
96        UpgradeReq,
97        SCUpgradeReq,           // Special "weak" upgrade for StoreCond
98        UpgradeResp,
99        SCUpgradeFailReq,       // Failed SCUpgradeReq in MSHR (never sent)
100        UpgradeFailResp,        // Valid for SCUpgradeReq only
101        ReadExReq,
102        ReadExResp,
103        LoadLockedReq,
104        StoreCondReq,
105        StoreCondFailReq,       // Failed StoreCondReq in MSHR (never sent)
106        StoreCondResp,
107        SwapReq,
108        SwapResp,
109        MessageReq,
110        MessageResp,
111        // Error responses
112        // @TODO these should be classified as responses rather than
113        // requests; coding them as requests initially for backwards
114        // compatibility
115        InvalidDestError,  // packet dest field invalid
116        BadAddressError,   // memory address invalid
117        FunctionalReadError, // unable to fulfill functional read
118        FunctionalWriteError, // unable to fulfill functional write
119        // Fake simulator-only commands
120        PrintReq,       // Print state matching address
121        FlushReq,      //request for a cache flush
122        InvalidationReq,   // request for address to be invalidated from lsq
123        NUM_MEM_CMDS
124    };
125
126  private:
127    /**
128     * List of command attributes.
129     */
130    enum Attribute
131    {
132        IsRead,         //!< Data flows from responder to requester
133        IsWrite,        //!< Data flows from requester to responder
134        IsUpgrade,
135        IsInvalidate,
136        NeedsExclusive, //!< Requires exclusive copy to complete in-cache
137        IsRequest,      //!< Issued by requester
138        IsResponse,     //!< Issue by responder
139        NeedsResponse,  //!< Requester needs response from target
140        IsSWPrefetch,
141        IsHWPrefetch,
142        IsLlsc,         //!< Alpha/MIPS LL or SC access
143        HasData,        //!< There is an associated payload
144        IsError,        //!< Error response
145        IsPrint,        //!< Print state matching address (for debugging)
146        IsFlush,        //!< Flush the address from caches
147        NUM_COMMAND_ATTRIBUTES
148    };
149
150    /**
151     * Structure that defines attributes and other data associated
152     * with a Command.
153     */
154    struct CommandInfo
155    {
156        /// Set of attribute flags.
157        const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
158        /// Corresponding response for requests; InvalidCmd if no
159        /// response is applicable.
160        const Command response;
161        /// String representation (for printing)
162        const std::string str;
163    };
164
165    /// Array to map Command enum to associated info.
166    static const CommandInfo commandInfo[];
167
168  private:
169
170    Command cmd;
171
172    bool
173    testCmdAttrib(MemCmd::Attribute attrib) const
174    {
175        return commandInfo[cmd].attributes[attrib] != 0;
176    }
177
178  public:
179
180    bool isRead() const            { return testCmdAttrib(IsRead); }
181    bool isWrite() const           { return testCmdAttrib(IsWrite); }
182    bool isUpgrade() const         { return testCmdAttrib(IsUpgrade); }
183    bool isRequest() const         { return testCmdAttrib(IsRequest); }
184    bool isResponse() const        { return testCmdAttrib(IsResponse); }
185    bool needsExclusive() const    { return testCmdAttrib(NeedsExclusive); }
186    bool needsResponse() const     { return testCmdAttrib(NeedsResponse); }
187    bool isInvalidate() const      { return testCmdAttrib(IsInvalidate); }
188    bool isWriteInvalidate() const { return testCmdAttrib(IsWrite) &&
189                                            testCmdAttrib(IsInvalidate); }
190
191    /**
192     * Check if this particular packet type carries payload data. Note
193     * that this does not reflect if the data pointer of the packet is
194     * valid or not.
195     */
196    bool hasData() const        { return testCmdAttrib(HasData); }
197    bool isLLSC() const         { return testCmdAttrib(IsLlsc); }
198    bool isSWPrefetch() const   { return testCmdAttrib(IsSWPrefetch); }
199    bool isHWPrefetch() const   { return testCmdAttrib(IsHWPrefetch); }
200    bool isPrefetch() const     { return testCmdAttrib(IsSWPrefetch) ||
201                                         testCmdAttrib(IsHWPrefetch); }
202    bool isError() const        { return testCmdAttrib(IsError); }
203    bool isPrint() const        { return testCmdAttrib(IsPrint); }
204    bool isFlush() const        { return testCmdAttrib(IsFlush); }
205
206    const Command
207    responseCommand() const
208    {
209        return commandInfo[cmd].response;
210    }
211
212    /// Return the string to a cmd given by idx.
213    const std::string &toString() const { return commandInfo[cmd].str; }
214    int toInt() const { return (int)cmd; }
215
216    MemCmd(Command _cmd) : cmd(_cmd) { }
217    MemCmd(int _cmd) : cmd((Command)_cmd) { }
218    MemCmd() : cmd(InvalidCmd) { }
219
220    bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
221    bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
222};
223
224/**
225 * A Packet is used to encapsulate a transfer between two objects in
226 * the memory system (e.g., the L1 and L2 cache).  (In contrast, a
227 * single Request travels all the way from the requester to the
228 * ultimate destination and back, possibly being conveyed by several
229 * different Packets along the way.)
230 */
231class Packet : public Printable
232{
233  public:
234    typedef uint32_t FlagsType;
235    typedef ::Flags<FlagsType> Flags;
236
237  private:
238    static const FlagsType PUBLIC_FLAGS           = 0x00000000;
239    static const FlagsType PRIVATE_FLAGS          = 0x00007F0F;
240    static const FlagsType COPY_FLAGS             = 0x0000000F;
241
242    static const FlagsType SHARED                 = 0x00000001;
243    // Special control flags
244    /// Special timing-mode atomic snoop for multi-level coherence.
245    static const FlagsType EXPRESS_SNOOP          = 0x00000002;
246    /// Does supplier have exclusive copy?
247    /// Useful for multi-level coherence.
248    static const FlagsType SUPPLY_EXCLUSIVE       = 0x00000004;
249    // Snoop response flags
250    static const FlagsType MEM_INHIBIT            = 0x00000008;
251    /// Are the 'addr' and 'size' fields valid?
252    static const FlagsType VALID_ADDR             = 0x00000100;
253    static const FlagsType VALID_SIZE             = 0x00000200;
254    /// Is the data pointer set to a value that shouldn't be freed
255    /// when the packet is destroyed?
256    static const FlagsType STATIC_DATA            = 0x00001000;
257    /// The data pointer points to a value that should be freed when
258    /// the packet is destroyed. The pointer is assumed to be pointing
259    /// to an array, and delete [] is consequently called
260    static const FlagsType DYNAMIC_DATA           = 0x00002000;
261    /// suppress the error if this packet encounters a functional
262    /// access failure.
263    static const FlagsType SUPPRESS_FUNC_ERROR    = 0x00008000;
264    // Signal prefetch squash through express snoop flag
265    static const FlagsType PREFETCH_SNOOP_SQUASH  = 0x00010000;
266
267    Flags flags;
268
269  public:
270    typedef MemCmd::Command Command;
271
272    /// The command field of the packet.
273    MemCmd cmd;
274
275    /// A pointer to the original request.
276    const RequestPtr req;
277
278  private:
279   /**
280    * A pointer to the data being transfered.  It can be differnt
281    * sizes at each level of the heirarchy so it belongs in the
282    * packet, not request. This may or may not be populated when a
283    * responder recieves the packet. If not populated it memory should
284    * be allocated.
285    */
286    PacketDataPtr data;
287
288    /// The address of the request.  This address could be virtual or
289    /// physical, depending on the system configuration.
290    Addr addr;
291
292    /// True if the request targets the secure memory space.
293    bool _isSecure;
294
295    /// The size of the request or transfer.
296    unsigned size;
297
298    /**
299     * The original value of the command field.  Only valid when the
300     * current command field is an error condition; in that case, the
301     * previous contents of the command field are copied here.  This
302     * field is *not* set on non-error responses.
303     */
304    MemCmd origCmd;
305
306    /**
307     * Track the bytes found that satisfy a functional read.
308     */
309    std::vector<bool> bytesValid;
310
311  public:
312
313    /**
314     * The extra delay from seeing the packet until the header is
315     * transmitted. This delay is used to communicate the crossbar
316     * forwarding latency to the neighbouring object (e.g. a cache)
317     * that actually makes the packet wait. As the delay is relative,
318     * a 32-bit unsigned should be sufficient.
319     */
320    uint32_t headerDelay;
321
322    /**
323     * The extra pipelining delay from seeing the packet until the end of
324     * payload is transmitted by the component that provided it (if
325     * any). This includes the header delay. Similar to the header
326     * delay, this is used to make up for the fact that the
327     * crossbar does not make the packet wait. As the delay is
328     * relative, a 32-bit unsigned should be sufficient.
329     */
330    uint32_t payloadDelay;
331
332    /**
333     * A virtual base opaque structure used to hold state associated
334     * with the packet (e.g., an MSHR), specific to a MemObject that
335     * sees the packet. A pointer to this state is returned in the
336     * packet's response so that the MemObject in question can quickly
337     * look up the state needed to process it. A specific subclass
338     * would be derived from this to carry state specific to a
339     * particular sending device.
340     *
341     * As multiple MemObjects may add their SenderState throughout the
342     * memory system, the SenderStates create a stack, where a
343     * MemObject can add a new Senderstate, as long as the
344     * predecessing SenderState is restored when the response comes
345     * back. For this reason, the predecessor should always be
346     * populated with the current SenderState of a packet before
347     * modifying the senderState field in the request packet.
348     */
349    struct SenderState
350    {
351        SenderState* predecessor;
352        SenderState() : predecessor(NULL) {}
353        virtual ~SenderState() {}
354    };
355
356    /**
357     * Object used to maintain state of a PrintReq.  The senderState
358     * field of a PrintReq should always be of this type.
359     */
360    class PrintReqState : public SenderState
361    {
362      private:
363        /**
364         * An entry in the label stack.
365         */
366        struct LabelStackEntry
367        {
368            const std::string label;
369            std::string *prefix;
370            bool labelPrinted;
371            LabelStackEntry(const std::string &_label, std::string *_prefix);
372        };
373
374        typedef std::list<LabelStackEntry> LabelStack;
375        LabelStack labelStack;
376
377        std::string *curPrefixPtr;
378
379      public:
380        std::ostream &os;
381        const int verbosity;
382
383        PrintReqState(std::ostream &os, int verbosity = 0);
384        ~PrintReqState();
385
386        /**
387         * Returns the current line prefix.
388         */
389        const std::string &curPrefix() { return *curPrefixPtr; }
390
391        /**
392         * Push a label onto the label stack, and prepend the given
393         * prefix string onto the current prefix.  Labels will only be
394         * printed if an object within the label's scope is printed.
395         */
396        void pushLabel(const std::string &lbl,
397                       const std::string &prefix = "  ");
398
399        /**
400         * Pop a label off the label stack.
401         */
402        void popLabel();
403
404        /**
405         * Print all of the pending unprinted labels on the
406         * stack. Called by printObj(), so normally not called by
407         * users unless bypassing printObj().
408         */
409        void printLabels();
410
411        /**
412         * Print a Printable object to os, because it matched the
413         * address on a PrintReq.
414         */
415        void printObj(Printable *obj);
416    };
417
418    /**
419     * This packet's sender state.  Devices should use dynamic_cast<>
420     * to cast to the state appropriate to the sender.  The intent of
421     * this variable is to allow a device to attach extra information
422     * to a request. A response packet must return the sender state
423     * that was attached to the original request (even if a new packet
424     * is created).
425     */
426    SenderState *senderState;
427
428    /**
429     * Push a new sender state to the packet and make the current
430     * sender state the predecessor of the new one. This should be
431     * prefered over direct manipulation of the senderState member
432     * variable.
433     *
434     * @param sender_state SenderState to push at the top of the stack
435     */
436    void pushSenderState(SenderState *sender_state);
437
438    /**
439     * Pop the top of the state stack and return a pointer to it. This
440     * assumes the current sender state is not NULL. This should be
441     * preferred over direct manipulation of the senderState member
442     * variable.
443     *
444     * @return The current top of the stack
445     */
446    SenderState *popSenderState();
447
448    /**
449     * Go through the sender state stack and return the first instance
450     * that is of type T (as determined by a dynamic_cast). If there
451     * is no sender state of type T, NULL is returned.
452     *
453     * @return The topmost state of type T
454     */
455    template <typename T>
456    T * findNextSenderState() const
457    {
458        T *t = NULL;
459        SenderState* sender_state = senderState;
460        while (t == NULL && sender_state != NULL) {
461            t = dynamic_cast<T*>(sender_state);
462            sender_state = sender_state->predecessor;
463        }
464        return t;
465    }
466
467    /// Return the string name of the cmd field (for debugging and
468    /// tracing).
469    const std::string &cmdString() const { return cmd.toString(); }
470
471    /// Return the index of this command.
472    inline int cmdToIndex() const { return cmd.toInt(); }
473
474    bool isRead() const              { return cmd.isRead(); }
475    bool isWrite() const             { return cmd.isWrite(); }
476    bool isUpgrade()  const          { return cmd.isUpgrade(); }
477    bool isRequest() const           { return cmd.isRequest(); }
478    bool isResponse() const          { return cmd.isResponse(); }
479    bool needsExclusive() const      { return cmd.needsExclusive(); }
480    bool needsResponse() const       { return cmd.needsResponse(); }
481    bool isInvalidate() const        { return cmd.isInvalidate(); }
482    bool isWriteInvalidate() const   { return cmd.isWriteInvalidate(); }
483    bool hasData() const             { return cmd.hasData(); }
484    bool isLLSC() const              { return cmd.isLLSC(); }
485    bool isError() const             { return cmd.isError(); }
486    bool isPrint() const             { return cmd.isPrint(); }
487    bool isFlush() const             { return cmd.isFlush(); }
488
489    // Snoop flags
490    void assertMemInhibit()
491    {
492        assert(isRequest());
493        assert(!flags.isSet(MEM_INHIBIT));
494        flags.set(MEM_INHIBIT);
495    }
496    bool memInhibitAsserted() const { return flags.isSet(MEM_INHIBIT); }
497    void assertShared()             { flags.set(SHARED); }
498    bool sharedAsserted() const     { return flags.isSet(SHARED); }
499
500    // Special control flags
501    void setExpressSnoop()          { flags.set(EXPRESS_SNOOP); }
502    bool isExpressSnoop() const     { return flags.isSet(EXPRESS_SNOOP); }
503    void setSupplyExclusive()       { flags.set(SUPPLY_EXCLUSIVE); }
504    void clearSupplyExclusive()     { flags.clear(SUPPLY_EXCLUSIVE); }
505    bool isSupplyExclusive() const  { return flags.isSet(SUPPLY_EXCLUSIVE); }
506    void setSuppressFuncError()     { flags.set(SUPPRESS_FUNC_ERROR); }
507    bool suppressFuncError() const  { return flags.isSet(SUPPRESS_FUNC_ERROR); }
508    void setPrefetchSquashed()      { flags.set(PREFETCH_SNOOP_SQUASH); }
509    bool prefetchSquashed() const   { return flags.isSet(PREFETCH_SNOOP_SQUASH); }
510
511    // Network error conditions... encapsulate them as methods since
512    // their encoding keeps changing (from result field to command
513    // field, etc.)
514    void
515    setBadAddress()
516    {
517        assert(isResponse());
518        cmd = MemCmd::BadAddressError;
519    }
520
521    bool hadBadAddress() const { return cmd == MemCmd::BadAddressError; }
522    void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
523
524    Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
525    /**
526     * Update the address of this packet mid-transaction. This is used
527     * by the address mapper to change an already set address to a new
528     * one based on the system configuration. It is intended to remap
529     * an existing address, so it asserts that the current address is
530     * valid.
531     */
532    void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
533
534    unsigned getSize() const  { assert(flags.isSet(VALID_SIZE)); return size; }
535    Addr getOffset(int blkSize) const { return getAddr() & (Addr)(blkSize - 1); }
536
537    bool isSecure() const
538    {
539        assert(flags.isSet(VALID_ADDR));
540        return _isSecure;
541    }
542
543    /**
544     * It has been determined that the SC packet should successfully update
545     * memory.  Therefore, convert this SC packet to a normal write.
546     */
547    void
548    convertScToWrite()
549    {
550        assert(isLLSC());
551        assert(isWrite());
552        cmd = MemCmd::WriteReq;
553    }
554
555    /**
556     * When ruby is in use, Ruby will monitor the cache line and thus M5
557     * phys memory should treat LL ops as normal reads.
558     */
559    void
560    convertLlToRead()
561    {
562        assert(isLLSC());
563        assert(isRead());
564        cmd = MemCmd::ReadReq;
565    }
566
567    /**
568     * Constructor.  Note that a Request object must be constructed
569     * first, but the Requests's physical address and size fields need
570     * not be valid. The command must be supplied.
571     */
572    Packet(const RequestPtr _req, MemCmd _cmd)
573        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
574           size(0), headerDelay(0), payloadDelay(0),
575           senderState(NULL)
576    {
577        if (req->hasPaddr()) {
578            addr = req->getPaddr();
579            flags.set(VALID_ADDR);
580            _isSecure = req->isSecure();
581        }
582        if (req->hasSize()) {
583            size = req->getSize();
584            flags.set(VALID_SIZE);
585        }
586    }
587
588    /**
589     * Alternate constructor if you are trying to create a packet with
590     * a request that is for a whole block, not the address from the
591     * req.  this allows for overriding the size/addr of the req.
592     */
593    Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
594        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
595           headerDelay(0), payloadDelay(0),
596           senderState(NULL)
597    {
598        if (req->hasPaddr()) {
599            addr = req->getPaddr() & ~(_blkSize - 1);
600            flags.set(VALID_ADDR);
601            _isSecure = req->isSecure();
602        }
603        size = _blkSize;
604        flags.set(VALID_SIZE);
605    }
606
607    /**
608     * Alternate constructor for copying a packet.  Copy all fields
609     * *except* if the original packet's data was dynamic, don't copy
610     * that, as we can't guarantee that the new packet's lifetime is
611     * less than that of the original packet.  In this case the new
612     * packet should allocate its own data.
613     */
614    Packet(PacketPtr pkt, bool clear_flags, bool alloc_data)
615        :  cmd(pkt->cmd), req(pkt->req),
616           data(nullptr),
617           addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
618           bytesValid(pkt->bytesValid),
619           headerDelay(pkt->headerDelay),
620           payloadDelay(pkt->payloadDelay),
621           senderState(pkt->senderState)
622    {
623        if (!clear_flags)
624            flags.set(pkt->flags & COPY_FLAGS);
625
626        flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
627
628        // should we allocate space for data, or not, the express
629        // snoops do not need to carry any data as they only serve to
630        // co-ordinate state changes
631        if (alloc_data) {
632            // even if asked to allocate data, if the original packet
633            // holds static data, then the sender will not be doing
634            // any memcpy on receiving the response, thus we simply
635            // carry the pointer forward
636            if (pkt->flags.isSet(STATIC_DATA)) {
637                data = pkt->data;
638                flags.set(STATIC_DATA);
639            } else {
640                allocate();
641            }
642        }
643    }
644
645    /**
646     * Change the packet type based on request type.
647     */
648    void
649    refineCommand()
650    {
651        if (cmd == MemCmd::ReadReq) {
652            if (req->isLLSC()) {
653                cmd = MemCmd::LoadLockedReq;
654            } else if (req->isPrefetch()) {
655                cmd = MemCmd::SoftPFReq;
656            }
657        } else if (cmd == MemCmd::WriteReq) {
658            if (req->isLLSC()) {
659                cmd = MemCmd::StoreCondReq;
660            } else if (req->isSwap()) {
661                cmd = MemCmd::SwapReq;
662            }
663        }
664    }
665
666    /**
667     * Constructor-like methods that return Packets based on Request objects.
668     * Will call refineCommand() to fine-tune the Packet type if it's not a
669     * vanilla read or write.
670     */
671    static PacketPtr
672    createRead(const RequestPtr req)
673    {
674        PacketPtr pkt = new Packet(req, MemCmd::ReadReq);
675        pkt->refineCommand();
676        return pkt;
677    }
678
679    static PacketPtr
680    createWrite(const RequestPtr req)
681    {
682        PacketPtr pkt = new Packet(req, MemCmd::WriteReq);
683        pkt->refineCommand();
684        return pkt;
685    }
686
687    /**
688     * clean up packet variables
689     */
690    ~Packet()
691    {
692        // If this is a request packet for which there's no response,
693        // delete the request object here, since the requester will
694        // never get the chance.
695        if (req && isRequest() && !needsResponse())
696            delete req;
697        deleteData();
698    }
699
700    /**
701     * Take a request packet and modify it in place to be suitable for
702     * returning as a response to that request.
703     */
704    void
705    makeResponse()
706    {
707        assert(needsResponse());
708        assert(isRequest());
709        origCmd = cmd;
710        cmd = cmd.responseCommand();
711
712        // responses are never express, even if the snoop that
713        // triggered them was
714        flags.clear(EXPRESS_SNOOP);
715    }
716
717    void
718    makeAtomicResponse()
719    {
720        makeResponse();
721    }
722
723    void
724    makeTimingResponse()
725    {
726        makeResponse();
727    }
728
729    void
730    setFunctionalResponseStatus(bool success)
731    {
732        if (!success) {
733            if (isWrite()) {
734                cmd = MemCmd::FunctionalWriteError;
735            } else {
736                cmd = MemCmd::FunctionalReadError;
737            }
738        }
739    }
740
741    void
742    setSize(unsigned size)
743    {
744        assert(!flags.isSet(VALID_SIZE));
745
746        this->size = size;
747        flags.set(VALID_SIZE);
748    }
749
750
751    /**
752     * Set the data pointer to the following value that should not be
753     * freed. Static data allows us to do a single memcpy even if
754     * multiple packets are required to get from source to destination
755     * and back. In essence the pointer is set calling dataStatic on
756     * the original packet, and whenever this packet is copied and
757     * forwarded the same pointer is passed on. When a packet
758     * eventually reaches the destination holding the data, it is
759     * copied once into the location originally set. On the way back
760     * to the source, no copies are necessary.
761     */
762    template <typename T>
763    void
764    dataStatic(T *p)
765    {
766        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
767        data = (PacketDataPtr)p;
768        flags.set(STATIC_DATA);
769    }
770
771    /**
772     * Set the data pointer to the following value that should not be
773     * freed. This version of the function allows the pointer passed
774     * to us to be const. To avoid issues down the line we cast the
775     * constness away, the alternative would be to keep both a const
776     * and non-const data pointer and cleverly choose between
777     * them. Note that this is only allowed for static data.
778     */
779    template <typename T>
780    void
781    dataStaticConst(const T *p)
782    {
783        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
784        data = const_cast<PacketDataPtr>(p);
785        flags.set(STATIC_DATA);
786    }
787
788    /**
789     * Set the data pointer to a value that should have delete []
790     * called on it. Dynamic data is local to this packet, and as the
791     * packet travels from source to destination, forwarded packets
792     * will allocate their own data. When a packet reaches the final
793     * destination it will populate the dynamic data of that specific
794     * packet, and on the way back towards the source, memcpy will be
795     * invoked in every step where a new packet was created e.g. in
796     * the caches. Ultimately when the response reaches the source a
797     * final memcpy is needed to extract the data from the packet
798     * before it is deallocated.
799     */
800    template <typename T>
801    void
802    dataDynamic(T *p)
803    {
804        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
805        data = (PacketDataPtr)p;
806        flags.set(DYNAMIC_DATA);
807    }
808
809    /**
810     * get a pointer to the data ptr.
811     */
812    template <typename T>
813    T*
814    getPtr()
815    {
816        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
817        return (T*)data;
818    }
819
820    template <typename T>
821    const T*
822    getConstPtr() const
823    {
824        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
825        return (const T*)data;
826    }
827
828    /**
829     * return the value of what is pointed to in the packet.
830     */
831    template <typename T>
832    T get() const;
833
834    /**
835     * set the value in the data pointer to v.
836     */
837    template <typename T>
838    void set(T v);
839
840    /**
841     * Copy data into the packet from the provided pointer.
842     */
843    void
844    setData(const uint8_t *p)
845    {
846        // we should never be copying data onto itself, which means we
847        // must idenfity packets with static data, as they carry the
848        // same pointer from source to destination and back
849        assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
850
851        if (p != getPtr<uint8_t>())
852            // for packet with allocated dynamic data, we copy data from
853            // one to the other, e.g. a forwarded response to a response
854            std::memcpy(getPtr<uint8_t>(), p, getSize());
855    }
856
857    /**
858     * Copy data into the packet from the provided block pointer,
859     * which is aligned to the given block size.
860     */
861    void
862    setDataFromBlock(const uint8_t *blk_data, int blkSize)
863    {
864        setData(blk_data + getOffset(blkSize));
865    }
866
867    /**
868     * Copy data from the packet to the provided block pointer, which
869     * is aligned to the given block size.
870     */
871    void
872    writeData(uint8_t *p) const
873    {
874        std::memcpy(p, getConstPtr<uint8_t>(), getSize());
875    }
876
877    /**
878     * Copy data from the packet to the memory at the provided pointer.
879     */
880    void
881    writeDataToBlock(uint8_t *blk_data, int blkSize) const
882    {
883        writeData(blk_data + getOffset(blkSize));
884    }
885
886    /**
887     * delete the data pointed to in the data pointer. Ok to call to
888     * matter how data was allocted.
889     */
890    void
891    deleteData()
892    {
893        if (flags.isSet(DYNAMIC_DATA))
894            delete [] data;
895
896        flags.clear(STATIC_DATA|DYNAMIC_DATA);
897        data = NULL;
898    }
899
900    /** Allocate memory for the packet. */
901    void
902    allocate()
903    {
904        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
905        flags.set(DYNAMIC_DATA);
906        data = new uint8_t[getSize()];
907    }
908
909    /**
910     * Check a functional request against a memory value stored in
911     * another packet (i.e. an in-transit request or
912     * response). Returns true if the current packet is a read, and
913     * the other packet provides the data, which is then copied to the
914     * current packet. If the current packet is a write, and the other
915     * packet intersects this one, then we update the data
916     * accordingly.
917     */
918    bool
919    checkFunctional(PacketPtr other)
920    {
921        // all packets that are carrying a payload should have a valid
922        // data pointer
923        return checkFunctional(other, other->getAddr(), other->isSecure(),
924                               other->getSize(),
925                               other->hasData() ?
926                               other->getPtr<uint8_t>() : NULL);
927    }
928
929    /**
930     * Check a functional request against a memory value represented
931     * by a base/size pair and an associated data array. If the
932     * current packet is a read, it may be satisfied by the memory
933     * value. If the current packet is a write, it may update the
934     * memory value.
935     */
936    bool
937    checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
938                    uint8_t *_data);
939
940    /**
941     * Push label for PrintReq (safe to call unconditionally).
942     */
943    void
944    pushLabel(const std::string &lbl)
945    {
946        if (isPrint())
947            safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
948    }
949
950    /**
951     * Pop label for PrintReq (safe to call unconditionally).
952     */
953    void
954    popLabel()
955    {
956        if (isPrint())
957            safe_cast<PrintReqState*>(senderState)->popLabel();
958    }
959
960    void print(std::ostream &o, int verbosity = 0,
961               const std::string &prefix = "") const;
962
963    /**
964     * A no-args wrapper of print(std::ostream...)
965     * meant to be invoked from DPRINTFs
966     * avoiding string overheads in fast mode
967     * @return string with the request's type and start<->end addresses
968     */
969    std::string print() const;
970};
971
972#endif //__MEM_PACKET_HH
973