base.cc revision 13747
1/*
2 * Copyright (c) 2012-2013, 2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 *          Nikos Nikoleris
42 */
43
44/**
45 * @file
46 * Definition of BaseCache functions.
47 */
48
49#include "mem/cache/base.hh"
50
51#include "base/compiler.hh"
52#include "base/logging.hh"
53#include "debug/Cache.hh"
54#include "debug/CachePort.hh"
55#include "debug/CacheRepl.hh"
56#include "debug/CacheVerbose.hh"
57#include "mem/cache/mshr.hh"
58#include "mem/cache/prefetch/base.hh"
59#include "mem/cache/queue_entry.hh"
60#include "params/BaseCache.hh"
61#include "params/WriteAllocator.hh"
62#include "sim/core.hh"
63
64class BaseMasterPort;
65class BaseSlavePort;
66
67using namespace std;
68
69BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
70                                          BaseCache *_cache,
71                                          const std::string &_label)
72    : QueuedSlavePort(_name, _cache, queue),
73      queue(*_cache, *this, true, _label),
74      blocked(false), mustSendRetry(false),
75      sendRetryEvent([this]{ processSendRetry(); }, _name)
76{
77}
78
79BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
80    : MemObject(p),
81      cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
82      memSidePort(p->name + ".mem_side", this, "MemSidePort"),
83      mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
84      writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
85      tags(p->tags),
86      prefetcher(p->prefetcher),
87      writeAllocator(p->write_allocator),
88      writebackClean(p->writeback_clean),
89      tempBlockWriteback(nullptr),
90      writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
91                                    name(), false,
92                                    EventBase::Delayed_Writeback_Pri),
93      blkSize(blk_size),
94      lookupLatency(p->tag_latency),
95      dataLatency(p->data_latency),
96      forwardLatency(p->tag_latency),
97      fillLatency(p->data_latency),
98      responseLatency(p->response_latency),
99      sequentialAccess(p->sequential_access),
100      numTarget(p->tgts_per_mshr),
101      forwardSnoops(true),
102      clusivity(p->clusivity),
103      isReadOnly(p->is_read_only),
104      blocked(0),
105      order(0),
106      noTargetMSHR(nullptr),
107      missCount(p->max_miss_count),
108      addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
109      system(p->system)
110{
111    // the MSHR queue has no reserve entries as we check the MSHR
112    // queue on every single allocation, whereas the write queue has
113    // as many reserve entries as we have MSHRs, since every MSHR may
114    // eventually require a writeback, and we do not check the write
115    // buffer before committing to an MSHR
116
117    // forward snoops is overridden in init() once we can query
118    // whether the connected master is actually snooping or not
119
120    tempBlock = new TempCacheBlk(blkSize);
121
122    tags->tagsInit();
123    if (prefetcher)
124        prefetcher->setCache(this);
125}
126
127BaseCache::~BaseCache()
128{
129    delete tempBlock;
130}
131
132void
133BaseCache::CacheSlavePort::setBlocked()
134{
135    assert(!blocked);
136    DPRINTF(CachePort, "Port is blocking new requests\n");
137    blocked = true;
138    // if we already scheduled a retry in this cycle, but it has not yet
139    // happened, cancel it
140    if (sendRetryEvent.scheduled()) {
141        owner.deschedule(sendRetryEvent);
142        DPRINTF(CachePort, "Port descheduled retry\n");
143        mustSendRetry = true;
144    }
145}
146
147void
148BaseCache::CacheSlavePort::clearBlocked()
149{
150    assert(blocked);
151    DPRINTF(CachePort, "Port is accepting new requests\n");
152    blocked = false;
153    if (mustSendRetry) {
154        // @TODO: need to find a better time (next cycle?)
155        owner.schedule(sendRetryEvent, curTick() + 1);
156    }
157}
158
159void
160BaseCache::CacheSlavePort::processSendRetry()
161{
162    DPRINTF(CachePort, "Port is sending retry\n");
163
164    // reset the flag and call retry
165    mustSendRetry = false;
166    sendRetryReq();
167}
168
169Addr
170BaseCache::regenerateBlkAddr(CacheBlk* blk)
171{
172    if (blk != tempBlock) {
173        return tags->regenerateBlkAddr(blk);
174    } else {
175        return tempBlock->getAddr();
176    }
177}
178
179void
180BaseCache::init()
181{
182    if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
183        fatal("Cache ports on %s are not connected\n", name());
184    cpuSidePort.sendRangeChange();
185    forwardSnoops = cpuSidePort.isSnooping();
186}
187
188BaseMasterPort &
189BaseCache::getMasterPort(const std::string &if_name, PortID idx)
190{
191    if (if_name == "mem_side") {
192        return memSidePort;
193    }  else {
194        return MemObject::getMasterPort(if_name, idx);
195    }
196}
197
198BaseSlavePort &
199BaseCache::getSlavePort(const std::string &if_name, PortID idx)
200{
201    if (if_name == "cpu_side") {
202        return cpuSidePort;
203    } else {
204        return MemObject::getSlavePort(if_name, idx);
205    }
206}
207
208bool
209BaseCache::inRange(Addr addr) const
210{
211    for (const auto& r : addrRanges) {
212        if (r.contains(addr)) {
213            return true;
214       }
215    }
216    return false;
217}
218
219void
220BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
221{
222    if (pkt->needsResponse()) {
223        // These delays should have been consumed by now
224        assert(pkt->headerDelay == 0);
225        assert(pkt->payloadDelay == 0);
226
227        pkt->makeTimingResponse();
228
229        // In this case we are considering request_time that takes
230        // into account the delay of the xbar, if any, and just
231        // lat, neglecting responseLatency, modelling hit latency
232        // just as the value of lat overriden by access(), which calls
233        // the calculateAccessLatency() function.
234        cpuSidePort.schedTimingResp(pkt, request_time);
235    } else {
236        DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
237                pkt->print());
238
239        // queue the packet for deletion, as the sending cache is
240        // still relying on it; if the block is found in access(),
241        // CleanEvict and Writeback messages will be deleted
242        // here as well
243        pendingDelete.reset(pkt);
244    }
245}
246
247void
248BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
249                               Tick forward_time, Tick request_time)
250{
251    if (writeAllocator &&
252        pkt && pkt->isWrite() && !pkt->req->isUncacheable()) {
253        writeAllocator->updateMode(pkt->getAddr(), pkt->getSize(),
254                                   pkt->getBlockAddr(blkSize));
255    }
256
257    if (mshr) {
258        /// MSHR hit
259        /// @note writebacks will be checked in getNextMSHR()
260        /// for any conflicting requests to the same block
261
262        //@todo remove hw_pf here
263
264        // Coalesce unless it was a software prefetch (see above).
265        if (pkt) {
266            assert(!pkt->isWriteback());
267            // CleanEvicts corresponding to blocks which have
268            // outstanding requests in MSHRs are simply sunk here
269            if (pkt->cmd == MemCmd::CleanEvict) {
270                pendingDelete.reset(pkt);
271            } else if (pkt->cmd == MemCmd::WriteClean) {
272                // A WriteClean should never coalesce with any
273                // outstanding cache maintenance requests.
274
275                // We use forward_time here because there is an
276                // uncached memory write, forwarded to WriteBuffer.
277                allocateWriteBuffer(pkt, forward_time);
278            } else {
279                DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
280                        pkt->print());
281
282                assert(pkt->req->masterId() < system->maxMasters());
283                mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
284
285                // We use forward_time here because it is the same
286                // considering new targets. We have multiple
287                // requests for the same address here. It
288                // specifies the latency to allocate an internal
289                // buffer and to schedule an event to the queued
290                // port and also takes into account the additional
291                // delay of the xbar.
292                mshr->allocateTarget(pkt, forward_time, order++,
293                                     allocOnFill(pkt->cmd));
294                if (mshr->getNumTargets() == numTarget) {
295                    noTargetMSHR = mshr;
296                    setBlocked(Blocked_NoTargets);
297                    // need to be careful with this... if this mshr isn't
298                    // ready yet (i.e. time > curTick()), we don't want to
299                    // move it ahead of mshrs that are ready
300                    // mshrQueue.moveToFront(mshr);
301                }
302            }
303        }
304    } else {
305        // no MSHR
306        assert(pkt->req->masterId() < system->maxMasters());
307        mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
308
309        if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
310            // We use forward_time here because there is an
311            // writeback or writeclean, forwarded to WriteBuffer.
312            allocateWriteBuffer(pkt, forward_time);
313        } else {
314            if (blk && blk->isValid()) {
315                // If we have a write miss to a valid block, we
316                // need to mark the block non-readable.  Otherwise
317                // if we allow reads while there's an outstanding
318                // write miss, the read could return stale data
319                // out of the cache block... a more aggressive
320                // system could detect the overlap (if any) and
321                // forward data out of the MSHRs, but we don't do
322                // that yet.  Note that we do need to leave the
323                // block valid so that it stays in the cache, in
324                // case we get an upgrade response (and hence no
325                // new data) when the write miss completes.
326                // As long as CPUs do proper store/load forwarding
327                // internally, and have a sufficiently weak memory
328                // model, this is probably unnecessary, but at some
329                // point it must have seemed like we needed it...
330                assert((pkt->needsWritable() && !blk->isWritable()) ||
331                       pkt->req->isCacheMaintenance());
332                blk->status &= ~BlkReadable;
333            }
334            // Here we are using forward_time, modelling the latency of
335            // a miss (outbound) just as forwardLatency, neglecting the
336            // lookupLatency component.
337            allocateMissBuffer(pkt, forward_time);
338        }
339    }
340}
341
342void
343BaseCache::recvTimingReq(PacketPtr pkt)
344{
345    // anything that is merely forwarded pays for the forward latency and
346    // the delay provided by the crossbar
347    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
348
349    Cycles lat;
350    CacheBlk *blk = nullptr;
351    bool satisfied = false;
352    {
353        PacketList writebacks;
354        // Note that lat is passed by reference here. The function
355        // access() will set the lat value.
356        satisfied = access(pkt, blk, lat, writebacks);
357
358        // After the evicted blocks are selected, they must be forwarded
359        // to the write buffer to ensure they logically precede anything
360        // happening below
361        doWritebacks(writebacks, clockEdge(lat + forwardLatency));
362    }
363
364    // Here we charge the headerDelay that takes into account the latencies
365    // of the bus, if the packet comes from it.
366    // The latency charged is just the value set by the access() function.
367    // In case of a hit we are neglecting response latency.
368    // In case of a miss we are neglecting forward latency.
369    Tick request_time = clockEdge(lat);
370    // Here we reset the timing of the packet.
371    pkt->headerDelay = pkt->payloadDelay = 0;
372
373    if (satisfied) {
374        // notify before anything else as later handleTimingReqHit might turn
375        // the packet in a response
376        ppHit->notify(pkt);
377
378        if (prefetcher && blk && blk->wasPrefetched()) {
379            blk->status &= ~BlkHWPrefetched;
380        }
381
382        handleTimingReqHit(pkt, blk, request_time);
383    } else {
384        handleTimingReqMiss(pkt, blk, forward_time, request_time);
385
386        ppMiss->notify(pkt);
387    }
388
389    if (prefetcher) {
390        // track time of availability of next prefetch, if any
391        Tick next_pf_time = prefetcher->nextPrefetchReadyTime();
392        if (next_pf_time != MaxTick) {
393            schedMemSideSendEvent(next_pf_time);
394        }
395    }
396}
397
398void
399BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
400{
401    Tick completion_time = clockEdge(responseLatency) +
402        pkt->headerDelay + pkt->payloadDelay;
403
404    // Reset the bus additional time as it is now accounted for
405    pkt->headerDelay = pkt->payloadDelay = 0;
406
407    cpuSidePort.schedTimingResp(pkt, completion_time);
408}
409
410void
411BaseCache::recvTimingResp(PacketPtr pkt)
412{
413    assert(pkt->isResponse());
414
415    // all header delay should be paid for by the crossbar, unless
416    // this is a prefetch response from above
417    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
418             "%s saw a non-zero packet delay\n", name());
419
420    const bool is_error = pkt->isError();
421
422    if (is_error) {
423        DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
424                pkt->print());
425    }
426
427    DPRINTF(Cache, "%s: Handling response %s\n", __func__,
428            pkt->print());
429
430    // if this is a write, we should be looking at an uncacheable
431    // write
432    if (pkt->isWrite()) {
433        assert(pkt->req->isUncacheable());
434        handleUncacheableWriteResp(pkt);
435        return;
436    }
437
438    // we have dealt with any (uncacheable) writes above, from here on
439    // we know we are dealing with an MSHR due to a miss or a prefetch
440    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
441    assert(mshr);
442
443    if (mshr == noTargetMSHR) {
444        // we always clear at least one target
445        clearBlocked(Blocked_NoTargets);
446        noTargetMSHR = nullptr;
447    }
448
449    // Initial target is used just for stats
450    MSHR::Target *initial_tgt = mshr->getTarget();
451    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
452    Tick miss_latency = curTick() - initial_tgt->recvTime;
453
454    if (pkt->req->isUncacheable()) {
455        assert(pkt->req->masterId() < system->maxMasters());
456        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
457            miss_latency;
458    } else {
459        assert(pkt->req->masterId() < system->maxMasters());
460        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
461            miss_latency;
462    }
463
464    PacketList writebacks;
465
466    bool is_fill = !mshr->isForward &&
467        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp ||
468         mshr->wasWholeLineWrite);
469
470    // make sure that if the mshr was due to a whole line write then
471    // the response is an invalidation
472    assert(!mshr->wasWholeLineWrite || pkt->isInvalidate());
473
474    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
475
476    if (is_fill && !is_error) {
477        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
478                pkt->getAddr());
479
480        const bool allocate = (writeAllocator && mshr->wasWholeLineWrite) ?
481            writeAllocator->allocate() : mshr->allocOnFill();
482        blk = handleFill(pkt, blk, writebacks, allocate);
483        assert(blk != nullptr);
484        ppFill->notify(pkt);
485    }
486
487    if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
488        // The block was marked not readable while there was a pending
489        // cache maintenance operation, restore its flag.
490        blk->status |= BlkReadable;
491
492        // This was a cache clean operation (without invalidate)
493        // and we have a copy of the block already. Since there
494        // is no invalidation, we can promote targets that don't
495        // require a writable copy
496        mshr->promoteReadable();
497    }
498
499    if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
500        // If at this point the referenced block is writable and the
501        // response is not a cache invalidate, we promote targets that
502        // were deferred as we couldn't guarrantee a writable copy
503        mshr->promoteWritable();
504    }
505
506    serviceMSHRTargets(mshr, pkt, blk);
507
508    if (mshr->promoteDeferredTargets()) {
509        // avoid later read getting stale data while write miss is
510        // outstanding.. see comment in timingAccess()
511        if (blk) {
512            blk->status &= ~BlkReadable;
513        }
514        mshrQueue.markPending(mshr);
515        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
516    } else {
517        // while we deallocate an mshr from the queue we still have to
518        // check the isFull condition before and after as we might
519        // have been using the reserved entries already
520        const bool was_full = mshrQueue.isFull();
521        mshrQueue.deallocate(mshr);
522        if (was_full && !mshrQueue.isFull()) {
523            clearBlocked(Blocked_NoMSHRs);
524        }
525
526        // Request the bus for a prefetch if this deallocation freed enough
527        // MSHRs for a prefetch to take place
528        if (prefetcher && mshrQueue.canPrefetch()) {
529            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
530                                         clockEdge());
531            if (next_pf_time != MaxTick)
532                schedMemSideSendEvent(next_pf_time);
533        }
534    }
535
536    // if we used temp block, check to see if its valid and then clear it out
537    if (blk == tempBlock && tempBlock->isValid()) {
538        evictBlock(blk, writebacks);
539    }
540
541    const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
542    // copy writebacks to write buffer
543    doWritebacks(writebacks, forward_time);
544
545    DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
546    delete pkt;
547}
548
549
550Tick
551BaseCache::recvAtomic(PacketPtr pkt)
552{
553    // should assert here that there are no outstanding MSHRs or
554    // writebacks... that would mean that someone used an atomic
555    // access in timing mode
556
557    // We use lookupLatency here because it is used to specify the latency
558    // to access.
559    Cycles lat = lookupLatency;
560
561    CacheBlk *blk = nullptr;
562    PacketList writebacks;
563    bool satisfied = access(pkt, blk, lat, writebacks);
564
565    if (pkt->isClean() && blk && blk->isDirty()) {
566        // A cache clean opearation is looking for a dirty
567        // block. If a dirty block is encountered a WriteClean
568        // will update any copies to the path to the memory
569        // until the point of reference.
570        DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
571                __func__, pkt->print(), blk->print());
572        PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
573        writebacks.push_back(wb_pkt);
574        pkt->setSatisfied();
575    }
576
577    // handle writebacks resulting from the access here to ensure they
578    // logically precede anything happening below
579    doWritebacksAtomic(writebacks);
580    assert(writebacks.empty());
581
582    if (!satisfied) {
583        lat += handleAtomicReqMiss(pkt, blk, writebacks);
584    }
585
586    // Note that we don't invoke the prefetcher at all in atomic mode.
587    // It's not clear how to do it properly, particularly for
588    // prefetchers that aggressively generate prefetch candidates and
589    // rely on bandwidth contention to throttle them; these will tend
590    // to pollute the cache in atomic mode since there is no bandwidth
591    // contention.  If we ever do want to enable prefetching in atomic
592    // mode, though, this is the place to do it... see timingAccess()
593    // for an example (though we'd want to issue the prefetch(es)
594    // immediately rather than calling requestMemSideBus() as we do
595    // there).
596
597    // do any writebacks resulting from the response handling
598    doWritebacksAtomic(writebacks);
599
600    // if we used temp block, check to see if its valid and if so
601    // clear it out, but only do so after the call to recvAtomic is
602    // finished so that any downstream observers (such as a snoop
603    // filter), first see the fill, and only then see the eviction
604    if (blk == tempBlock && tempBlock->isValid()) {
605        // the atomic CPU calls recvAtomic for fetch and load/store
606        // sequentuially, and we may already have a tempBlock
607        // writeback from the fetch that we have not yet sent
608        if (tempBlockWriteback) {
609            // if that is the case, write the prevoius one back, and
610            // do not schedule any new event
611            writebackTempBlockAtomic();
612        } else {
613            // the writeback/clean eviction happens after the call to
614            // recvAtomic has finished (but before any successive
615            // calls), so that the response handling from the fill is
616            // allowed to happen first
617            schedule(writebackTempBlockAtomicEvent, curTick());
618        }
619
620        tempBlockWriteback = evictBlock(blk);
621    }
622
623    if (pkt->needsResponse()) {
624        pkt->makeAtomicResponse();
625    }
626
627    return lat * clockPeriod();
628}
629
630void
631BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
632{
633    Addr blk_addr = pkt->getBlockAddr(blkSize);
634    bool is_secure = pkt->isSecure();
635    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
636    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
637
638    pkt->pushLabel(name());
639
640    CacheBlkPrintWrapper cbpw(blk);
641
642    // Note that just because an L2/L3 has valid data doesn't mean an
643    // L1 doesn't have a more up-to-date modified copy that still
644    // needs to be found.  As a result we always update the request if
645    // we have it, but only declare it satisfied if we are the owner.
646
647    // see if we have data at all (owned or otherwise)
648    bool have_data = blk && blk->isValid()
649        && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize,
650                                     blk->data);
651
652    // data we have is dirty if marked as such or if we have an
653    // in-service MSHR that is pending a modified line
654    bool have_dirty =
655        have_data && (blk->isDirty() ||
656                      (mshr && mshr->inService && mshr->isPendingModified()));
657
658    bool done = have_dirty ||
659        cpuSidePort.trySatisfyFunctional(pkt) ||
660        mshrQueue.trySatisfyFunctional(pkt, blk_addr) ||
661        writeBuffer.trySatisfyFunctional(pkt, blk_addr) ||
662        memSidePort.trySatisfyFunctional(pkt);
663
664    DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__,  pkt->print(),
665            (blk && blk->isValid()) ? "valid " : "",
666            have_data ? "data " : "", done ? "done " : "");
667
668    // We're leaving the cache, so pop cache->name() label
669    pkt->popLabel();
670
671    if (done) {
672        pkt->makeResponse();
673    } else {
674        // if it came as a request from the CPU side then make sure it
675        // continues towards the memory side
676        if (from_cpu_side) {
677            memSidePort.sendFunctional(pkt);
678        } else if (cpuSidePort.isSnooping()) {
679            // if it came from the memory side, it must be a snoop request
680            // and we should only forward it if we are forwarding snoops
681            cpuSidePort.sendFunctionalSnoop(pkt);
682        }
683    }
684}
685
686
687void
688BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
689{
690    assert(pkt->isRequest());
691
692    uint64_t overwrite_val;
693    bool overwrite_mem;
694    uint64_t condition_val64;
695    uint32_t condition_val32;
696
697    int offset = pkt->getOffset(blkSize);
698    uint8_t *blk_data = blk->data + offset;
699
700    assert(sizeof(uint64_t) >= pkt->getSize());
701
702    overwrite_mem = true;
703    // keep a copy of our possible write value, and copy what is at the
704    // memory address into the packet
705    pkt->writeData((uint8_t *)&overwrite_val);
706    pkt->setData(blk_data);
707
708    if (pkt->req->isCondSwap()) {
709        if (pkt->getSize() == sizeof(uint64_t)) {
710            condition_val64 = pkt->req->getExtraData();
711            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
712                                         sizeof(uint64_t));
713        } else if (pkt->getSize() == sizeof(uint32_t)) {
714            condition_val32 = (uint32_t)pkt->req->getExtraData();
715            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
716                                         sizeof(uint32_t));
717        } else
718            panic("Invalid size for conditional read/write\n");
719    }
720
721    if (overwrite_mem) {
722        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
723        blk->status |= BlkDirty;
724    }
725}
726
727QueueEntry*
728BaseCache::getNextQueueEntry()
729{
730    // Check both MSHR queue and write buffer for potential requests,
731    // note that null does not mean there is no request, it could
732    // simply be that it is not ready
733    MSHR *miss_mshr  = mshrQueue.getNext();
734    WriteQueueEntry *wq_entry = writeBuffer.getNext();
735
736    // If we got a write buffer request ready, first priority is a
737    // full write buffer, otherwise we favour the miss requests
738    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
739        // need to search MSHR queue for conflicting earlier miss.
740        MSHR *conflict_mshr =
741            mshrQueue.findPending(wq_entry->blkAddr,
742                                  wq_entry->isSecure);
743
744        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
745            // Service misses in order until conflict is cleared.
746            return conflict_mshr;
747
748            // @todo Note that we ignore the ready time of the conflict here
749        }
750
751        // No conflicts; issue write
752        return wq_entry;
753    } else if (miss_mshr) {
754        // need to check for conflicting earlier writeback
755        WriteQueueEntry *conflict_mshr =
756            writeBuffer.findPending(miss_mshr->blkAddr,
757                                    miss_mshr->isSecure);
758        if (conflict_mshr) {
759            // not sure why we don't check order here... it was in the
760            // original code but commented out.
761
762            // The only way this happens is if we are
763            // doing a write and we didn't have permissions
764            // then subsequently saw a writeback (owned got evicted)
765            // We need to make sure to perform the writeback first
766            // To preserve the dirty data, then we can issue the write
767
768            // should we return wq_entry here instead?  I.e. do we
769            // have to flush writes in order?  I don't think so... not
770            // for Alpha anyway.  Maybe for x86?
771            return conflict_mshr;
772
773            // @todo Note that we ignore the ready time of the conflict here
774        }
775
776        // No conflicts; issue read
777        return miss_mshr;
778    }
779
780    // fall through... no pending requests.  Try a prefetch.
781    assert(!miss_mshr && !wq_entry);
782    if (prefetcher && mshrQueue.canPrefetch()) {
783        // If we have a miss queue slot, we can try a prefetch
784        PacketPtr pkt = prefetcher->getPacket();
785        if (pkt) {
786            Addr pf_addr = pkt->getBlockAddr(blkSize);
787            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
788                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
789                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
790                // Update statistic on number of prefetches issued
791                // (hwpf_mshr_misses)
792                assert(pkt->req->masterId() < system->maxMasters());
793                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
794
795                // allocate an MSHR and return it, note
796                // that we send the packet straight away, so do not
797                // schedule the send
798                return allocateMissBuffer(pkt, curTick(), false);
799            } else {
800                // free the request and packet
801                delete pkt;
802            }
803        }
804    }
805
806    return nullptr;
807}
808
809void
810BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
811{
812    assert(pkt->isRequest());
813
814    assert(blk && blk->isValid());
815    // Occasionally this is not true... if we are a lower-level cache
816    // satisfying a string of Read and ReadEx requests from
817    // upper-level caches, a Read will mark the block as shared but we
818    // can satisfy a following ReadEx anyway since we can rely on the
819    // Read requester(s) to have buffered the ReadEx snoop and to
820    // invalidate their blocks after receiving them.
821    // assert(!pkt->needsWritable() || blk->isWritable());
822    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
823
824    // Check RMW operations first since both isRead() and
825    // isWrite() will be true for them
826    if (pkt->cmd == MemCmd::SwapReq) {
827        if (pkt->isAtomicOp()) {
828            // extract data from cache and save it into the data field in
829            // the packet as a return value from this atomic op
830            int offset = tags->extractBlkOffset(pkt->getAddr());
831            uint8_t *blk_data = blk->data + offset;
832            pkt->setData(blk_data);
833
834            // execute AMO operation
835            (*(pkt->getAtomicOp()))(blk_data);
836
837            // set block status to dirty
838            blk->status |= BlkDirty;
839        } else {
840            cmpAndSwap(blk, pkt);
841        }
842    } else if (pkt->isWrite()) {
843        // we have the block in a writable state and can go ahead,
844        // note that the line may be also be considered writable in
845        // downstream caches along the path to memory, but always
846        // Exclusive, and never Modified
847        assert(blk->isWritable());
848        // Write or WriteLine at the first cache with block in writable state
849        if (blk->checkWrite(pkt)) {
850            pkt->writeDataToBlock(blk->data, blkSize);
851        }
852        // Always mark the line as dirty (and thus transition to the
853        // Modified state) even if we are a failed StoreCond so we
854        // supply data to any snoops that have appended themselves to
855        // this cache before knowing the store will fail.
856        blk->status |= BlkDirty;
857        DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
858    } else if (pkt->isRead()) {
859        if (pkt->isLLSC()) {
860            blk->trackLoadLocked(pkt);
861        }
862
863        // all read responses have a data payload
864        assert(pkt->hasRespData());
865        pkt->setDataFromBlock(blk->data, blkSize);
866    } else if (pkt->isUpgrade()) {
867        // sanity check
868        assert(!pkt->hasSharers());
869
870        if (blk->isDirty()) {
871            // we were in the Owned state, and a cache above us that
872            // has the line in Shared state needs to be made aware
873            // that the data it already has is in fact dirty
874            pkt->setCacheResponding();
875            blk->status &= ~BlkDirty;
876        }
877    } else if (pkt->isClean()) {
878        blk->status &= ~BlkDirty;
879    } else {
880        assert(pkt->isInvalidate());
881        invalidateBlock(blk);
882        DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
883                pkt->print());
884    }
885}
886
887/////////////////////////////////////////////////////
888//
889// Access path: requests coming in from the CPU side
890//
891/////////////////////////////////////////////////////
892Cycles
893BaseCache::calculateAccessLatency(const CacheBlk* blk, const uint32_t delay,
894                                  const Cycles lookup_lat) const
895{
896    Cycles lat(0);
897
898    if (blk != nullptr) {
899        // As soon as the access arrives, for sequential accesses first access
900        // tags, then the data entry. In the case of parallel accesses the
901        // latency is dictated by the slowest of tag and data latencies.
902        if (sequentialAccess) {
903            lat = ticksToCycles(delay) + lookup_lat + dataLatency;
904        } else {
905            lat = ticksToCycles(delay) + std::max(lookup_lat, dataLatency);
906        }
907
908        // Check if the block to be accessed is available. If not, apply the
909        // access latency on top of when the block is ready to be accessed.
910        const Tick tick = curTick() + delay;
911        const Tick when_ready = blk->getWhenReady();
912        if (when_ready > tick &&
913            ticksToCycles(when_ready - tick) > lat) {
914            lat += ticksToCycles(when_ready - tick);
915        }
916    } else {
917        // In case of a miss, apply lookup latency on top of the metadata
918        // delay, as the access can only start when it arrives.
919        lat = ticksToCycles(delay) + lookup_lat;
920    }
921
922    return lat;
923}
924
925bool
926BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
927                  PacketList &writebacks)
928{
929    // sanity check
930    assert(pkt->isRequest());
931
932    chatty_assert(!(isReadOnly && pkt->isWrite()),
933                  "Should never see a write in a read-only cache %s\n",
934                  name());
935
936    // Access block in the tags
937    Cycles tag_latency(0);
938    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), tag_latency);
939
940    // Calculate access latency on top of when the packet arrives. This
941    // takes into account the bus delay.
942    lat = calculateAccessLatency(blk, pkt->headerDelay,
943                                 tag_latency);
944
945    DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
946            blk ? "hit " + blk->print() : "miss");
947
948    if (pkt->req->isCacheMaintenance()) {
949        // A cache maintenance operation is always forwarded to the
950        // memory below even if the block is found in dirty state.
951
952        // We defer any changes to the state of the block until we
953        // create and mark as in service the mshr for the downstream
954        // packet.
955        return false;
956    }
957
958    if (pkt->isEviction()) {
959        // We check for presence of block in above caches before issuing
960        // Writeback or CleanEvict to write buffer. Therefore the only
961        // possible cases can be of a CleanEvict packet coming from above
962        // encountering a Writeback generated in this cache peer cache and
963        // waiting in the write buffer. Cases of upper level peer caches
964        // generating CleanEvict and Writeback or simply CleanEvict and
965        // CleanEvict almost simultaneously will be caught by snoops sent out
966        // by crossbar.
967        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
968                                                          pkt->isSecure());
969        if (wb_entry) {
970            assert(wb_entry->getNumTargets() == 1);
971            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
972            assert(wbPkt->isWriteback());
973
974            if (pkt->isCleanEviction()) {
975                // The CleanEvict and WritebackClean snoops into other
976                // peer caches of the same level while traversing the
977                // crossbar. If a copy of the block is found, the
978                // packet is deleted in the crossbar. Hence, none of
979                // the other upper level caches connected to this
980                // cache have the block, so we can clear the
981                // BLOCK_CACHED flag in the Writeback if set and
982                // discard the CleanEvict by returning true.
983                wbPkt->clearBlockCached();
984                return true;
985            } else {
986                assert(pkt->cmd == MemCmd::WritebackDirty);
987                // Dirty writeback from above trumps our clean
988                // writeback... discard here
989                // Note: markInService will remove entry from writeback buffer.
990                markInService(wb_entry);
991                delete wbPkt;
992            }
993        }
994    }
995
996    // Writeback handling is special case.  We can write the block into
997    // the cache without having a writeable copy (or any copy at all).
998    if (pkt->isWriteback()) {
999        assert(blkSize == pkt->getSize());
1000
1001        // we could get a clean writeback while we are having
1002        // outstanding accesses to a block, do the simple thing for
1003        // now and drop the clean writeback so that we do not upset
1004        // any ordering/decisions about ownership already taken
1005        if (pkt->cmd == MemCmd::WritebackClean &&
1006            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
1007            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
1008                    "dropping\n", pkt->getAddr());
1009            return true;
1010        }
1011
1012        if (!blk) {
1013            // need to do a replacement
1014            blk = allocateBlock(pkt, writebacks);
1015            if (!blk) {
1016                // no replaceable block available: give up, fwd to next level.
1017                incMissCount(pkt);
1018                return false;
1019            }
1020
1021            blk->status |= BlkReadable;
1022        }
1023        // only mark the block dirty if we got a writeback command,
1024        // and leave it as is for a clean writeback
1025        if (pkt->cmd == MemCmd::WritebackDirty) {
1026            // TODO: the coherent cache can assert(!blk->isDirty());
1027            blk->status |= BlkDirty;
1028        }
1029        // if the packet does not have sharers, it is passing
1030        // writable, and we got the writeback in Modified or Exclusive
1031        // state, if not we are in the Owned or Shared state
1032        if (!pkt->hasSharers()) {
1033            blk->status |= BlkWritable;
1034        }
1035        // nothing else to do; writeback doesn't expect response
1036        assert(!pkt->needsResponse());
1037        pkt->writeDataToBlock(blk->data, blkSize);
1038        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1039        incHitCount(pkt);
1040        // populate the time when the block will be ready to access.
1041        blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1042            pkt->payloadDelay);
1043        return true;
1044    } else if (pkt->cmd == MemCmd::CleanEvict) {
1045        if (blk) {
1046            // Found the block in the tags, need to stop CleanEvict from
1047            // propagating further down the hierarchy. Returning true will
1048            // treat the CleanEvict like a satisfied write request and delete
1049            // it.
1050            return true;
1051        }
1052        // We didn't find the block here, propagate the CleanEvict further
1053        // down the memory hierarchy. Returning false will treat the CleanEvict
1054        // like a Writeback which could not find a replaceable block so has to
1055        // go to next level.
1056        return false;
1057    } else if (pkt->cmd == MemCmd::WriteClean) {
1058        // WriteClean handling is a special case. We can allocate a
1059        // block directly if it doesn't exist and we can update the
1060        // block immediately. The WriteClean transfers the ownership
1061        // of the block as well.
1062        assert(blkSize == pkt->getSize());
1063
1064        if (!blk) {
1065            if (pkt->writeThrough()) {
1066                // if this is a write through packet, we don't try to
1067                // allocate if the block is not present
1068                return false;
1069            } else {
1070                // a writeback that misses needs to allocate a new block
1071                blk = allocateBlock(pkt, writebacks);
1072                if (!blk) {
1073                    // no replaceable block available: give up, fwd to
1074                    // next level.
1075                    incMissCount(pkt);
1076                    return false;
1077                }
1078
1079                blk->status |= BlkReadable;
1080            }
1081        }
1082
1083        // at this point either this is a writeback or a write-through
1084        // write clean operation and the block is already in this
1085        // cache, we need to update the data and the block flags
1086        assert(blk);
1087        // TODO: the coherent cache can assert(!blk->isDirty());
1088        if (!pkt->writeThrough()) {
1089            blk->status |= BlkDirty;
1090        }
1091        // nothing else to do; writeback doesn't expect response
1092        assert(!pkt->needsResponse());
1093        pkt->writeDataToBlock(blk->data, blkSize);
1094        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1095
1096        incHitCount(pkt);
1097        // populate the time when the block will be ready to access.
1098        blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1099            pkt->payloadDelay);
1100        // if this a write-through packet it will be sent to cache
1101        // below
1102        return !pkt->writeThrough();
1103    } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
1104                       blk->isReadable())) {
1105        // OK to satisfy access
1106        incHitCount(pkt);
1107        satisfyRequest(pkt, blk);
1108        maintainClusivity(pkt->fromCache(), blk);
1109
1110        return true;
1111    }
1112
1113    // Can't satisfy access normally... either no block (blk == nullptr)
1114    // or have block but need writable
1115
1116    incMissCount(pkt);
1117
1118    if (!blk && pkt->isLLSC() && pkt->isWrite()) {
1119        // complete miss on store conditional... just give up now
1120        pkt->req->setExtraData(0);
1121        return true;
1122    }
1123
1124    return false;
1125}
1126
1127void
1128BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
1129{
1130    if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
1131        clusivity == Enums::mostly_excl) {
1132        // if we have responded to a cache, and our block is still
1133        // valid, but not dirty, and this cache is mostly exclusive
1134        // with respect to the cache above, drop the block
1135        invalidateBlock(blk);
1136    }
1137}
1138
1139CacheBlk*
1140BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1141                      bool allocate)
1142{
1143    assert(pkt->isResponse());
1144    Addr addr = pkt->getAddr();
1145    bool is_secure = pkt->isSecure();
1146#if TRACING_ON
1147    CacheBlk::State old_state = blk ? blk->status : 0;
1148#endif
1149
1150    // When handling a fill, we should have no writes to this line.
1151    assert(addr == pkt->getBlockAddr(blkSize));
1152    assert(!writeBuffer.findMatch(addr, is_secure));
1153
1154    if (!blk) {
1155        // better have read new data...
1156        assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp);
1157
1158        // need to do a replacement if allocating, otherwise we stick
1159        // with the temporary storage
1160        blk = allocate ? allocateBlock(pkt, writebacks) : nullptr;
1161
1162        if (!blk) {
1163            // No replaceable block or a mostly exclusive
1164            // cache... just use temporary storage to complete the
1165            // current request and then get rid of it
1166            blk = tempBlock;
1167            tempBlock->insert(addr, is_secure);
1168            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1169                    is_secure ? "s" : "ns");
1170        }
1171    } else {
1172        // existing block... probably an upgrade
1173        // don't clear block status... if block is already dirty we
1174        // don't want to lose that
1175    }
1176
1177    // Block is guaranteed to be valid at this point
1178    assert(blk->isValid());
1179    assert(blk->isSecure() == is_secure);
1180    assert(regenerateBlkAddr(blk) == addr);
1181
1182    blk->status |= BlkReadable;
1183
1184    // sanity check for whole-line writes, which should always be
1185    // marked as writable as part of the fill, and then later marked
1186    // dirty as part of satisfyRequest
1187    if (pkt->cmd == MemCmd::InvalidateResp) {
1188        assert(!pkt->hasSharers());
1189    }
1190
1191    // here we deal with setting the appropriate state of the line,
1192    // and we start by looking at the hasSharers flag, and ignore the
1193    // cacheResponding flag (normally signalling dirty data) if the
1194    // packet has sharers, thus the line is never allocated as Owned
1195    // (dirty but not writable), and always ends up being either
1196    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1197    // for more details
1198    if (!pkt->hasSharers()) {
1199        // we could get a writable line from memory (rather than a
1200        // cache) even in a read-only cache, note that we set this bit
1201        // even for a read-only cache, possibly revisit this decision
1202        blk->status |= BlkWritable;
1203
1204        // check if we got this via cache-to-cache transfer (i.e., from a
1205        // cache that had the block in Modified or Owned state)
1206        if (pkt->cacheResponding()) {
1207            // we got the block in Modified state, and invalidated the
1208            // owners copy
1209            blk->status |= BlkDirty;
1210
1211            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1212                          "in read-only cache %s\n", name());
1213        }
1214    }
1215
1216    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1217            addr, is_secure ? "s" : "ns", old_state, blk->print());
1218
1219    // if we got new data, copy it in (checking for a read response
1220    // and a response that has data is the same in the end)
1221    if (pkt->isRead()) {
1222        // sanity checks
1223        assert(pkt->hasData());
1224        assert(pkt->getSize() == blkSize);
1225
1226        pkt->writeDataToBlock(blk->data, blkSize);
1227    }
1228    // We pay for fillLatency here.
1229    blk->setWhenReady(clockEdge(fillLatency) + pkt->payloadDelay);
1230
1231    return blk;
1232}
1233
1234CacheBlk*
1235BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks)
1236{
1237    // Get address
1238    const Addr addr = pkt->getAddr();
1239
1240    // Get secure bit
1241    const bool is_secure = pkt->isSecure();
1242
1243    // Find replacement victim
1244    std::vector<CacheBlk*> evict_blks;
1245    CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks);
1246
1247    // It is valid to return nullptr if there is no victim
1248    if (!victim)
1249        return nullptr;
1250
1251    // Print victim block's information
1252    DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print());
1253
1254    // Check for transient state allocations. If any of the entries listed
1255    // for eviction has a transient state, the allocation fails
1256    for (const auto& blk : evict_blks) {
1257        if (blk->isValid()) {
1258            Addr repl_addr = regenerateBlkAddr(blk);
1259            MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1260            if (repl_mshr) {
1261                // must be an outstanding upgrade or clean request
1262                // on a block we're about to replace...
1263                assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1264                       repl_mshr->isCleaning());
1265
1266                // too hard to replace block with transient state
1267                // allocation failed, block not inserted
1268                return nullptr;
1269            }
1270        }
1271    }
1272
1273    // The victim will be replaced by a new entry, so increase the replacement
1274    // counter if a valid block is being replaced
1275    if (victim->isValid()) {
1276        DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1277                "(%s): %s\n", regenerateBlkAddr(victim),
1278                victim->isSecure() ? "s" : "ns",
1279                addr, is_secure ? "s" : "ns",
1280                victim->isDirty() ? "writeback" : "clean");
1281
1282        replacements++;
1283    }
1284
1285    // Evict valid blocks associated to this victim block
1286    for (const auto& blk : evict_blks) {
1287        if (blk->isValid()) {
1288            if (blk->wasPrefetched()) {
1289                unusedPrefetches++;
1290            }
1291
1292            evictBlock(blk, writebacks);
1293        }
1294    }
1295
1296    // Insert new block at victimized entry
1297    tags->insertBlock(addr, is_secure, pkt->req->masterId(),
1298                      pkt->req->taskId(), victim);
1299
1300    return victim;
1301}
1302
1303void
1304BaseCache::invalidateBlock(CacheBlk *blk)
1305{
1306    // If handling a block present in the Tags, let it do its invalidation
1307    // process, which will update stats and invalidate the block itself
1308    if (blk != tempBlock) {
1309        tags->invalidate(blk);
1310    } else {
1311        tempBlock->invalidate();
1312    }
1313}
1314
1315void
1316BaseCache::evictBlock(CacheBlk *blk, PacketList &writebacks)
1317{
1318    PacketPtr pkt = evictBlock(blk);
1319    if (pkt) {
1320        writebacks.push_back(pkt);
1321    }
1322}
1323
1324PacketPtr
1325BaseCache::writebackBlk(CacheBlk *blk)
1326{
1327    chatty_assert(!isReadOnly || writebackClean,
1328                  "Writeback from read-only cache");
1329    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1330
1331    writebacks[Request::wbMasterId]++;
1332
1333    RequestPtr req = std::make_shared<Request>(
1334        regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1335
1336    if (blk->isSecure())
1337        req->setFlags(Request::SECURE);
1338
1339    req->taskId(blk->task_id);
1340
1341    PacketPtr pkt =
1342        new Packet(req, blk->isDirty() ?
1343                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1344
1345    DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1346            pkt->print(), blk->isWritable(), blk->isDirty());
1347
1348    if (blk->isWritable()) {
1349        // not asserting shared means we pass the block in modified
1350        // state, mark our own block non-writeable
1351        blk->status &= ~BlkWritable;
1352    } else {
1353        // we are in the Owned state, tell the receiver
1354        pkt->setHasSharers();
1355    }
1356
1357    // make sure the block is not marked dirty
1358    blk->status &= ~BlkDirty;
1359
1360    pkt->allocate();
1361    pkt->setDataFromBlock(blk->data, blkSize);
1362
1363    return pkt;
1364}
1365
1366PacketPtr
1367BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1368{
1369    RequestPtr req = std::make_shared<Request>(
1370        regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1371
1372    if (blk->isSecure()) {
1373        req->setFlags(Request::SECURE);
1374    }
1375    req->taskId(blk->task_id);
1376
1377    PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1378
1379    if (dest) {
1380        req->setFlags(dest);
1381        pkt->setWriteThrough();
1382    }
1383
1384    DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1385            blk->isWritable(), blk->isDirty());
1386
1387    if (blk->isWritable()) {
1388        // not asserting shared means we pass the block in modified
1389        // state, mark our own block non-writeable
1390        blk->status &= ~BlkWritable;
1391    } else {
1392        // we are in the Owned state, tell the receiver
1393        pkt->setHasSharers();
1394    }
1395
1396    // make sure the block is not marked dirty
1397    blk->status &= ~BlkDirty;
1398
1399    pkt->allocate();
1400    pkt->setDataFromBlock(blk->data, blkSize);
1401
1402    return pkt;
1403}
1404
1405
1406void
1407BaseCache::memWriteback()
1408{
1409    tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
1410}
1411
1412void
1413BaseCache::memInvalidate()
1414{
1415    tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
1416}
1417
1418bool
1419BaseCache::isDirty() const
1420{
1421    return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
1422}
1423
1424bool
1425BaseCache::coalesce() const
1426{
1427    return writeAllocator && writeAllocator->coalesce();
1428}
1429
1430void
1431BaseCache::writebackVisitor(CacheBlk &blk)
1432{
1433    if (blk.isDirty()) {
1434        assert(blk.isValid());
1435
1436        RequestPtr request = std::make_shared<Request>(
1437            regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId);
1438
1439        request->taskId(blk.task_id);
1440        if (blk.isSecure()) {
1441            request->setFlags(Request::SECURE);
1442        }
1443
1444        Packet packet(request, MemCmd::WriteReq);
1445        packet.dataStatic(blk.data);
1446
1447        memSidePort.sendFunctional(&packet);
1448
1449        blk.status &= ~BlkDirty;
1450    }
1451}
1452
1453void
1454BaseCache::invalidateVisitor(CacheBlk &blk)
1455{
1456    if (blk.isDirty())
1457        warn_once("Invalidating dirty cache lines. " \
1458                  "Expect things to break.\n");
1459
1460    if (blk.isValid()) {
1461        assert(!blk.isDirty());
1462        invalidateBlock(&blk);
1463    }
1464}
1465
1466Tick
1467BaseCache::nextQueueReadyTime() const
1468{
1469    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
1470                              writeBuffer.nextReadyTime());
1471
1472    // Don't signal prefetch ready time if no MSHRs available
1473    // Will signal once enoguh MSHRs are deallocated
1474    if (prefetcher && mshrQueue.canPrefetch()) {
1475        nextReady = std::min(nextReady,
1476                             prefetcher->nextPrefetchReadyTime());
1477    }
1478
1479    return nextReady;
1480}
1481
1482
1483bool
1484BaseCache::sendMSHRQueuePacket(MSHR* mshr)
1485{
1486    assert(mshr);
1487
1488    // use request from 1st target
1489    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1490
1491    DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1492
1493    // if the cache is in write coalescing mode or (additionally) in
1494    // no allocation mode, and we have a write packet with an MSHR
1495    // that is not a whole-line write (due to incompatible flags etc),
1496    // then reset the write mode
1497    if (writeAllocator && writeAllocator->coalesce() && tgt_pkt->isWrite()) {
1498        if (!mshr->isWholeLineWrite()) {
1499            // if we are currently write coalescing, hold on the
1500            // MSHR as many cycles extra as we need to completely
1501            // write a cache line
1502            if (writeAllocator->delay(mshr->blkAddr)) {
1503                Tick delay = blkSize / tgt_pkt->getSize() * clockPeriod();
1504                DPRINTF(CacheVerbose, "Delaying pkt %s %llu ticks to allow "
1505                        "for write coalescing\n", tgt_pkt->print(), delay);
1506                mshrQueue.delay(mshr, delay);
1507                return false;
1508            } else {
1509                writeAllocator->reset();
1510            }
1511        } else {
1512            writeAllocator->resetDelay(mshr->blkAddr);
1513        }
1514    }
1515
1516    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
1517
1518    // either a prefetch that is not present upstream, or a normal
1519    // MSHR request, proceed to get the packet to send downstream
1520    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(),
1521                                     mshr->isWholeLineWrite());
1522
1523    mshr->isForward = (pkt == nullptr);
1524
1525    if (mshr->isForward) {
1526        // not a cache block request, but a response is expected
1527        // make copy of current packet to forward, keep current
1528        // copy for response handling
1529        pkt = new Packet(tgt_pkt, false, true);
1530        assert(!pkt->isWrite());
1531    }
1532
1533    // play it safe and append (rather than set) the sender state,
1534    // as forwarded packets may already have existing state
1535    pkt->pushSenderState(mshr);
1536
1537    if (pkt->isClean() && blk && blk->isDirty()) {
1538        // A cache clean opearation is looking for a dirty block. Mark
1539        // the packet so that the destination xbar can determine that
1540        // there will be a follow-up write packet as well.
1541        pkt->setSatisfied();
1542    }
1543
1544    if (!memSidePort.sendTimingReq(pkt)) {
1545        // we are awaiting a retry, but we
1546        // delete the packet and will be creating a new packet
1547        // when we get the opportunity
1548        delete pkt;
1549
1550        // note that we have now masked any requestBus and
1551        // schedSendEvent (we will wait for a retry before
1552        // doing anything), and this is so even if we do not
1553        // care about this packet and might override it before
1554        // it gets retried
1555        return true;
1556    } else {
1557        // As part of the call to sendTimingReq the packet is
1558        // forwarded to all neighbouring caches (and any caches
1559        // above them) as a snoop. Thus at this point we know if
1560        // any of the neighbouring caches are responding, and if
1561        // so, we know it is dirty, and we can determine if it is
1562        // being passed as Modified, making our MSHR the ordering
1563        // point
1564        bool pending_modified_resp = !pkt->hasSharers() &&
1565            pkt->cacheResponding();
1566        markInService(mshr, pending_modified_resp);
1567
1568        if (pkt->isClean() && blk && blk->isDirty()) {
1569            // A cache clean opearation is looking for a dirty
1570            // block. If a dirty block is encountered a WriteClean
1571            // will update any copies to the path to the memory
1572            // until the point of reference.
1573            DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1574                    __func__, pkt->print(), blk->print());
1575            PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
1576                                             pkt->id);
1577            PacketList writebacks;
1578            writebacks.push_back(wb_pkt);
1579            doWritebacks(writebacks, 0);
1580        }
1581
1582        return false;
1583    }
1584}
1585
1586bool
1587BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
1588{
1589    assert(wq_entry);
1590
1591    // always a single target for write queue entries
1592    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
1593
1594    DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
1595
1596    // forward as is, both for evictions and uncacheable writes
1597    if (!memSidePort.sendTimingReq(tgt_pkt)) {
1598        // note that we have now masked any requestBus and
1599        // schedSendEvent (we will wait for a retry before
1600        // doing anything), and this is so even if we do not
1601        // care about this packet and might override it before
1602        // it gets retried
1603        return true;
1604    } else {
1605        markInService(wq_entry);
1606        return false;
1607    }
1608}
1609
1610void
1611BaseCache::serialize(CheckpointOut &cp) const
1612{
1613    bool dirty(isDirty());
1614
1615    if (dirty) {
1616        warn("*** The cache still contains dirty data. ***\n");
1617        warn("    Make sure to drain the system using the correct flags.\n");
1618        warn("    This checkpoint will not restore correctly " \
1619             "and dirty data in the cache will be lost!\n");
1620    }
1621
1622    // Since we don't checkpoint the data in the cache, any dirty data
1623    // will be lost when restoring from a checkpoint of a system that
1624    // wasn't drained properly. Flag the checkpoint as invalid if the
1625    // cache contains dirty data.
1626    bool bad_checkpoint(dirty);
1627    SERIALIZE_SCALAR(bad_checkpoint);
1628}
1629
1630void
1631BaseCache::unserialize(CheckpointIn &cp)
1632{
1633    bool bad_checkpoint;
1634    UNSERIALIZE_SCALAR(bad_checkpoint);
1635    if (bad_checkpoint) {
1636        fatal("Restoring from checkpoints with dirty caches is not "
1637              "supported in the classic memory system. Please remove any "
1638              "caches or drain them properly before taking checkpoints.\n");
1639    }
1640}
1641
1642void
1643BaseCache::regStats()
1644{
1645    MemObject::regStats();
1646
1647    using namespace Stats;
1648
1649    // Hit statistics
1650    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1651        MemCmd cmd(access_idx);
1652        const string &cstr = cmd.toString();
1653
1654        hits[access_idx]
1655            .init(system->maxMasters())
1656            .name(name() + "." + cstr + "_hits")
1657            .desc("number of " + cstr + " hits")
1658            .flags(total | nozero | nonan)
1659            ;
1660        for (int i = 0; i < system->maxMasters(); i++) {
1661            hits[access_idx].subname(i, system->getMasterName(i));
1662        }
1663    }
1664
1665// These macros make it easier to sum the right subset of commands and
1666// to change the subset of commands that are considered "demand" vs
1667// "non-demand"
1668#define SUM_DEMAND(s) \
1669    (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
1670     s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
1671
1672// should writebacks be included here?  prior code was inconsistent...
1673#define SUM_NON_DEMAND(s) \
1674    (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq] + s[MemCmd::SoftPFExReq])
1675
1676    demandHits
1677        .name(name() + ".demand_hits")
1678        .desc("number of demand (read+write) hits")
1679        .flags(total | nozero | nonan)
1680        ;
1681    demandHits = SUM_DEMAND(hits);
1682    for (int i = 0; i < system->maxMasters(); i++) {
1683        demandHits.subname(i, system->getMasterName(i));
1684    }
1685
1686    overallHits
1687        .name(name() + ".overall_hits")
1688        .desc("number of overall hits")
1689        .flags(total | nozero | nonan)
1690        ;
1691    overallHits = demandHits + SUM_NON_DEMAND(hits);
1692    for (int i = 0; i < system->maxMasters(); i++) {
1693        overallHits.subname(i, system->getMasterName(i));
1694    }
1695
1696    // Miss statistics
1697    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1698        MemCmd cmd(access_idx);
1699        const string &cstr = cmd.toString();
1700
1701        misses[access_idx]
1702            .init(system->maxMasters())
1703            .name(name() + "." + cstr + "_misses")
1704            .desc("number of " + cstr + " misses")
1705            .flags(total | nozero | nonan)
1706            ;
1707        for (int i = 0; i < system->maxMasters(); i++) {
1708            misses[access_idx].subname(i, system->getMasterName(i));
1709        }
1710    }
1711
1712    demandMisses
1713        .name(name() + ".demand_misses")
1714        .desc("number of demand (read+write) misses")
1715        .flags(total | nozero | nonan)
1716        ;
1717    demandMisses = SUM_DEMAND(misses);
1718    for (int i = 0; i < system->maxMasters(); i++) {
1719        demandMisses.subname(i, system->getMasterName(i));
1720    }
1721
1722    overallMisses
1723        .name(name() + ".overall_misses")
1724        .desc("number of overall misses")
1725        .flags(total | nozero | nonan)
1726        ;
1727    overallMisses = demandMisses + SUM_NON_DEMAND(misses);
1728    for (int i = 0; i < system->maxMasters(); i++) {
1729        overallMisses.subname(i, system->getMasterName(i));
1730    }
1731
1732    // Miss latency statistics
1733    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1734        MemCmd cmd(access_idx);
1735        const string &cstr = cmd.toString();
1736
1737        missLatency[access_idx]
1738            .init(system->maxMasters())
1739            .name(name() + "." + cstr + "_miss_latency")
1740            .desc("number of " + cstr + " miss cycles")
1741            .flags(total | nozero | nonan)
1742            ;
1743        for (int i = 0; i < system->maxMasters(); i++) {
1744            missLatency[access_idx].subname(i, system->getMasterName(i));
1745        }
1746    }
1747
1748    demandMissLatency
1749        .name(name() + ".demand_miss_latency")
1750        .desc("number of demand (read+write) miss cycles")
1751        .flags(total | nozero | nonan)
1752        ;
1753    demandMissLatency = SUM_DEMAND(missLatency);
1754    for (int i = 0; i < system->maxMasters(); i++) {
1755        demandMissLatency.subname(i, system->getMasterName(i));
1756    }
1757
1758    overallMissLatency
1759        .name(name() + ".overall_miss_latency")
1760        .desc("number of overall miss cycles")
1761        .flags(total | nozero | nonan)
1762        ;
1763    overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
1764    for (int i = 0; i < system->maxMasters(); i++) {
1765        overallMissLatency.subname(i, system->getMasterName(i));
1766    }
1767
1768    // access formulas
1769    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1770        MemCmd cmd(access_idx);
1771        const string &cstr = cmd.toString();
1772
1773        accesses[access_idx]
1774            .name(name() + "." + cstr + "_accesses")
1775            .desc("number of " + cstr + " accesses(hits+misses)")
1776            .flags(total | nozero | nonan)
1777            ;
1778        accesses[access_idx] = hits[access_idx] + misses[access_idx];
1779
1780        for (int i = 0; i < system->maxMasters(); i++) {
1781            accesses[access_idx].subname(i, system->getMasterName(i));
1782        }
1783    }
1784
1785    demandAccesses
1786        .name(name() + ".demand_accesses")
1787        .desc("number of demand (read+write) accesses")
1788        .flags(total | nozero | nonan)
1789        ;
1790    demandAccesses = demandHits + demandMisses;
1791    for (int i = 0; i < system->maxMasters(); i++) {
1792        demandAccesses.subname(i, system->getMasterName(i));
1793    }
1794
1795    overallAccesses
1796        .name(name() + ".overall_accesses")
1797        .desc("number of overall (read+write) accesses")
1798        .flags(total | nozero | nonan)
1799        ;
1800    overallAccesses = overallHits + overallMisses;
1801    for (int i = 0; i < system->maxMasters(); i++) {
1802        overallAccesses.subname(i, system->getMasterName(i));
1803    }
1804
1805    // miss rate formulas
1806    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1807        MemCmd cmd(access_idx);
1808        const string &cstr = cmd.toString();
1809
1810        missRate[access_idx]
1811            .name(name() + "." + cstr + "_miss_rate")
1812            .desc("miss rate for " + cstr + " accesses")
1813            .flags(total | nozero | nonan)
1814            ;
1815        missRate[access_idx] = misses[access_idx] / accesses[access_idx];
1816
1817        for (int i = 0; i < system->maxMasters(); i++) {
1818            missRate[access_idx].subname(i, system->getMasterName(i));
1819        }
1820    }
1821
1822    demandMissRate
1823        .name(name() + ".demand_miss_rate")
1824        .desc("miss rate for demand accesses")
1825        .flags(total | nozero | nonan)
1826        ;
1827    demandMissRate = demandMisses / demandAccesses;
1828    for (int i = 0; i < system->maxMasters(); i++) {
1829        demandMissRate.subname(i, system->getMasterName(i));
1830    }
1831
1832    overallMissRate
1833        .name(name() + ".overall_miss_rate")
1834        .desc("miss rate for overall accesses")
1835        .flags(total | nozero | nonan)
1836        ;
1837    overallMissRate = overallMisses / overallAccesses;
1838    for (int i = 0; i < system->maxMasters(); i++) {
1839        overallMissRate.subname(i, system->getMasterName(i));
1840    }
1841
1842    // miss latency formulas
1843    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1844        MemCmd cmd(access_idx);
1845        const string &cstr = cmd.toString();
1846
1847        avgMissLatency[access_idx]
1848            .name(name() + "." + cstr + "_avg_miss_latency")
1849            .desc("average " + cstr + " miss latency")
1850            .flags(total | nozero | nonan)
1851            ;
1852        avgMissLatency[access_idx] =
1853            missLatency[access_idx] / misses[access_idx];
1854
1855        for (int i = 0; i < system->maxMasters(); i++) {
1856            avgMissLatency[access_idx].subname(i, system->getMasterName(i));
1857        }
1858    }
1859
1860    demandAvgMissLatency
1861        .name(name() + ".demand_avg_miss_latency")
1862        .desc("average overall miss latency")
1863        .flags(total | nozero | nonan)
1864        ;
1865    demandAvgMissLatency = demandMissLatency / demandMisses;
1866    for (int i = 0; i < system->maxMasters(); i++) {
1867        demandAvgMissLatency.subname(i, system->getMasterName(i));
1868    }
1869
1870    overallAvgMissLatency
1871        .name(name() + ".overall_avg_miss_latency")
1872        .desc("average overall miss latency")
1873        .flags(total | nozero | nonan)
1874        ;
1875    overallAvgMissLatency = overallMissLatency / overallMisses;
1876    for (int i = 0; i < system->maxMasters(); i++) {
1877        overallAvgMissLatency.subname(i, system->getMasterName(i));
1878    }
1879
1880    blocked_cycles.init(NUM_BLOCKED_CAUSES);
1881    blocked_cycles
1882        .name(name() + ".blocked_cycles")
1883        .desc("number of cycles access was blocked")
1884        .subname(Blocked_NoMSHRs, "no_mshrs")
1885        .subname(Blocked_NoTargets, "no_targets")
1886        ;
1887
1888
1889    blocked_causes.init(NUM_BLOCKED_CAUSES);
1890    blocked_causes
1891        .name(name() + ".blocked")
1892        .desc("number of cycles access was blocked")
1893        .subname(Blocked_NoMSHRs, "no_mshrs")
1894        .subname(Blocked_NoTargets, "no_targets")
1895        ;
1896
1897    avg_blocked
1898        .name(name() + ".avg_blocked_cycles")
1899        .desc("average number of cycles each access was blocked")
1900        .subname(Blocked_NoMSHRs, "no_mshrs")
1901        .subname(Blocked_NoTargets, "no_targets")
1902        ;
1903
1904    avg_blocked = blocked_cycles / blocked_causes;
1905
1906    unusedPrefetches
1907        .name(name() + ".unused_prefetches")
1908        .desc("number of HardPF blocks evicted w/o reference")
1909        .flags(nozero)
1910        ;
1911
1912    writebacks
1913        .init(system->maxMasters())
1914        .name(name() + ".writebacks")
1915        .desc("number of writebacks")
1916        .flags(total | nozero | nonan)
1917        ;
1918    for (int i = 0; i < system->maxMasters(); i++) {
1919        writebacks.subname(i, system->getMasterName(i));
1920    }
1921
1922    // MSHR statistics
1923    // MSHR hit statistics
1924    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1925        MemCmd cmd(access_idx);
1926        const string &cstr = cmd.toString();
1927
1928        mshr_hits[access_idx]
1929            .init(system->maxMasters())
1930            .name(name() + "." + cstr + "_mshr_hits")
1931            .desc("number of " + cstr + " MSHR hits")
1932            .flags(total | nozero | nonan)
1933            ;
1934        for (int i = 0; i < system->maxMasters(); i++) {
1935            mshr_hits[access_idx].subname(i, system->getMasterName(i));
1936        }
1937    }
1938
1939    demandMshrHits
1940        .name(name() + ".demand_mshr_hits")
1941        .desc("number of demand (read+write) MSHR hits")
1942        .flags(total | nozero | nonan)
1943        ;
1944    demandMshrHits = SUM_DEMAND(mshr_hits);
1945    for (int i = 0; i < system->maxMasters(); i++) {
1946        demandMshrHits.subname(i, system->getMasterName(i));
1947    }
1948
1949    overallMshrHits
1950        .name(name() + ".overall_mshr_hits")
1951        .desc("number of overall MSHR hits")
1952        .flags(total | nozero | nonan)
1953        ;
1954    overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
1955    for (int i = 0; i < system->maxMasters(); i++) {
1956        overallMshrHits.subname(i, system->getMasterName(i));
1957    }
1958
1959    // MSHR miss statistics
1960    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1961        MemCmd cmd(access_idx);
1962        const string &cstr = cmd.toString();
1963
1964        mshr_misses[access_idx]
1965            .init(system->maxMasters())
1966            .name(name() + "." + cstr + "_mshr_misses")
1967            .desc("number of " + cstr + " MSHR misses")
1968            .flags(total | nozero | nonan)
1969            ;
1970        for (int i = 0; i < system->maxMasters(); i++) {
1971            mshr_misses[access_idx].subname(i, system->getMasterName(i));
1972        }
1973    }
1974
1975    demandMshrMisses
1976        .name(name() + ".demand_mshr_misses")
1977        .desc("number of demand (read+write) MSHR misses")
1978        .flags(total | nozero | nonan)
1979        ;
1980    demandMshrMisses = SUM_DEMAND(mshr_misses);
1981    for (int i = 0; i < system->maxMasters(); i++) {
1982        demandMshrMisses.subname(i, system->getMasterName(i));
1983    }
1984
1985    overallMshrMisses
1986        .name(name() + ".overall_mshr_misses")
1987        .desc("number of overall MSHR misses")
1988        .flags(total | nozero | nonan)
1989        ;
1990    overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
1991    for (int i = 0; i < system->maxMasters(); i++) {
1992        overallMshrMisses.subname(i, system->getMasterName(i));
1993    }
1994
1995    // MSHR miss latency statistics
1996    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1997        MemCmd cmd(access_idx);
1998        const string &cstr = cmd.toString();
1999
2000        mshr_miss_latency[access_idx]
2001            .init(system->maxMasters())
2002            .name(name() + "." + cstr + "_mshr_miss_latency")
2003            .desc("number of " + cstr + " MSHR miss cycles")
2004            .flags(total | nozero | nonan)
2005            ;
2006        for (int i = 0; i < system->maxMasters(); i++) {
2007            mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
2008        }
2009    }
2010
2011    demandMshrMissLatency
2012        .name(name() + ".demand_mshr_miss_latency")
2013        .desc("number of demand (read+write) MSHR miss cycles")
2014        .flags(total | nozero | nonan)
2015        ;
2016    demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
2017    for (int i = 0; i < system->maxMasters(); i++) {
2018        demandMshrMissLatency.subname(i, system->getMasterName(i));
2019    }
2020
2021    overallMshrMissLatency
2022        .name(name() + ".overall_mshr_miss_latency")
2023        .desc("number of overall MSHR miss cycles")
2024        .flags(total | nozero | nonan)
2025        ;
2026    overallMshrMissLatency =
2027        demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
2028    for (int i = 0; i < system->maxMasters(); i++) {
2029        overallMshrMissLatency.subname(i, system->getMasterName(i));
2030    }
2031
2032    // MSHR uncacheable statistics
2033    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2034        MemCmd cmd(access_idx);
2035        const string &cstr = cmd.toString();
2036
2037        mshr_uncacheable[access_idx]
2038            .init(system->maxMasters())
2039            .name(name() + "." + cstr + "_mshr_uncacheable")
2040            .desc("number of " + cstr + " MSHR uncacheable")
2041            .flags(total | nozero | nonan)
2042            ;
2043        for (int i = 0; i < system->maxMasters(); i++) {
2044            mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
2045        }
2046    }
2047
2048    overallMshrUncacheable
2049        .name(name() + ".overall_mshr_uncacheable_misses")
2050        .desc("number of overall MSHR uncacheable misses")
2051        .flags(total | nozero | nonan)
2052        ;
2053    overallMshrUncacheable =
2054        SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
2055    for (int i = 0; i < system->maxMasters(); i++) {
2056        overallMshrUncacheable.subname(i, system->getMasterName(i));
2057    }
2058
2059    // MSHR miss latency statistics
2060    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2061        MemCmd cmd(access_idx);
2062        const string &cstr = cmd.toString();
2063
2064        mshr_uncacheable_lat[access_idx]
2065            .init(system->maxMasters())
2066            .name(name() + "." + cstr + "_mshr_uncacheable_latency")
2067            .desc("number of " + cstr + " MSHR uncacheable cycles")
2068            .flags(total | nozero | nonan)
2069            ;
2070        for (int i = 0; i < system->maxMasters(); i++) {
2071            mshr_uncacheable_lat[access_idx].subname(
2072                i, system->getMasterName(i));
2073        }
2074    }
2075
2076    overallMshrUncacheableLatency
2077        .name(name() + ".overall_mshr_uncacheable_latency")
2078        .desc("number of overall MSHR uncacheable cycles")
2079        .flags(total | nozero | nonan)
2080        ;
2081    overallMshrUncacheableLatency =
2082        SUM_DEMAND(mshr_uncacheable_lat) +
2083        SUM_NON_DEMAND(mshr_uncacheable_lat);
2084    for (int i = 0; i < system->maxMasters(); i++) {
2085        overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
2086    }
2087
2088#if 0
2089    // MSHR access formulas
2090    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2091        MemCmd cmd(access_idx);
2092        const string &cstr = cmd.toString();
2093
2094        mshrAccesses[access_idx]
2095            .name(name() + "." + cstr + "_mshr_accesses")
2096            .desc("number of " + cstr + " mshr accesses(hits+misses)")
2097            .flags(total | nozero | nonan)
2098            ;
2099        mshrAccesses[access_idx] =
2100            mshr_hits[access_idx] + mshr_misses[access_idx]
2101            + mshr_uncacheable[access_idx];
2102    }
2103
2104    demandMshrAccesses
2105        .name(name() + ".demand_mshr_accesses")
2106        .desc("number of demand (read+write) mshr accesses")
2107        .flags(total | nozero | nonan)
2108        ;
2109    demandMshrAccesses = demandMshrHits + demandMshrMisses;
2110
2111    overallMshrAccesses
2112        .name(name() + ".overall_mshr_accesses")
2113        .desc("number of overall (read+write) mshr accesses")
2114        .flags(total | nozero | nonan)
2115        ;
2116    overallMshrAccesses = overallMshrHits + overallMshrMisses
2117        + overallMshrUncacheable;
2118#endif
2119
2120    // MSHR miss rate formulas
2121    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2122        MemCmd cmd(access_idx);
2123        const string &cstr = cmd.toString();
2124
2125        mshrMissRate[access_idx]
2126            .name(name() + "." + cstr + "_mshr_miss_rate")
2127            .desc("mshr miss rate for " + cstr + " accesses")
2128            .flags(total | nozero | nonan)
2129            ;
2130        mshrMissRate[access_idx] =
2131            mshr_misses[access_idx] / accesses[access_idx];
2132
2133        for (int i = 0; i < system->maxMasters(); i++) {
2134            mshrMissRate[access_idx].subname(i, system->getMasterName(i));
2135        }
2136    }
2137
2138    demandMshrMissRate
2139        .name(name() + ".demand_mshr_miss_rate")
2140        .desc("mshr miss rate for demand accesses")
2141        .flags(total | nozero | nonan)
2142        ;
2143    demandMshrMissRate = demandMshrMisses / demandAccesses;
2144    for (int i = 0; i < system->maxMasters(); i++) {
2145        demandMshrMissRate.subname(i, system->getMasterName(i));
2146    }
2147
2148    overallMshrMissRate
2149        .name(name() + ".overall_mshr_miss_rate")
2150        .desc("mshr miss rate for overall accesses")
2151        .flags(total | nozero | nonan)
2152        ;
2153    overallMshrMissRate = overallMshrMisses / overallAccesses;
2154    for (int i = 0; i < system->maxMasters(); i++) {
2155        overallMshrMissRate.subname(i, system->getMasterName(i));
2156    }
2157
2158    // mshrMiss latency formulas
2159    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2160        MemCmd cmd(access_idx);
2161        const string &cstr = cmd.toString();
2162
2163        avgMshrMissLatency[access_idx]
2164            .name(name() + "." + cstr + "_avg_mshr_miss_latency")
2165            .desc("average " + cstr + " mshr miss latency")
2166            .flags(total | nozero | nonan)
2167            ;
2168        avgMshrMissLatency[access_idx] =
2169            mshr_miss_latency[access_idx] / mshr_misses[access_idx];
2170
2171        for (int i = 0; i < system->maxMasters(); i++) {
2172            avgMshrMissLatency[access_idx].subname(
2173                i, system->getMasterName(i));
2174        }
2175    }
2176
2177    demandAvgMshrMissLatency
2178        .name(name() + ".demand_avg_mshr_miss_latency")
2179        .desc("average overall mshr miss latency")
2180        .flags(total | nozero | nonan)
2181        ;
2182    demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
2183    for (int i = 0; i < system->maxMasters(); i++) {
2184        demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
2185    }
2186
2187    overallAvgMshrMissLatency
2188        .name(name() + ".overall_avg_mshr_miss_latency")
2189        .desc("average overall mshr miss latency")
2190        .flags(total | nozero | nonan)
2191        ;
2192    overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
2193    for (int i = 0; i < system->maxMasters(); i++) {
2194        overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
2195    }
2196
2197    // mshrUncacheable latency formulas
2198    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2199        MemCmd cmd(access_idx);
2200        const string &cstr = cmd.toString();
2201
2202        avgMshrUncacheableLatency[access_idx]
2203            .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
2204            .desc("average " + cstr + " mshr uncacheable latency")
2205            .flags(total | nozero | nonan)
2206            ;
2207        avgMshrUncacheableLatency[access_idx] =
2208            mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
2209
2210        for (int i = 0; i < system->maxMasters(); i++) {
2211            avgMshrUncacheableLatency[access_idx].subname(
2212                i, system->getMasterName(i));
2213        }
2214    }
2215
2216    overallAvgMshrUncacheableLatency
2217        .name(name() + ".overall_avg_mshr_uncacheable_latency")
2218        .desc("average overall mshr uncacheable latency")
2219        .flags(total | nozero | nonan)
2220        ;
2221    overallAvgMshrUncacheableLatency =
2222        overallMshrUncacheableLatency / overallMshrUncacheable;
2223    for (int i = 0; i < system->maxMasters(); i++) {
2224        overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2225    }
2226
2227    replacements
2228        .name(name() + ".replacements")
2229        .desc("number of replacements")
2230        ;
2231}
2232
2233void
2234BaseCache::regProbePoints()
2235{
2236    ppHit = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Hit");
2237    ppMiss = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Miss");
2238    ppFill = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Fill");
2239}
2240
2241///////////////
2242//
2243// CpuSidePort
2244//
2245///////////////
2246bool
2247BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2248{
2249    // Snoops shouldn't happen when bypassing caches
2250    assert(!cache->system->bypassCaches());
2251
2252    assert(pkt->isResponse());
2253
2254    // Express snoop responses from master to slave, e.g., from L1 to L2
2255    cache->recvTimingSnoopResp(pkt);
2256    return true;
2257}
2258
2259
2260bool
2261BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
2262{
2263    if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
2264        // always let express snoop packets through even if blocked
2265        return true;
2266    } else if (blocked || mustSendRetry) {
2267        // either already committed to send a retry, or blocked
2268        mustSendRetry = true;
2269        return false;
2270    }
2271    mustSendRetry = false;
2272    return true;
2273}
2274
2275bool
2276BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2277{
2278    assert(pkt->isRequest());
2279
2280    if (cache->system->bypassCaches()) {
2281        // Just forward the packet if caches are disabled.
2282        // @todo This should really enqueue the packet rather
2283        bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
2284        assert(success);
2285        return true;
2286    } else if (tryTiming(pkt)) {
2287        cache->recvTimingReq(pkt);
2288        return true;
2289    }
2290    return false;
2291}
2292
2293Tick
2294BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
2295{
2296    if (cache->system->bypassCaches()) {
2297        // Forward the request if the system is in cache bypass mode.
2298        return cache->memSidePort.sendAtomic(pkt);
2299    } else {
2300        return cache->recvAtomic(pkt);
2301    }
2302}
2303
2304void
2305BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
2306{
2307    if (cache->system->bypassCaches()) {
2308        // The cache should be flushed if we are in cache bypass mode,
2309        // so we don't need to check if we need to update anything.
2310        cache->memSidePort.sendFunctional(pkt);
2311        return;
2312    }
2313
2314    // functional request
2315    cache->functionalAccess(pkt, true);
2316}
2317
2318AddrRangeList
2319BaseCache::CpuSidePort::getAddrRanges() const
2320{
2321    return cache->getAddrRanges();
2322}
2323
2324
2325BaseCache::
2326CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
2327                         const std::string &_label)
2328    : CacheSlavePort(_name, _cache, _label), cache(_cache)
2329{
2330}
2331
2332///////////////
2333//
2334// MemSidePort
2335//
2336///////////////
2337bool
2338BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
2339{
2340    cache->recvTimingResp(pkt);
2341    return true;
2342}
2343
2344// Express snooping requests to memside port
2345void
2346BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2347{
2348    // Snoops shouldn't happen when bypassing caches
2349    assert(!cache->system->bypassCaches());
2350
2351    // handle snooping requests
2352    cache->recvTimingSnoopReq(pkt);
2353}
2354
2355Tick
2356BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2357{
2358    // Snoops shouldn't happen when bypassing caches
2359    assert(!cache->system->bypassCaches());
2360
2361    return cache->recvAtomicSnoop(pkt);
2362}
2363
2364void
2365BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2366{
2367    // Snoops shouldn't happen when bypassing caches
2368    assert(!cache->system->bypassCaches());
2369
2370    // functional snoop (note that in contrast to atomic we don't have
2371    // a specific functionalSnoop method, as they have the same
2372    // behaviour regardless)
2373    cache->functionalAccess(pkt, false);
2374}
2375
2376void
2377BaseCache::CacheReqPacketQueue::sendDeferredPacket()
2378{
2379    // sanity check
2380    assert(!waitingOnRetry);
2381
2382    // there should never be any deferred request packets in the
2383    // queue, instead we resly on the cache to provide the packets
2384    // from the MSHR queue or write queue
2385    assert(deferredPacketReadyTime() == MaxTick);
2386
2387    // check for request packets (requests & writebacks)
2388    QueueEntry* entry = cache.getNextQueueEntry();
2389
2390    if (!entry) {
2391        // can happen if e.g. we attempt a writeback and fail, but
2392        // before the retry, the writeback is eliminated because
2393        // we snoop another cache's ReadEx.
2394    } else {
2395        // let our snoop responses go first if there are responses to
2396        // the same addresses
2397        if (checkConflictingSnoop(entry->blkAddr)) {
2398            return;
2399        }
2400        waitingOnRetry = entry->sendPacket(cache);
2401    }
2402
2403    // if we succeeded and are not waiting for a retry, schedule the
2404    // next send considering when the next queue is ready, note that
2405    // snoop responses have their own packet queue and thus schedule
2406    // their own events
2407    if (!waitingOnRetry) {
2408        schedSendEvent(cache.nextQueueReadyTime());
2409    }
2410}
2411
2412BaseCache::MemSidePort::MemSidePort(const std::string &_name,
2413                                    BaseCache *_cache,
2414                                    const std::string &_label)
2415    : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2416      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2417      _snoopRespQueue(*_cache, *this, true, _label), cache(_cache)
2418{
2419}
2420
2421void
2422WriteAllocator::updateMode(Addr write_addr, unsigned write_size,
2423                           Addr blk_addr)
2424{
2425    // check if we are continuing where the last write ended
2426    if (nextAddr == write_addr) {
2427        delayCtr[blk_addr] = delayThreshold;
2428        // stop if we have already saturated
2429        if (mode != WriteMode::NO_ALLOCATE) {
2430            byteCount += write_size;
2431            // switch to streaming mode if we have passed the lower
2432            // threshold
2433            if (mode == WriteMode::ALLOCATE &&
2434                byteCount > coalesceLimit) {
2435                mode = WriteMode::COALESCE;
2436                DPRINTF(Cache, "Switched to write coalescing\n");
2437            } else if (mode == WriteMode::COALESCE &&
2438                       byteCount > noAllocateLimit) {
2439                // and continue and switch to non-allocating mode if we
2440                // pass the upper threshold
2441                mode = WriteMode::NO_ALLOCATE;
2442                DPRINTF(Cache, "Switched to write-no-allocate\n");
2443            }
2444        }
2445    } else {
2446        // we did not see a write matching the previous one, start
2447        // over again
2448        byteCount = write_size;
2449        mode = WriteMode::ALLOCATE;
2450        resetDelay(blk_addr);
2451    }
2452    nextAddr = write_addr + write_size;
2453}
2454
2455WriteAllocator*
2456WriteAllocatorParams::create()
2457{
2458    return new WriteAllocator(this);
2459}
2460