base.cc revision 13745:1cf82fb6c4ab
1/*
2 * Copyright (c) 2012-2013, 2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 *          Nikos Nikoleris
42 */
43
44/**
45 * @file
46 * Definition of BaseCache functions.
47 */
48
49#include "mem/cache/base.hh"
50
51#include "base/compiler.hh"
52#include "base/logging.hh"
53#include "debug/Cache.hh"
54#include "debug/CachePort.hh"
55#include "debug/CacheRepl.hh"
56#include "debug/CacheVerbose.hh"
57#include "mem/cache/mshr.hh"
58#include "mem/cache/prefetch/base.hh"
59#include "mem/cache/queue_entry.hh"
60#include "params/BaseCache.hh"
61#include "params/WriteAllocator.hh"
62#include "sim/core.hh"
63
64class BaseMasterPort;
65class BaseSlavePort;
66
67using namespace std;
68
69BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
70                                          BaseCache *_cache,
71                                          const std::string &_label)
72    : QueuedSlavePort(_name, _cache, queue),
73      queue(*_cache, *this, true, _label),
74      blocked(false), mustSendRetry(false),
75      sendRetryEvent([this]{ processSendRetry(); }, _name)
76{
77}
78
79BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
80    : MemObject(p),
81      cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
82      memSidePort(p->name + ".mem_side", this, "MemSidePort"),
83      mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
84      writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
85      tags(p->tags),
86      prefetcher(p->prefetcher),
87      writeAllocator(p->write_allocator),
88      writebackClean(p->writeback_clean),
89      tempBlockWriteback(nullptr),
90      writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
91                                    name(), false,
92                                    EventBase::Delayed_Writeback_Pri),
93      blkSize(blk_size),
94      lookupLatency(p->tag_latency),
95      dataLatency(p->data_latency),
96      forwardLatency(p->tag_latency),
97      fillLatency(p->data_latency),
98      responseLatency(p->response_latency),
99      sequentialAccess(p->sequential_access),
100      numTarget(p->tgts_per_mshr),
101      forwardSnoops(true),
102      clusivity(p->clusivity),
103      isReadOnly(p->is_read_only),
104      blocked(0),
105      order(0),
106      noTargetMSHR(nullptr),
107      missCount(p->max_miss_count),
108      addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
109      system(p->system)
110{
111    // the MSHR queue has no reserve entries as we check the MSHR
112    // queue on every single allocation, whereas the write queue has
113    // as many reserve entries as we have MSHRs, since every MSHR may
114    // eventually require a writeback, and we do not check the write
115    // buffer before committing to an MSHR
116
117    // forward snoops is overridden in init() once we can query
118    // whether the connected master is actually snooping or not
119
120    tempBlock = new TempCacheBlk(blkSize);
121
122    tags->tagsInit();
123    if (prefetcher)
124        prefetcher->setCache(this);
125}
126
127BaseCache::~BaseCache()
128{
129    delete tempBlock;
130}
131
132void
133BaseCache::CacheSlavePort::setBlocked()
134{
135    assert(!blocked);
136    DPRINTF(CachePort, "Port is blocking new requests\n");
137    blocked = true;
138    // if we already scheduled a retry in this cycle, but it has not yet
139    // happened, cancel it
140    if (sendRetryEvent.scheduled()) {
141        owner.deschedule(sendRetryEvent);
142        DPRINTF(CachePort, "Port descheduled retry\n");
143        mustSendRetry = true;
144    }
145}
146
147void
148BaseCache::CacheSlavePort::clearBlocked()
149{
150    assert(blocked);
151    DPRINTF(CachePort, "Port is accepting new requests\n");
152    blocked = false;
153    if (mustSendRetry) {
154        // @TODO: need to find a better time (next cycle?)
155        owner.schedule(sendRetryEvent, curTick() + 1);
156    }
157}
158
159void
160BaseCache::CacheSlavePort::processSendRetry()
161{
162    DPRINTF(CachePort, "Port is sending retry\n");
163
164    // reset the flag and call retry
165    mustSendRetry = false;
166    sendRetryReq();
167}
168
169Addr
170BaseCache::regenerateBlkAddr(CacheBlk* blk)
171{
172    if (blk != tempBlock) {
173        return tags->regenerateBlkAddr(blk);
174    } else {
175        return tempBlock->getAddr();
176    }
177}
178
179void
180BaseCache::init()
181{
182    if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
183        fatal("Cache ports on %s are not connected\n", name());
184    cpuSidePort.sendRangeChange();
185    forwardSnoops = cpuSidePort.isSnooping();
186}
187
188BaseMasterPort &
189BaseCache::getMasterPort(const std::string &if_name, PortID idx)
190{
191    if (if_name == "mem_side") {
192        return memSidePort;
193    }  else {
194        return MemObject::getMasterPort(if_name, idx);
195    }
196}
197
198BaseSlavePort &
199BaseCache::getSlavePort(const std::string &if_name, PortID idx)
200{
201    if (if_name == "cpu_side") {
202        return cpuSidePort;
203    } else {
204        return MemObject::getSlavePort(if_name, idx);
205    }
206}
207
208bool
209BaseCache::inRange(Addr addr) const
210{
211    for (const auto& r : addrRanges) {
212        if (r.contains(addr)) {
213            return true;
214       }
215    }
216    return false;
217}
218
219void
220BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
221{
222    if (pkt->needsResponse()) {
223        // These delays should have been consumed by now
224        assert(pkt->headerDelay == 0);
225        assert(pkt->payloadDelay == 0);
226
227        pkt->makeTimingResponse();
228
229        // In this case we are considering request_time that takes
230        // into account the delay of the xbar, if any, and just
231        // lat, neglecting responseLatency, modelling hit latency
232        // just as the value of lat overriden by access(), which calls
233        // the calculateAccessLatency() function.
234        cpuSidePort.schedTimingResp(pkt, request_time);
235    } else {
236        DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
237                pkt->print());
238
239        // queue the packet for deletion, as the sending cache is
240        // still relying on it; if the block is found in access(),
241        // CleanEvict and Writeback messages will be deleted
242        // here as well
243        pendingDelete.reset(pkt);
244    }
245}
246
247void
248BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
249                               Tick forward_time, Tick request_time)
250{
251    if (writeAllocator &&
252        pkt && pkt->isWrite() && !pkt->req->isUncacheable()) {
253        writeAllocator->updateMode(pkt->getAddr(), pkt->getSize(),
254                                   pkt->getBlockAddr(blkSize));
255    }
256
257    if (mshr) {
258        /// MSHR hit
259        /// @note writebacks will be checked in getNextMSHR()
260        /// for any conflicting requests to the same block
261
262        //@todo remove hw_pf here
263
264        // Coalesce unless it was a software prefetch (see above).
265        if (pkt) {
266            assert(!pkt->isWriteback());
267            // CleanEvicts corresponding to blocks which have
268            // outstanding requests in MSHRs are simply sunk here
269            if (pkt->cmd == MemCmd::CleanEvict) {
270                pendingDelete.reset(pkt);
271            } else if (pkt->cmd == MemCmd::WriteClean) {
272                // A WriteClean should never coalesce with any
273                // outstanding cache maintenance requests.
274
275                // We use forward_time here because there is an
276                // uncached memory write, forwarded to WriteBuffer.
277                allocateWriteBuffer(pkt, forward_time);
278            } else {
279                DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
280                        pkt->print());
281
282                assert(pkt->req->masterId() < system->maxMasters());
283                mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
284
285                // We use forward_time here because it is the same
286                // considering new targets. We have multiple
287                // requests for the same address here. It
288                // specifies the latency to allocate an internal
289                // buffer and to schedule an event to the queued
290                // port and also takes into account the additional
291                // delay of the xbar.
292                mshr->allocateTarget(pkt, forward_time, order++,
293                                     allocOnFill(pkt->cmd));
294                if (mshr->getNumTargets() == numTarget) {
295                    noTargetMSHR = mshr;
296                    setBlocked(Blocked_NoTargets);
297                    // need to be careful with this... if this mshr isn't
298                    // ready yet (i.e. time > curTick()), we don't want to
299                    // move it ahead of mshrs that are ready
300                    // mshrQueue.moveToFront(mshr);
301                }
302            }
303        }
304    } else {
305        // no MSHR
306        assert(pkt->req->masterId() < system->maxMasters());
307        mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
308
309        if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
310            // We use forward_time here because there is an
311            // writeback or writeclean, forwarded to WriteBuffer.
312            allocateWriteBuffer(pkt, forward_time);
313        } else {
314            if (blk && blk->isValid()) {
315                // If we have a write miss to a valid block, we
316                // need to mark the block non-readable.  Otherwise
317                // if we allow reads while there's an outstanding
318                // write miss, the read could return stale data
319                // out of the cache block... a more aggressive
320                // system could detect the overlap (if any) and
321                // forward data out of the MSHRs, but we don't do
322                // that yet.  Note that we do need to leave the
323                // block valid so that it stays in the cache, in
324                // case we get an upgrade response (and hence no
325                // new data) when the write miss completes.
326                // As long as CPUs do proper store/load forwarding
327                // internally, and have a sufficiently weak memory
328                // model, this is probably unnecessary, but at some
329                // point it must have seemed like we needed it...
330                assert((pkt->needsWritable() && !blk->isWritable()) ||
331                       pkt->req->isCacheMaintenance());
332                blk->status &= ~BlkReadable;
333            }
334            // Here we are using forward_time, modelling the latency of
335            // a miss (outbound) just as forwardLatency, neglecting the
336            // lookupLatency component.
337            allocateMissBuffer(pkt, forward_time);
338        }
339    }
340}
341
342void
343BaseCache::recvTimingReq(PacketPtr pkt)
344{
345    // anything that is merely forwarded pays for the forward latency and
346    // the delay provided by the crossbar
347    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
348
349    Cycles lat;
350    CacheBlk *blk = nullptr;
351    bool satisfied = false;
352    {
353        PacketList writebacks;
354        // Note that lat is passed by reference here. The function
355        // access() will set the lat value.
356        satisfied = access(pkt, blk, lat, writebacks);
357
358        // copy writebacks to write buffer here to ensure they logically
359        // precede anything happening below
360        doWritebacks(writebacks, forward_time);
361    }
362
363    // Here we charge the headerDelay that takes into account the latencies
364    // of the bus, if the packet comes from it.
365    // The latency charged is just the value set by the access() function.
366    // In case of a hit we are neglecting response latency.
367    // In case of a miss we are neglecting forward latency.
368    Tick request_time = clockEdge(lat) + pkt->headerDelay;
369    // Here we reset the timing of the packet.
370    pkt->headerDelay = pkt->payloadDelay = 0;
371
372    if (satisfied) {
373        // notify before anything else as later handleTimingReqHit might turn
374        // the packet in a response
375        ppHit->notify(pkt);
376
377        if (prefetcher && blk && blk->wasPrefetched()) {
378            blk->status &= ~BlkHWPrefetched;
379        }
380
381        handleTimingReqHit(pkt, blk, request_time);
382    } else {
383        handleTimingReqMiss(pkt, blk, forward_time, request_time);
384
385        ppMiss->notify(pkt);
386    }
387
388    if (prefetcher) {
389        // track time of availability of next prefetch, if any
390        Tick next_pf_time = prefetcher->nextPrefetchReadyTime();
391        if (next_pf_time != MaxTick) {
392            schedMemSideSendEvent(next_pf_time);
393        }
394    }
395}
396
397void
398BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
399{
400    Tick completion_time = clockEdge(responseLatency) +
401        pkt->headerDelay + pkt->payloadDelay;
402
403    // Reset the bus additional time as it is now accounted for
404    pkt->headerDelay = pkt->payloadDelay = 0;
405
406    cpuSidePort.schedTimingResp(pkt, completion_time);
407}
408
409void
410BaseCache::recvTimingResp(PacketPtr pkt)
411{
412    assert(pkt->isResponse());
413
414    // all header delay should be paid for by the crossbar, unless
415    // this is a prefetch response from above
416    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
417             "%s saw a non-zero packet delay\n", name());
418
419    const bool is_error = pkt->isError();
420
421    if (is_error) {
422        DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
423                pkt->print());
424    }
425
426    DPRINTF(Cache, "%s: Handling response %s\n", __func__,
427            pkt->print());
428
429    // if this is a write, we should be looking at an uncacheable
430    // write
431    if (pkt->isWrite()) {
432        assert(pkt->req->isUncacheable());
433        handleUncacheableWriteResp(pkt);
434        return;
435    }
436
437    // we have dealt with any (uncacheable) writes above, from here on
438    // we know we are dealing with an MSHR due to a miss or a prefetch
439    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
440    assert(mshr);
441
442    if (mshr == noTargetMSHR) {
443        // we always clear at least one target
444        clearBlocked(Blocked_NoTargets);
445        noTargetMSHR = nullptr;
446    }
447
448    // Initial target is used just for stats
449    MSHR::Target *initial_tgt = mshr->getTarget();
450    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
451    Tick miss_latency = curTick() - initial_tgt->recvTime;
452
453    if (pkt->req->isUncacheable()) {
454        assert(pkt->req->masterId() < system->maxMasters());
455        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
456            miss_latency;
457    } else {
458        assert(pkt->req->masterId() < system->maxMasters());
459        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
460            miss_latency;
461    }
462
463    PacketList writebacks;
464
465    bool is_fill = !mshr->isForward &&
466        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp ||
467         mshr->wasWholeLineWrite);
468
469    // make sure that if the mshr was due to a whole line write then
470    // the response is an invalidation
471    assert(!mshr->wasWholeLineWrite || pkt->isInvalidate());
472
473    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
474
475    if (is_fill && !is_error) {
476        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
477                pkt->getAddr());
478
479        const bool allocate = (writeAllocator && mshr->wasWholeLineWrite) ?
480            writeAllocator->allocate() : mshr->allocOnFill();
481        blk = handleFill(pkt, blk, writebacks, allocate);
482        assert(blk != nullptr);
483        ppFill->notify(pkt);
484    }
485
486    if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
487        // The block was marked not readable while there was a pending
488        // cache maintenance operation, restore its flag.
489        blk->status |= BlkReadable;
490
491        // This was a cache clean operation (without invalidate)
492        // and we have a copy of the block already. Since there
493        // is no invalidation, we can promote targets that don't
494        // require a writable copy
495        mshr->promoteReadable();
496    }
497
498    if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
499        // If at this point the referenced block is writable and the
500        // response is not a cache invalidate, we promote targets that
501        // were deferred as we couldn't guarrantee a writable copy
502        mshr->promoteWritable();
503    }
504
505    serviceMSHRTargets(mshr, pkt, blk);
506
507    if (mshr->promoteDeferredTargets()) {
508        // avoid later read getting stale data while write miss is
509        // outstanding.. see comment in timingAccess()
510        if (blk) {
511            blk->status &= ~BlkReadable;
512        }
513        mshrQueue.markPending(mshr);
514        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
515    } else {
516        // while we deallocate an mshr from the queue we still have to
517        // check the isFull condition before and after as we might
518        // have been using the reserved entries already
519        const bool was_full = mshrQueue.isFull();
520        mshrQueue.deallocate(mshr);
521        if (was_full && !mshrQueue.isFull()) {
522            clearBlocked(Blocked_NoMSHRs);
523        }
524
525        // Request the bus for a prefetch if this deallocation freed enough
526        // MSHRs for a prefetch to take place
527        if (prefetcher && mshrQueue.canPrefetch()) {
528            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
529                                         clockEdge());
530            if (next_pf_time != MaxTick)
531                schedMemSideSendEvent(next_pf_time);
532        }
533    }
534
535    // if we used temp block, check to see if its valid and then clear it out
536    if (blk == tempBlock && tempBlock->isValid()) {
537        evictBlock(blk, writebacks);
538    }
539
540    const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
541    // copy writebacks to write buffer
542    doWritebacks(writebacks, forward_time);
543
544    DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
545    delete pkt;
546}
547
548
549Tick
550BaseCache::recvAtomic(PacketPtr pkt)
551{
552    // should assert here that there are no outstanding MSHRs or
553    // writebacks... that would mean that someone used an atomic
554    // access in timing mode
555
556    // We use lookupLatency here because it is used to specify the latency
557    // to access.
558    Cycles lat = lookupLatency;
559
560    CacheBlk *blk = nullptr;
561    PacketList writebacks;
562    bool satisfied = access(pkt, blk, lat, writebacks);
563
564    if (pkt->isClean() && blk && blk->isDirty()) {
565        // A cache clean opearation is looking for a dirty
566        // block. If a dirty block is encountered a WriteClean
567        // will update any copies to the path to the memory
568        // until the point of reference.
569        DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
570                __func__, pkt->print(), blk->print());
571        PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
572        writebacks.push_back(wb_pkt);
573        pkt->setSatisfied();
574    }
575
576    // handle writebacks resulting from the access here to ensure they
577    // logically precede anything happening below
578    doWritebacksAtomic(writebacks);
579    assert(writebacks.empty());
580
581    if (!satisfied) {
582        lat += handleAtomicReqMiss(pkt, blk, writebacks);
583    }
584
585    // Note that we don't invoke the prefetcher at all in atomic mode.
586    // It's not clear how to do it properly, particularly for
587    // prefetchers that aggressively generate prefetch candidates and
588    // rely on bandwidth contention to throttle them; these will tend
589    // to pollute the cache in atomic mode since there is no bandwidth
590    // contention.  If we ever do want to enable prefetching in atomic
591    // mode, though, this is the place to do it... see timingAccess()
592    // for an example (though we'd want to issue the prefetch(es)
593    // immediately rather than calling requestMemSideBus() as we do
594    // there).
595
596    // do any writebacks resulting from the response handling
597    doWritebacksAtomic(writebacks);
598
599    // if we used temp block, check to see if its valid and if so
600    // clear it out, but only do so after the call to recvAtomic is
601    // finished so that any downstream observers (such as a snoop
602    // filter), first see the fill, and only then see the eviction
603    if (blk == tempBlock && tempBlock->isValid()) {
604        // the atomic CPU calls recvAtomic for fetch and load/store
605        // sequentuially, and we may already have a tempBlock
606        // writeback from the fetch that we have not yet sent
607        if (tempBlockWriteback) {
608            // if that is the case, write the prevoius one back, and
609            // do not schedule any new event
610            writebackTempBlockAtomic();
611        } else {
612            // the writeback/clean eviction happens after the call to
613            // recvAtomic has finished (but before any successive
614            // calls), so that the response handling from the fill is
615            // allowed to happen first
616            schedule(writebackTempBlockAtomicEvent, curTick());
617        }
618
619        tempBlockWriteback = evictBlock(blk);
620    }
621
622    if (pkt->needsResponse()) {
623        pkt->makeAtomicResponse();
624    }
625
626    return lat * clockPeriod();
627}
628
629void
630BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
631{
632    Addr blk_addr = pkt->getBlockAddr(blkSize);
633    bool is_secure = pkt->isSecure();
634    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
635    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
636
637    pkt->pushLabel(name());
638
639    CacheBlkPrintWrapper cbpw(blk);
640
641    // Note that just because an L2/L3 has valid data doesn't mean an
642    // L1 doesn't have a more up-to-date modified copy that still
643    // needs to be found.  As a result we always update the request if
644    // we have it, but only declare it satisfied if we are the owner.
645
646    // see if we have data at all (owned or otherwise)
647    bool have_data = blk && blk->isValid()
648        && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize,
649                                     blk->data);
650
651    // data we have is dirty if marked as such or if we have an
652    // in-service MSHR that is pending a modified line
653    bool have_dirty =
654        have_data && (blk->isDirty() ||
655                      (mshr && mshr->inService && mshr->isPendingModified()));
656
657    bool done = have_dirty ||
658        cpuSidePort.trySatisfyFunctional(pkt) ||
659        mshrQueue.trySatisfyFunctional(pkt, blk_addr) ||
660        writeBuffer.trySatisfyFunctional(pkt, blk_addr) ||
661        memSidePort.trySatisfyFunctional(pkt);
662
663    DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__,  pkt->print(),
664            (blk && blk->isValid()) ? "valid " : "",
665            have_data ? "data " : "", done ? "done " : "");
666
667    // We're leaving the cache, so pop cache->name() label
668    pkt->popLabel();
669
670    if (done) {
671        pkt->makeResponse();
672    } else {
673        // if it came as a request from the CPU side then make sure it
674        // continues towards the memory side
675        if (from_cpu_side) {
676            memSidePort.sendFunctional(pkt);
677        } else if (cpuSidePort.isSnooping()) {
678            // if it came from the memory side, it must be a snoop request
679            // and we should only forward it if we are forwarding snoops
680            cpuSidePort.sendFunctionalSnoop(pkt);
681        }
682    }
683}
684
685
686void
687BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
688{
689    assert(pkt->isRequest());
690
691    uint64_t overwrite_val;
692    bool overwrite_mem;
693    uint64_t condition_val64;
694    uint32_t condition_val32;
695
696    int offset = pkt->getOffset(blkSize);
697    uint8_t *blk_data = blk->data + offset;
698
699    assert(sizeof(uint64_t) >= pkt->getSize());
700
701    overwrite_mem = true;
702    // keep a copy of our possible write value, and copy what is at the
703    // memory address into the packet
704    pkt->writeData((uint8_t *)&overwrite_val);
705    pkt->setData(blk_data);
706
707    if (pkt->req->isCondSwap()) {
708        if (pkt->getSize() == sizeof(uint64_t)) {
709            condition_val64 = pkt->req->getExtraData();
710            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
711                                         sizeof(uint64_t));
712        } else if (pkt->getSize() == sizeof(uint32_t)) {
713            condition_val32 = (uint32_t)pkt->req->getExtraData();
714            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
715                                         sizeof(uint32_t));
716        } else
717            panic("Invalid size for conditional read/write\n");
718    }
719
720    if (overwrite_mem) {
721        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
722        blk->status |= BlkDirty;
723    }
724}
725
726QueueEntry*
727BaseCache::getNextQueueEntry()
728{
729    // Check both MSHR queue and write buffer for potential requests,
730    // note that null does not mean there is no request, it could
731    // simply be that it is not ready
732    MSHR *miss_mshr  = mshrQueue.getNext();
733    WriteQueueEntry *wq_entry = writeBuffer.getNext();
734
735    // If we got a write buffer request ready, first priority is a
736    // full write buffer, otherwise we favour the miss requests
737    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
738        // need to search MSHR queue for conflicting earlier miss.
739        MSHR *conflict_mshr =
740            mshrQueue.findPending(wq_entry->blkAddr,
741                                  wq_entry->isSecure);
742
743        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
744            // Service misses in order until conflict is cleared.
745            return conflict_mshr;
746
747            // @todo Note that we ignore the ready time of the conflict here
748        }
749
750        // No conflicts; issue write
751        return wq_entry;
752    } else if (miss_mshr) {
753        // need to check for conflicting earlier writeback
754        WriteQueueEntry *conflict_mshr =
755            writeBuffer.findPending(miss_mshr->blkAddr,
756                                    miss_mshr->isSecure);
757        if (conflict_mshr) {
758            // not sure why we don't check order here... it was in the
759            // original code but commented out.
760
761            // The only way this happens is if we are
762            // doing a write and we didn't have permissions
763            // then subsequently saw a writeback (owned got evicted)
764            // We need to make sure to perform the writeback first
765            // To preserve the dirty data, then we can issue the write
766
767            // should we return wq_entry here instead?  I.e. do we
768            // have to flush writes in order?  I don't think so... not
769            // for Alpha anyway.  Maybe for x86?
770            return conflict_mshr;
771
772            // @todo Note that we ignore the ready time of the conflict here
773        }
774
775        // No conflicts; issue read
776        return miss_mshr;
777    }
778
779    // fall through... no pending requests.  Try a prefetch.
780    assert(!miss_mshr && !wq_entry);
781    if (prefetcher && mshrQueue.canPrefetch()) {
782        // If we have a miss queue slot, we can try a prefetch
783        PacketPtr pkt = prefetcher->getPacket();
784        if (pkt) {
785            Addr pf_addr = pkt->getBlockAddr(blkSize);
786            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
787                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
788                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
789                // Update statistic on number of prefetches issued
790                // (hwpf_mshr_misses)
791                assert(pkt->req->masterId() < system->maxMasters());
792                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
793
794                // allocate an MSHR and return it, note
795                // that we send the packet straight away, so do not
796                // schedule the send
797                return allocateMissBuffer(pkt, curTick(), false);
798            } else {
799                // free the request and packet
800                delete pkt;
801            }
802        }
803    }
804
805    return nullptr;
806}
807
808void
809BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
810{
811    assert(pkt->isRequest());
812
813    assert(blk && blk->isValid());
814    // Occasionally this is not true... if we are a lower-level cache
815    // satisfying a string of Read and ReadEx requests from
816    // upper-level caches, a Read will mark the block as shared but we
817    // can satisfy a following ReadEx anyway since we can rely on the
818    // Read requester(s) to have buffered the ReadEx snoop and to
819    // invalidate their blocks after receiving them.
820    // assert(!pkt->needsWritable() || blk->isWritable());
821    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
822
823    // Check RMW operations first since both isRead() and
824    // isWrite() will be true for them
825    if (pkt->cmd == MemCmd::SwapReq) {
826        if (pkt->isAtomicOp()) {
827            // extract data from cache and save it into the data field in
828            // the packet as a return value from this atomic op
829            int offset = tags->extractBlkOffset(pkt->getAddr());
830            uint8_t *blk_data = blk->data + offset;
831            pkt->setData(blk_data);
832
833            // execute AMO operation
834            (*(pkt->getAtomicOp()))(blk_data);
835
836            // set block status to dirty
837            blk->status |= BlkDirty;
838        } else {
839            cmpAndSwap(blk, pkt);
840        }
841    } else if (pkt->isWrite()) {
842        // we have the block in a writable state and can go ahead,
843        // note that the line may be also be considered writable in
844        // downstream caches along the path to memory, but always
845        // Exclusive, and never Modified
846        assert(blk->isWritable());
847        // Write or WriteLine at the first cache with block in writable state
848        if (blk->checkWrite(pkt)) {
849            pkt->writeDataToBlock(blk->data, blkSize);
850        }
851        // Always mark the line as dirty (and thus transition to the
852        // Modified state) even if we are a failed StoreCond so we
853        // supply data to any snoops that have appended themselves to
854        // this cache before knowing the store will fail.
855        blk->status |= BlkDirty;
856        DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
857    } else if (pkt->isRead()) {
858        if (pkt->isLLSC()) {
859            blk->trackLoadLocked(pkt);
860        }
861
862        // all read responses have a data payload
863        assert(pkt->hasRespData());
864        pkt->setDataFromBlock(blk->data, blkSize);
865    } else if (pkt->isUpgrade()) {
866        // sanity check
867        assert(!pkt->hasSharers());
868
869        if (blk->isDirty()) {
870            // we were in the Owned state, and a cache above us that
871            // has the line in Shared state needs to be made aware
872            // that the data it already has is in fact dirty
873            pkt->setCacheResponding();
874            blk->status &= ~BlkDirty;
875        }
876    } else if (pkt->isClean()) {
877        blk->status &= ~BlkDirty;
878    } else {
879        assert(pkt->isInvalidate());
880        invalidateBlock(blk);
881        DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
882                pkt->print());
883    }
884}
885
886/////////////////////////////////////////////////////
887//
888// Access path: requests coming in from the CPU side
889//
890/////////////////////////////////////////////////////
891Cycles
892BaseCache::calculateAccessLatency(const CacheBlk* blk,
893                                  const Cycles lookup_lat) const
894{
895    Cycles lat(lookup_lat);
896
897    if (blk != nullptr) {
898        // First access tags, then data
899        if (sequentialAccess) {
900            lat += dataLatency;
901        // Latency is dictated by the slowest of tag and data latencies
902        } else {
903            lat = std::max(lookup_lat, dataLatency);
904        }
905
906        // Check if the block to be accessed is available. If not, apply the
907        // access latency on top of when the block is ready to be accessed.
908        const Tick when_ready = blk->getWhenReady();
909        if (when_ready > curTick() &&
910            ticksToCycles(when_ready - curTick()) > lat) {
911            lat += ticksToCycles(when_ready - curTick());
912        }
913    }
914
915    return lat;
916}
917
918bool
919BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
920                  PacketList &writebacks)
921{
922    // sanity check
923    assert(pkt->isRequest());
924
925    chatty_assert(!(isReadOnly && pkt->isWrite()),
926                  "Should never see a write in a read-only cache %s\n",
927                  name());
928
929    // Access block in the tags
930    Cycles tag_latency(0);
931    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), tag_latency);
932
933    // Calculate access latency
934    lat = calculateAccessLatency(blk, tag_latency);
935
936    DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
937            blk ? "hit " + blk->print() : "miss");
938
939    if (pkt->req->isCacheMaintenance()) {
940        // A cache maintenance operation is always forwarded to the
941        // memory below even if the block is found in dirty state.
942
943        // We defer any changes to the state of the block until we
944        // create and mark as in service the mshr for the downstream
945        // packet.
946        return false;
947    }
948
949    if (pkt->isEviction()) {
950        // We check for presence of block in above caches before issuing
951        // Writeback or CleanEvict to write buffer. Therefore the only
952        // possible cases can be of a CleanEvict packet coming from above
953        // encountering a Writeback generated in this cache peer cache and
954        // waiting in the write buffer. Cases of upper level peer caches
955        // generating CleanEvict and Writeback or simply CleanEvict and
956        // CleanEvict almost simultaneously will be caught by snoops sent out
957        // by crossbar.
958        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
959                                                          pkt->isSecure());
960        if (wb_entry) {
961            assert(wb_entry->getNumTargets() == 1);
962            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
963            assert(wbPkt->isWriteback());
964
965            if (pkt->isCleanEviction()) {
966                // The CleanEvict and WritebackClean snoops into other
967                // peer caches of the same level while traversing the
968                // crossbar. If a copy of the block is found, the
969                // packet is deleted in the crossbar. Hence, none of
970                // the other upper level caches connected to this
971                // cache have the block, so we can clear the
972                // BLOCK_CACHED flag in the Writeback if set and
973                // discard the CleanEvict by returning true.
974                wbPkt->clearBlockCached();
975                return true;
976            } else {
977                assert(pkt->cmd == MemCmd::WritebackDirty);
978                // Dirty writeback from above trumps our clean
979                // writeback... discard here
980                // Note: markInService will remove entry from writeback buffer.
981                markInService(wb_entry);
982                delete wbPkt;
983            }
984        }
985    }
986
987    // Writeback handling is special case.  We can write the block into
988    // the cache without having a writeable copy (or any copy at all).
989    if (pkt->isWriteback()) {
990        assert(blkSize == pkt->getSize());
991
992        // we could get a clean writeback while we are having
993        // outstanding accesses to a block, do the simple thing for
994        // now and drop the clean writeback so that we do not upset
995        // any ordering/decisions about ownership already taken
996        if (pkt->cmd == MemCmd::WritebackClean &&
997            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
998            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
999                    "dropping\n", pkt->getAddr());
1000            return true;
1001        }
1002
1003        if (!blk) {
1004            // need to do a replacement
1005            blk = allocateBlock(pkt, writebacks);
1006            if (!blk) {
1007                // no replaceable block available: give up, fwd to next level.
1008                incMissCount(pkt);
1009                return false;
1010            }
1011
1012            blk->status |= BlkReadable;
1013        }
1014        // only mark the block dirty if we got a writeback command,
1015        // and leave it as is for a clean writeback
1016        if (pkt->cmd == MemCmd::WritebackDirty) {
1017            // TODO: the coherent cache can assert(!blk->isDirty());
1018            blk->status |= BlkDirty;
1019        }
1020        // if the packet does not have sharers, it is passing
1021        // writable, and we got the writeback in Modified or Exclusive
1022        // state, if not we are in the Owned or Shared state
1023        if (!pkt->hasSharers()) {
1024            blk->status |= BlkWritable;
1025        }
1026        // nothing else to do; writeback doesn't expect response
1027        assert(!pkt->needsResponse());
1028        pkt->writeDataToBlock(blk->data, blkSize);
1029        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1030        incHitCount(pkt);
1031        // populate the time when the block will be ready to access.
1032        blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1033            pkt->payloadDelay);
1034        return true;
1035    } else if (pkt->cmd == MemCmd::CleanEvict) {
1036        if (blk) {
1037            // Found the block in the tags, need to stop CleanEvict from
1038            // propagating further down the hierarchy. Returning true will
1039            // treat the CleanEvict like a satisfied write request and delete
1040            // it.
1041            return true;
1042        }
1043        // We didn't find the block here, propagate the CleanEvict further
1044        // down the memory hierarchy. Returning false will treat the CleanEvict
1045        // like a Writeback which could not find a replaceable block so has to
1046        // go to next level.
1047        return false;
1048    } else if (pkt->cmd == MemCmd::WriteClean) {
1049        // WriteClean handling is a special case. We can allocate a
1050        // block directly if it doesn't exist and we can update the
1051        // block immediately. The WriteClean transfers the ownership
1052        // of the block as well.
1053        assert(blkSize == pkt->getSize());
1054
1055        if (!blk) {
1056            if (pkt->writeThrough()) {
1057                // if this is a write through packet, we don't try to
1058                // allocate if the block is not present
1059                return false;
1060            } else {
1061                // a writeback that misses needs to allocate a new block
1062                blk = allocateBlock(pkt, writebacks);
1063                if (!blk) {
1064                    // no replaceable block available: give up, fwd to
1065                    // next level.
1066                    incMissCount(pkt);
1067                    return false;
1068                }
1069
1070                blk->status |= BlkReadable;
1071            }
1072        }
1073
1074        // at this point either this is a writeback or a write-through
1075        // write clean operation and the block is already in this
1076        // cache, we need to update the data and the block flags
1077        assert(blk);
1078        // TODO: the coherent cache can assert(!blk->isDirty());
1079        if (!pkt->writeThrough()) {
1080            blk->status |= BlkDirty;
1081        }
1082        // nothing else to do; writeback doesn't expect response
1083        assert(!pkt->needsResponse());
1084        pkt->writeDataToBlock(blk->data, blkSize);
1085        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1086
1087        incHitCount(pkt);
1088        // populate the time when the block will be ready to access.
1089        blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1090            pkt->payloadDelay);
1091        // if this a write-through packet it will be sent to cache
1092        // below
1093        return !pkt->writeThrough();
1094    } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
1095                       blk->isReadable())) {
1096        // OK to satisfy access
1097        incHitCount(pkt);
1098        satisfyRequest(pkt, blk);
1099        maintainClusivity(pkt->fromCache(), blk);
1100
1101        return true;
1102    }
1103
1104    // Can't satisfy access normally... either no block (blk == nullptr)
1105    // or have block but need writable
1106
1107    incMissCount(pkt);
1108
1109    if (!blk && pkt->isLLSC() && pkt->isWrite()) {
1110        // complete miss on store conditional... just give up now
1111        pkt->req->setExtraData(0);
1112        return true;
1113    }
1114
1115    return false;
1116}
1117
1118void
1119BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
1120{
1121    if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
1122        clusivity == Enums::mostly_excl) {
1123        // if we have responded to a cache, and our block is still
1124        // valid, but not dirty, and this cache is mostly exclusive
1125        // with respect to the cache above, drop the block
1126        invalidateBlock(blk);
1127    }
1128}
1129
1130CacheBlk*
1131BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1132                      bool allocate)
1133{
1134    assert(pkt->isResponse());
1135    Addr addr = pkt->getAddr();
1136    bool is_secure = pkt->isSecure();
1137#if TRACING_ON
1138    CacheBlk::State old_state = blk ? blk->status : 0;
1139#endif
1140
1141    // When handling a fill, we should have no writes to this line.
1142    assert(addr == pkt->getBlockAddr(blkSize));
1143    assert(!writeBuffer.findMatch(addr, is_secure));
1144
1145    if (!blk) {
1146        // better have read new data...
1147        assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp);
1148
1149        // need to do a replacement if allocating, otherwise we stick
1150        // with the temporary storage
1151        blk = allocate ? allocateBlock(pkt, writebacks) : nullptr;
1152
1153        if (!blk) {
1154            // No replaceable block or a mostly exclusive
1155            // cache... just use temporary storage to complete the
1156            // current request and then get rid of it
1157            blk = tempBlock;
1158            tempBlock->insert(addr, is_secure);
1159            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1160                    is_secure ? "s" : "ns");
1161        }
1162    } else {
1163        // existing block... probably an upgrade
1164        // don't clear block status... if block is already dirty we
1165        // don't want to lose that
1166    }
1167
1168    // Block is guaranteed to be valid at this point
1169    assert(blk->isValid());
1170    assert(blk->isSecure() == is_secure);
1171    assert(regenerateBlkAddr(blk) == addr);
1172
1173    blk->status |= BlkReadable;
1174
1175    // sanity check for whole-line writes, which should always be
1176    // marked as writable as part of the fill, and then later marked
1177    // dirty as part of satisfyRequest
1178    if (pkt->cmd == MemCmd::InvalidateResp) {
1179        assert(!pkt->hasSharers());
1180    }
1181
1182    // here we deal with setting the appropriate state of the line,
1183    // and we start by looking at the hasSharers flag, and ignore the
1184    // cacheResponding flag (normally signalling dirty data) if the
1185    // packet has sharers, thus the line is never allocated as Owned
1186    // (dirty but not writable), and always ends up being either
1187    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1188    // for more details
1189    if (!pkt->hasSharers()) {
1190        // we could get a writable line from memory (rather than a
1191        // cache) even in a read-only cache, note that we set this bit
1192        // even for a read-only cache, possibly revisit this decision
1193        blk->status |= BlkWritable;
1194
1195        // check if we got this via cache-to-cache transfer (i.e., from a
1196        // cache that had the block in Modified or Owned state)
1197        if (pkt->cacheResponding()) {
1198            // we got the block in Modified state, and invalidated the
1199            // owners copy
1200            blk->status |= BlkDirty;
1201
1202            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1203                          "in read-only cache %s\n", name());
1204        }
1205    }
1206
1207    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1208            addr, is_secure ? "s" : "ns", old_state, blk->print());
1209
1210    // if we got new data, copy it in (checking for a read response
1211    // and a response that has data is the same in the end)
1212    if (pkt->isRead()) {
1213        // sanity checks
1214        assert(pkt->hasData());
1215        assert(pkt->getSize() == blkSize);
1216
1217        pkt->writeDataToBlock(blk->data, blkSize);
1218    }
1219    // We pay for fillLatency here.
1220    blk->setWhenReady(clockEdge(fillLatency) + pkt->payloadDelay);
1221
1222    return blk;
1223}
1224
1225CacheBlk*
1226BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks)
1227{
1228    // Get address
1229    const Addr addr = pkt->getAddr();
1230
1231    // Get secure bit
1232    const bool is_secure = pkt->isSecure();
1233
1234    // Find replacement victim
1235    std::vector<CacheBlk*> evict_blks;
1236    CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks);
1237
1238    // It is valid to return nullptr if there is no victim
1239    if (!victim)
1240        return nullptr;
1241
1242    // Print victim block's information
1243    DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print());
1244
1245    // Check for transient state allocations. If any of the entries listed
1246    // for eviction has a transient state, the allocation fails
1247    for (const auto& blk : evict_blks) {
1248        if (blk->isValid()) {
1249            Addr repl_addr = regenerateBlkAddr(blk);
1250            MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1251            if (repl_mshr) {
1252                // must be an outstanding upgrade or clean request
1253                // on a block we're about to replace...
1254                assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1255                       repl_mshr->isCleaning());
1256
1257                // too hard to replace block with transient state
1258                // allocation failed, block not inserted
1259                return nullptr;
1260            }
1261        }
1262    }
1263
1264    // The victim will be replaced by a new entry, so increase the replacement
1265    // counter if a valid block is being replaced
1266    if (victim->isValid()) {
1267        DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1268                "(%s): %s\n", regenerateBlkAddr(victim),
1269                victim->isSecure() ? "s" : "ns",
1270                addr, is_secure ? "s" : "ns",
1271                victim->isDirty() ? "writeback" : "clean");
1272
1273        replacements++;
1274    }
1275
1276    // Evict valid blocks associated to this victim block
1277    for (const auto& blk : evict_blks) {
1278        if (blk->isValid()) {
1279            if (blk->wasPrefetched()) {
1280                unusedPrefetches++;
1281            }
1282
1283            evictBlock(blk, writebacks);
1284        }
1285    }
1286
1287    // Insert new block at victimized entry
1288    tags->insertBlock(addr, is_secure, pkt->req->masterId(),
1289                      pkt->req->taskId(), victim);
1290
1291    return victim;
1292}
1293
1294void
1295BaseCache::invalidateBlock(CacheBlk *blk)
1296{
1297    // If handling a block present in the Tags, let it do its invalidation
1298    // process, which will update stats and invalidate the block itself
1299    if (blk != tempBlock) {
1300        tags->invalidate(blk);
1301    } else {
1302        tempBlock->invalidate();
1303    }
1304}
1305
1306void
1307BaseCache::evictBlock(CacheBlk *blk, PacketList &writebacks)
1308{
1309    PacketPtr pkt = evictBlock(blk);
1310    if (pkt) {
1311        writebacks.push_back(pkt);
1312    }
1313}
1314
1315PacketPtr
1316BaseCache::writebackBlk(CacheBlk *blk)
1317{
1318    chatty_assert(!isReadOnly || writebackClean,
1319                  "Writeback from read-only cache");
1320    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1321
1322    writebacks[Request::wbMasterId]++;
1323
1324    RequestPtr req = std::make_shared<Request>(
1325        regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1326
1327    if (blk->isSecure())
1328        req->setFlags(Request::SECURE);
1329
1330    req->taskId(blk->task_id);
1331
1332    PacketPtr pkt =
1333        new Packet(req, blk->isDirty() ?
1334                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1335
1336    DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1337            pkt->print(), blk->isWritable(), blk->isDirty());
1338
1339    if (blk->isWritable()) {
1340        // not asserting shared means we pass the block in modified
1341        // state, mark our own block non-writeable
1342        blk->status &= ~BlkWritable;
1343    } else {
1344        // we are in the Owned state, tell the receiver
1345        pkt->setHasSharers();
1346    }
1347
1348    // make sure the block is not marked dirty
1349    blk->status &= ~BlkDirty;
1350
1351    pkt->allocate();
1352    pkt->setDataFromBlock(blk->data, blkSize);
1353
1354    return pkt;
1355}
1356
1357PacketPtr
1358BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1359{
1360    RequestPtr req = std::make_shared<Request>(
1361        regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1362
1363    if (blk->isSecure()) {
1364        req->setFlags(Request::SECURE);
1365    }
1366    req->taskId(blk->task_id);
1367
1368    PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1369
1370    if (dest) {
1371        req->setFlags(dest);
1372        pkt->setWriteThrough();
1373    }
1374
1375    DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1376            blk->isWritable(), blk->isDirty());
1377
1378    if (blk->isWritable()) {
1379        // not asserting shared means we pass the block in modified
1380        // state, mark our own block non-writeable
1381        blk->status &= ~BlkWritable;
1382    } else {
1383        // we are in the Owned state, tell the receiver
1384        pkt->setHasSharers();
1385    }
1386
1387    // make sure the block is not marked dirty
1388    blk->status &= ~BlkDirty;
1389
1390    pkt->allocate();
1391    pkt->setDataFromBlock(blk->data, blkSize);
1392
1393    return pkt;
1394}
1395
1396
1397void
1398BaseCache::memWriteback()
1399{
1400    tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
1401}
1402
1403void
1404BaseCache::memInvalidate()
1405{
1406    tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
1407}
1408
1409bool
1410BaseCache::isDirty() const
1411{
1412    return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
1413}
1414
1415bool
1416BaseCache::coalesce() const
1417{
1418    return writeAllocator && writeAllocator->coalesce();
1419}
1420
1421void
1422BaseCache::writebackVisitor(CacheBlk &blk)
1423{
1424    if (blk.isDirty()) {
1425        assert(blk.isValid());
1426
1427        RequestPtr request = std::make_shared<Request>(
1428            regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId);
1429
1430        request->taskId(blk.task_id);
1431        if (blk.isSecure()) {
1432            request->setFlags(Request::SECURE);
1433        }
1434
1435        Packet packet(request, MemCmd::WriteReq);
1436        packet.dataStatic(blk.data);
1437
1438        memSidePort.sendFunctional(&packet);
1439
1440        blk.status &= ~BlkDirty;
1441    }
1442}
1443
1444void
1445BaseCache::invalidateVisitor(CacheBlk &blk)
1446{
1447    if (blk.isDirty())
1448        warn_once("Invalidating dirty cache lines. " \
1449                  "Expect things to break.\n");
1450
1451    if (blk.isValid()) {
1452        assert(!blk.isDirty());
1453        invalidateBlock(&blk);
1454    }
1455}
1456
1457Tick
1458BaseCache::nextQueueReadyTime() const
1459{
1460    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
1461                              writeBuffer.nextReadyTime());
1462
1463    // Don't signal prefetch ready time if no MSHRs available
1464    // Will signal once enoguh MSHRs are deallocated
1465    if (prefetcher && mshrQueue.canPrefetch()) {
1466        nextReady = std::min(nextReady,
1467                             prefetcher->nextPrefetchReadyTime());
1468    }
1469
1470    return nextReady;
1471}
1472
1473
1474bool
1475BaseCache::sendMSHRQueuePacket(MSHR* mshr)
1476{
1477    assert(mshr);
1478
1479    // use request from 1st target
1480    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1481
1482    DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1483
1484    // if the cache is in write coalescing mode or (additionally) in
1485    // no allocation mode, and we have a write packet with an MSHR
1486    // that is not a whole-line write (due to incompatible flags etc),
1487    // then reset the write mode
1488    if (writeAllocator && writeAllocator->coalesce() && tgt_pkt->isWrite()) {
1489        if (!mshr->isWholeLineWrite()) {
1490            // if we are currently write coalescing, hold on the
1491            // MSHR as many cycles extra as we need to completely
1492            // write a cache line
1493            if (writeAllocator->delay(mshr->blkAddr)) {
1494                Tick delay = blkSize / tgt_pkt->getSize() * clockPeriod();
1495                DPRINTF(CacheVerbose, "Delaying pkt %s %llu ticks to allow "
1496                        "for write coalescing\n", tgt_pkt->print(), delay);
1497                mshrQueue.delay(mshr, delay);
1498                return false;
1499            } else {
1500                writeAllocator->reset();
1501            }
1502        } else {
1503            writeAllocator->resetDelay(mshr->blkAddr);
1504        }
1505    }
1506
1507    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
1508
1509    // either a prefetch that is not present upstream, or a normal
1510    // MSHR request, proceed to get the packet to send downstream
1511    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(),
1512                                     mshr->isWholeLineWrite());
1513
1514    mshr->isForward = (pkt == nullptr);
1515
1516    if (mshr->isForward) {
1517        // not a cache block request, but a response is expected
1518        // make copy of current packet to forward, keep current
1519        // copy for response handling
1520        pkt = new Packet(tgt_pkt, false, true);
1521        assert(!pkt->isWrite());
1522    }
1523
1524    // play it safe and append (rather than set) the sender state,
1525    // as forwarded packets may already have existing state
1526    pkt->pushSenderState(mshr);
1527
1528    if (pkt->isClean() && blk && blk->isDirty()) {
1529        // A cache clean opearation is looking for a dirty block. Mark
1530        // the packet so that the destination xbar can determine that
1531        // there will be a follow-up write packet as well.
1532        pkt->setSatisfied();
1533    }
1534
1535    if (!memSidePort.sendTimingReq(pkt)) {
1536        // we are awaiting a retry, but we
1537        // delete the packet and will be creating a new packet
1538        // when we get the opportunity
1539        delete pkt;
1540
1541        // note that we have now masked any requestBus and
1542        // schedSendEvent (we will wait for a retry before
1543        // doing anything), and this is so even if we do not
1544        // care about this packet and might override it before
1545        // it gets retried
1546        return true;
1547    } else {
1548        // As part of the call to sendTimingReq the packet is
1549        // forwarded to all neighbouring caches (and any caches
1550        // above them) as a snoop. Thus at this point we know if
1551        // any of the neighbouring caches are responding, and if
1552        // so, we know it is dirty, and we can determine if it is
1553        // being passed as Modified, making our MSHR the ordering
1554        // point
1555        bool pending_modified_resp = !pkt->hasSharers() &&
1556            pkt->cacheResponding();
1557        markInService(mshr, pending_modified_resp);
1558
1559        if (pkt->isClean() && blk && blk->isDirty()) {
1560            // A cache clean opearation is looking for a dirty
1561            // block. If a dirty block is encountered a WriteClean
1562            // will update any copies to the path to the memory
1563            // until the point of reference.
1564            DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1565                    __func__, pkt->print(), blk->print());
1566            PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
1567                                             pkt->id);
1568            PacketList writebacks;
1569            writebacks.push_back(wb_pkt);
1570            doWritebacks(writebacks, 0);
1571        }
1572
1573        return false;
1574    }
1575}
1576
1577bool
1578BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
1579{
1580    assert(wq_entry);
1581
1582    // always a single target for write queue entries
1583    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
1584
1585    DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
1586
1587    // forward as is, both for evictions and uncacheable writes
1588    if (!memSidePort.sendTimingReq(tgt_pkt)) {
1589        // note that we have now masked any requestBus and
1590        // schedSendEvent (we will wait for a retry before
1591        // doing anything), and this is so even if we do not
1592        // care about this packet and might override it before
1593        // it gets retried
1594        return true;
1595    } else {
1596        markInService(wq_entry);
1597        return false;
1598    }
1599}
1600
1601void
1602BaseCache::serialize(CheckpointOut &cp) const
1603{
1604    bool dirty(isDirty());
1605
1606    if (dirty) {
1607        warn("*** The cache still contains dirty data. ***\n");
1608        warn("    Make sure to drain the system using the correct flags.\n");
1609        warn("    This checkpoint will not restore correctly " \
1610             "and dirty data in the cache will be lost!\n");
1611    }
1612
1613    // Since we don't checkpoint the data in the cache, any dirty data
1614    // will be lost when restoring from a checkpoint of a system that
1615    // wasn't drained properly. Flag the checkpoint as invalid if the
1616    // cache contains dirty data.
1617    bool bad_checkpoint(dirty);
1618    SERIALIZE_SCALAR(bad_checkpoint);
1619}
1620
1621void
1622BaseCache::unserialize(CheckpointIn &cp)
1623{
1624    bool bad_checkpoint;
1625    UNSERIALIZE_SCALAR(bad_checkpoint);
1626    if (bad_checkpoint) {
1627        fatal("Restoring from checkpoints with dirty caches is not "
1628              "supported in the classic memory system. Please remove any "
1629              "caches or drain them properly before taking checkpoints.\n");
1630    }
1631}
1632
1633void
1634BaseCache::regStats()
1635{
1636    MemObject::regStats();
1637
1638    using namespace Stats;
1639
1640    // Hit statistics
1641    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1642        MemCmd cmd(access_idx);
1643        const string &cstr = cmd.toString();
1644
1645        hits[access_idx]
1646            .init(system->maxMasters())
1647            .name(name() + "." + cstr + "_hits")
1648            .desc("number of " + cstr + " hits")
1649            .flags(total | nozero | nonan)
1650            ;
1651        for (int i = 0; i < system->maxMasters(); i++) {
1652            hits[access_idx].subname(i, system->getMasterName(i));
1653        }
1654    }
1655
1656// These macros make it easier to sum the right subset of commands and
1657// to change the subset of commands that are considered "demand" vs
1658// "non-demand"
1659#define SUM_DEMAND(s) \
1660    (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
1661     s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
1662
1663// should writebacks be included here?  prior code was inconsistent...
1664#define SUM_NON_DEMAND(s) \
1665    (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq] + s[MemCmd::SoftPFExReq])
1666
1667    demandHits
1668        .name(name() + ".demand_hits")
1669        .desc("number of demand (read+write) hits")
1670        .flags(total | nozero | nonan)
1671        ;
1672    demandHits = SUM_DEMAND(hits);
1673    for (int i = 0; i < system->maxMasters(); i++) {
1674        demandHits.subname(i, system->getMasterName(i));
1675    }
1676
1677    overallHits
1678        .name(name() + ".overall_hits")
1679        .desc("number of overall hits")
1680        .flags(total | nozero | nonan)
1681        ;
1682    overallHits = demandHits + SUM_NON_DEMAND(hits);
1683    for (int i = 0; i < system->maxMasters(); i++) {
1684        overallHits.subname(i, system->getMasterName(i));
1685    }
1686
1687    // Miss statistics
1688    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1689        MemCmd cmd(access_idx);
1690        const string &cstr = cmd.toString();
1691
1692        misses[access_idx]
1693            .init(system->maxMasters())
1694            .name(name() + "." + cstr + "_misses")
1695            .desc("number of " + cstr + " misses")
1696            .flags(total | nozero | nonan)
1697            ;
1698        for (int i = 0; i < system->maxMasters(); i++) {
1699            misses[access_idx].subname(i, system->getMasterName(i));
1700        }
1701    }
1702
1703    demandMisses
1704        .name(name() + ".demand_misses")
1705        .desc("number of demand (read+write) misses")
1706        .flags(total | nozero | nonan)
1707        ;
1708    demandMisses = SUM_DEMAND(misses);
1709    for (int i = 0; i < system->maxMasters(); i++) {
1710        demandMisses.subname(i, system->getMasterName(i));
1711    }
1712
1713    overallMisses
1714        .name(name() + ".overall_misses")
1715        .desc("number of overall misses")
1716        .flags(total | nozero | nonan)
1717        ;
1718    overallMisses = demandMisses + SUM_NON_DEMAND(misses);
1719    for (int i = 0; i < system->maxMasters(); i++) {
1720        overallMisses.subname(i, system->getMasterName(i));
1721    }
1722
1723    // Miss latency statistics
1724    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1725        MemCmd cmd(access_idx);
1726        const string &cstr = cmd.toString();
1727
1728        missLatency[access_idx]
1729            .init(system->maxMasters())
1730            .name(name() + "." + cstr + "_miss_latency")
1731            .desc("number of " + cstr + " miss cycles")
1732            .flags(total | nozero | nonan)
1733            ;
1734        for (int i = 0; i < system->maxMasters(); i++) {
1735            missLatency[access_idx].subname(i, system->getMasterName(i));
1736        }
1737    }
1738
1739    demandMissLatency
1740        .name(name() + ".demand_miss_latency")
1741        .desc("number of demand (read+write) miss cycles")
1742        .flags(total | nozero | nonan)
1743        ;
1744    demandMissLatency = SUM_DEMAND(missLatency);
1745    for (int i = 0; i < system->maxMasters(); i++) {
1746        demandMissLatency.subname(i, system->getMasterName(i));
1747    }
1748
1749    overallMissLatency
1750        .name(name() + ".overall_miss_latency")
1751        .desc("number of overall miss cycles")
1752        .flags(total | nozero | nonan)
1753        ;
1754    overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
1755    for (int i = 0; i < system->maxMasters(); i++) {
1756        overallMissLatency.subname(i, system->getMasterName(i));
1757    }
1758
1759    // access formulas
1760    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1761        MemCmd cmd(access_idx);
1762        const string &cstr = cmd.toString();
1763
1764        accesses[access_idx]
1765            .name(name() + "." + cstr + "_accesses")
1766            .desc("number of " + cstr + " accesses(hits+misses)")
1767            .flags(total | nozero | nonan)
1768            ;
1769        accesses[access_idx] = hits[access_idx] + misses[access_idx];
1770
1771        for (int i = 0; i < system->maxMasters(); i++) {
1772            accesses[access_idx].subname(i, system->getMasterName(i));
1773        }
1774    }
1775
1776    demandAccesses
1777        .name(name() + ".demand_accesses")
1778        .desc("number of demand (read+write) accesses")
1779        .flags(total | nozero | nonan)
1780        ;
1781    demandAccesses = demandHits + demandMisses;
1782    for (int i = 0; i < system->maxMasters(); i++) {
1783        demandAccesses.subname(i, system->getMasterName(i));
1784    }
1785
1786    overallAccesses
1787        .name(name() + ".overall_accesses")
1788        .desc("number of overall (read+write) accesses")
1789        .flags(total | nozero | nonan)
1790        ;
1791    overallAccesses = overallHits + overallMisses;
1792    for (int i = 0; i < system->maxMasters(); i++) {
1793        overallAccesses.subname(i, system->getMasterName(i));
1794    }
1795
1796    // miss rate formulas
1797    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1798        MemCmd cmd(access_idx);
1799        const string &cstr = cmd.toString();
1800
1801        missRate[access_idx]
1802            .name(name() + "." + cstr + "_miss_rate")
1803            .desc("miss rate for " + cstr + " accesses")
1804            .flags(total | nozero | nonan)
1805            ;
1806        missRate[access_idx] = misses[access_idx] / accesses[access_idx];
1807
1808        for (int i = 0; i < system->maxMasters(); i++) {
1809            missRate[access_idx].subname(i, system->getMasterName(i));
1810        }
1811    }
1812
1813    demandMissRate
1814        .name(name() + ".demand_miss_rate")
1815        .desc("miss rate for demand accesses")
1816        .flags(total | nozero | nonan)
1817        ;
1818    demandMissRate = demandMisses / demandAccesses;
1819    for (int i = 0; i < system->maxMasters(); i++) {
1820        demandMissRate.subname(i, system->getMasterName(i));
1821    }
1822
1823    overallMissRate
1824        .name(name() + ".overall_miss_rate")
1825        .desc("miss rate for overall accesses")
1826        .flags(total | nozero | nonan)
1827        ;
1828    overallMissRate = overallMisses / overallAccesses;
1829    for (int i = 0; i < system->maxMasters(); i++) {
1830        overallMissRate.subname(i, system->getMasterName(i));
1831    }
1832
1833    // miss latency formulas
1834    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1835        MemCmd cmd(access_idx);
1836        const string &cstr = cmd.toString();
1837
1838        avgMissLatency[access_idx]
1839            .name(name() + "." + cstr + "_avg_miss_latency")
1840            .desc("average " + cstr + " miss latency")
1841            .flags(total | nozero | nonan)
1842            ;
1843        avgMissLatency[access_idx] =
1844            missLatency[access_idx] / misses[access_idx];
1845
1846        for (int i = 0; i < system->maxMasters(); i++) {
1847            avgMissLatency[access_idx].subname(i, system->getMasterName(i));
1848        }
1849    }
1850
1851    demandAvgMissLatency
1852        .name(name() + ".demand_avg_miss_latency")
1853        .desc("average overall miss latency")
1854        .flags(total | nozero | nonan)
1855        ;
1856    demandAvgMissLatency = demandMissLatency / demandMisses;
1857    for (int i = 0; i < system->maxMasters(); i++) {
1858        demandAvgMissLatency.subname(i, system->getMasterName(i));
1859    }
1860
1861    overallAvgMissLatency
1862        .name(name() + ".overall_avg_miss_latency")
1863        .desc("average overall miss latency")
1864        .flags(total | nozero | nonan)
1865        ;
1866    overallAvgMissLatency = overallMissLatency / overallMisses;
1867    for (int i = 0; i < system->maxMasters(); i++) {
1868        overallAvgMissLatency.subname(i, system->getMasterName(i));
1869    }
1870
1871    blocked_cycles.init(NUM_BLOCKED_CAUSES);
1872    blocked_cycles
1873        .name(name() + ".blocked_cycles")
1874        .desc("number of cycles access was blocked")
1875        .subname(Blocked_NoMSHRs, "no_mshrs")
1876        .subname(Blocked_NoTargets, "no_targets")
1877        ;
1878
1879
1880    blocked_causes.init(NUM_BLOCKED_CAUSES);
1881    blocked_causes
1882        .name(name() + ".blocked")
1883        .desc("number of cycles access was blocked")
1884        .subname(Blocked_NoMSHRs, "no_mshrs")
1885        .subname(Blocked_NoTargets, "no_targets")
1886        ;
1887
1888    avg_blocked
1889        .name(name() + ".avg_blocked_cycles")
1890        .desc("average number of cycles each access was blocked")
1891        .subname(Blocked_NoMSHRs, "no_mshrs")
1892        .subname(Blocked_NoTargets, "no_targets")
1893        ;
1894
1895    avg_blocked = blocked_cycles / blocked_causes;
1896
1897    unusedPrefetches
1898        .name(name() + ".unused_prefetches")
1899        .desc("number of HardPF blocks evicted w/o reference")
1900        .flags(nozero)
1901        ;
1902
1903    writebacks
1904        .init(system->maxMasters())
1905        .name(name() + ".writebacks")
1906        .desc("number of writebacks")
1907        .flags(total | nozero | nonan)
1908        ;
1909    for (int i = 0; i < system->maxMasters(); i++) {
1910        writebacks.subname(i, system->getMasterName(i));
1911    }
1912
1913    // MSHR statistics
1914    // MSHR hit statistics
1915    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1916        MemCmd cmd(access_idx);
1917        const string &cstr = cmd.toString();
1918
1919        mshr_hits[access_idx]
1920            .init(system->maxMasters())
1921            .name(name() + "." + cstr + "_mshr_hits")
1922            .desc("number of " + cstr + " MSHR hits")
1923            .flags(total | nozero | nonan)
1924            ;
1925        for (int i = 0; i < system->maxMasters(); i++) {
1926            mshr_hits[access_idx].subname(i, system->getMasterName(i));
1927        }
1928    }
1929
1930    demandMshrHits
1931        .name(name() + ".demand_mshr_hits")
1932        .desc("number of demand (read+write) MSHR hits")
1933        .flags(total | nozero | nonan)
1934        ;
1935    demandMshrHits = SUM_DEMAND(mshr_hits);
1936    for (int i = 0; i < system->maxMasters(); i++) {
1937        demandMshrHits.subname(i, system->getMasterName(i));
1938    }
1939
1940    overallMshrHits
1941        .name(name() + ".overall_mshr_hits")
1942        .desc("number of overall MSHR hits")
1943        .flags(total | nozero | nonan)
1944        ;
1945    overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
1946    for (int i = 0; i < system->maxMasters(); i++) {
1947        overallMshrHits.subname(i, system->getMasterName(i));
1948    }
1949
1950    // MSHR miss statistics
1951    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1952        MemCmd cmd(access_idx);
1953        const string &cstr = cmd.toString();
1954
1955        mshr_misses[access_idx]
1956            .init(system->maxMasters())
1957            .name(name() + "." + cstr + "_mshr_misses")
1958            .desc("number of " + cstr + " MSHR misses")
1959            .flags(total | nozero | nonan)
1960            ;
1961        for (int i = 0; i < system->maxMasters(); i++) {
1962            mshr_misses[access_idx].subname(i, system->getMasterName(i));
1963        }
1964    }
1965
1966    demandMshrMisses
1967        .name(name() + ".demand_mshr_misses")
1968        .desc("number of demand (read+write) MSHR misses")
1969        .flags(total | nozero | nonan)
1970        ;
1971    demandMshrMisses = SUM_DEMAND(mshr_misses);
1972    for (int i = 0; i < system->maxMasters(); i++) {
1973        demandMshrMisses.subname(i, system->getMasterName(i));
1974    }
1975
1976    overallMshrMisses
1977        .name(name() + ".overall_mshr_misses")
1978        .desc("number of overall MSHR misses")
1979        .flags(total | nozero | nonan)
1980        ;
1981    overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
1982    for (int i = 0; i < system->maxMasters(); i++) {
1983        overallMshrMisses.subname(i, system->getMasterName(i));
1984    }
1985
1986    // MSHR miss latency statistics
1987    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1988        MemCmd cmd(access_idx);
1989        const string &cstr = cmd.toString();
1990
1991        mshr_miss_latency[access_idx]
1992            .init(system->maxMasters())
1993            .name(name() + "." + cstr + "_mshr_miss_latency")
1994            .desc("number of " + cstr + " MSHR miss cycles")
1995            .flags(total | nozero | nonan)
1996            ;
1997        for (int i = 0; i < system->maxMasters(); i++) {
1998            mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
1999        }
2000    }
2001
2002    demandMshrMissLatency
2003        .name(name() + ".demand_mshr_miss_latency")
2004        .desc("number of demand (read+write) MSHR miss cycles")
2005        .flags(total | nozero | nonan)
2006        ;
2007    demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
2008    for (int i = 0; i < system->maxMasters(); i++) {
2009        demandMshrMissLatency.subname(i, system->getMasterName(i));
2010    }
2011
2012    overallMshrMissLatency
2013        .name(name() + ".overall_mshr_miss_latency")
2014        .desc("number of overall MSHR miss cycles")
2015        .flags(total | nozero | nonan)
2016        ;
2017    overallMshrMissLatency =
2018        demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
2019    for (int i = 0; i < system->maxMasters(); i++) {
2020        overallMshrMissLatency.subname(i, system->getMasterName(i));
2021    }
2022
2023    // MSHR uncacheable statistics
2024    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2025        MemCmd cmd(access_idx);
2026        const string &cstr = cmd.toString();
2027
2028        mshr_uncacheable[access_idx]
2029            .init(system->maxMasters())
2030            .name(name() + "." + cstr + "_mshr_uncacheable")
2031            .desc("number of " + cstr + " MSHR uncacheable")
2032            .flags(total | nozero | nonan)
2033            ;
2034        for (int i = 0; i < system->maxMasters(); i++) {
2035            mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
2036        }
2037    }
2038
2039    overallMshrUncacheable
2040        .name(name() + ".overall_mshr_uncacheable_misses")
2041        .desc("number of overall MSHR uncacheable misses")
2042        .flags(total | nozero | nonan)
2043        ;
2044    overallMshrUncacheable =
2045        SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
2046    for (int i = 0; i < system->maxMasters(); i++) {
2047        overallMshrUncacheable.subname(i, system->getMasterName(i));
2048    }
2049
2050    // MSHR miss latency statistics
2051    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2052        MemCmd cmd(access_idx);
2053        const string &cstr = cmd.toString();
2054
2055        mshr_uncacheable_lat[access_idx]
2056            .init(system->maxMasters())
2057            .name(name() + "." + cstr + "_mshr_uncacheable_latency")
2058            .desc("number of " + cstr + " MSHR uncacheable cycles")
2059            .flags(total | nozero | nonan)
2060            ;
2061        for (int i = 0; i < system->maxMasters(); i++) {
2062            mshr_uncacheable_lat[access_idx].subname(
2063                i, system->getMasterName(i));
2064        }
2065    }
2066
2067    overallMshrUncacheableLatency
2068        .name(name() + ".overall_mshr_uncacheable_latency")
2069        .desc("number of overall MSHR uncacheable cycles")
2070        .flags(total | nozero | nonan)
2071        ;
2072    overallMshrUncacheableLatency =
2073        SUM_DEMAND(mshr_uncacheable_lat) +
2074        SUM_NON_DEMAND(mshr_uncacheable_lat);
2075    for (int i = 0; i < system->maxMasters(); i++) {
2076        overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
2077    }
2078
2079#if 0
2080    // MSHR access formulas
2081    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2082        MemCmd cmd(access_idx);
2083        const string &cstr = cmd.toString();
2084
2085        mshrAccesses[access_idx]
2086            .name(name() + "." + cstr + "_mshr_accesses")
2087            .desc("number of " + cstr + " mshr accesses(hits+misses)")
2088            .flags(total | nozero | nonan)
2089            ;
2090        mshrAccesses[access_idx] =
2091            mshr_hits[access_idx] + mshr_misses[access_idx]
2092            + mshr_uncacheable[access_idx];
2093    }
2094
2095    demandMshrAccesses
2096        .name(name() + ".demand_mshr_accesses")
2097        .desc("number of demand (read+write) mshr accesses")
2098        .flags(total | nozero | nonan)
2099        ;
2100    demandMshrAccesses = demandMshrHits + demandMshrMisses;
2101
2102    overallMshrAccesses
2103        .name(name() + ".overall_mshr_accesses")
2104        .desc("number of overall (read+write) mshr accesses")
2105        .flags(total | nozero | nonan)
2106        ;
2107    overallMshrAccesses = overallMshrHits + overallMshrMisses
2108        + overallMshrUncacheable;
2109#endif
2110
2111    // MSHR miss rate formulas
2112    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2113        MemCmd cmd(access_idx);
2114        const string &cstr = cmd.toString();
2115
2116        mshrMissRate[access_idx]
2117            .name(name() + "." + cstr + "_mshr_miss_rate")
2118            .desc("mshr miss rate for " + cstr + " accesses")
2119            .flags(total | nozero | nonan)
2120            ;
2121        mshrMissRate[access_idx] =
2122            mshr_misses[access_idx] / accesses[access_idx];
2123
2124        for (int i = 0; i < system->maxMasters(); i++) {
2125            mshrMissRate[access_idx].subname(i, system->getMasterName(i));
2126        }
2127    }
2128
2129    demandMshrMissRate
2130        .name(name() + ".demand_mshr_miss_rate")
2131        .desc("mshr miss rate for demand accesses")
2132        .flags(total | nozero | nonan)
2133        ;
2134    demandMshrMissRate = demandMshrMisses / demandAccesses;
2135    for (int i = 0; i < system->maxMasters(); i++) {
2136        demandMshrMissRate.subname(i, system->getMasterName(i));
2137    }
2138
2139    overallMshrMissRate
2140        .name(name() + ".overall_mshr_miss_rate")
2141        .desc("mshr miss rate for overall accesses")
2142        .flags(total | nozero | nonan)
2143        ;
2144    overallMshrMissRate = overallMshrMisses / overallAccesses;
2145    for (int i = 0; i < system->maxMasters(); i++) {
2146        overallMshrMissRate.subname(i, system->getMasterName(i));
2147    }
2148
2149    // mshrMiss latency formulas
2150    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2151        MemCmd cmd(access_idx);
2152        const string &cstr = cmd.toString();
2153
2154        avgMshrMissLatency[access_idx]
2155            .name(name() + "." + cstr + "_avg_mshr_miss_latency")
2156            .desc("average " + cstr + " mshr miss latency")
2157            .flags(total | nozero | nonan)
2158            ;
2159        avgMshrMissLatency[access_idx] =
2160            mshr_miss_latency[access_idx] / mshr_misses[access_idx];
2161
2162        for (int i = 0; i < system->maxMasters(); i++) {
2163            avgMshrMissLatency[access_idx].subname(
2164                i, system->getMasterName(i));
2165        }
2166    }
2167
2168    demandAvgMshrMissLatency
2169        .name(name() + ".demand_avg_mshr_miss_latency")
2170        .desc("average overall mshr miss latency")
2171        .flags(total | nozero | nonan)
2172        ;
2173    demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
2174    for (int i = 0; i < system->maxMasters(); i++) {
2175        demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
2176    }
2177
2178    overallAvgMshrMissLatency
2179        .name(name() + ".overall_avg_mshr_miss_latency")
2180        .desc("average overall mshr miss latency")
2181        .flags(total | nozero | nonan)
2182        ;
2183    overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
2184    for (int i = 0; i < system->maxMasters(); i++) {
2185        overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
2186    }
2187
2188    // mshrUncacheable latency formulas
2189    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2190        MemCmd cmd(access_idx);
2191        const string &cstr = cmd.toString();
2192
2193        avgMshrUncacheableLatency[access_idx]
2194            .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
2195            .desc("average " + cstr + " mshr uncacheable latency")
2196            .flags(total | nozero | nonan)
2197            ;
2198        avgMshrUncacheableLatency[access_idx] =
2199            mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
2200
2201        for (int i = 0; i < system->maxMasters(); i++) {
2202            avgMshrUncacheableLatency[access_idx].subname(
2203                i, system->getMasterName(i));
2204        }
2205    }
2206
2207    overallAvgMshrUncacheableLatency
2208        .name(name() + ".overall_avg_mshr_uncacheable_latency")
2209        .desc("average overall mshr uncacheable latency")
2210        .flags(total | nozero | nonan)
2211        ;
2212    overallAvgMshrUncacheableLatency =
2213        overallMshrUncacheableLatency / overallMshrUncacheable;
2214    for (int i = 0; i < system->maxMasters(); i++) {
2215        overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2216    }
2217
2218    replacements
2219        .name(name() + ".replacements")
2220        .desc("number of replacements")
2221        ;
2222}
2223
2224void
2225BaseCache::regProbePoints()
2226{
2227    ppHit = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Hit");
2228    ppMiss = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Miss");
2229    ppFill = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Fill");
2230}
2231
2232///////////////
2233//
2234// CpuSidePort
2235//
2236///////////////
2237bool
2238BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2239{
2240    // Snoops shouldn't happen when bypassing caches
2241    assert(!cache->system->bypassCaches());
2242
2243    assert(pkt->isResponse());
2244
2245    // Express snoop responses from master to slave, e.g., from L1 to L2
2246    cache->recvTimingSnoopResp(pkt);
2247    return true;
2248}
2249
2250
2251bool
2252BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
2253{
2254    if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
2255        // always let express snoop packets through even if blocked
2256        return true;
2257    } else if (blocked || mustSendRetry) {
2258        // either already committed to send a retry, or blocked
2259        mustSendRetry = true;
2260        return false;
2261    }
2262    mustSendRetry = false;
2263    return true;
2264}
2265
2266bool
2267BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2268{
2269    assert(pkt->isRequest());
2270
2271    if (cache->system->bypassCaches()) {
2272        // Just forward the packet if caches are disabled.
2273        // @todo This should really enqueue the packet rather
2274        bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
2275        assert(success);
2276        return true;
2277    } else if (tryTiming(pkt)) {
2278        cache->recvTimingReq(pkt);
2279        return true;
2280    }
2281    return false;
2282}
2283
2284Tick
2285BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
2286{
2287    if (cache->system->bypassCaches()) {
2288        // Forward the request if the system is in cache bypass mode.
2289        return cache->memSidePort.sendAtomic(pkt);
2290    } else {
2291        return cache->recvAtomic(pkt);
2292    }
2293}
2294
2295void
2296BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
2297{
2298    if (cache->system->bypassCaches()) {
2299        // The cache should be flushed if we are in cache bypass mode,
2300        // so we don't need to check if we need to update anything.
2301        cache->memSidePort.sendFunctional(pkt);
2302        return;
2303    }
2304
2305    // functional request
2306    cache->functionalAccess(pkt, true);
2307}
2308
2309AddrRangeList
2310BaseCache::CpuSidePort::getAddrRanges() const
2311{
2312    return cache->getAddrRanges();
2313}
2314
2315
2316BaseCache::
2317CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
2318                         const std::string &_label)
2319    : CacheSlavePort(_name, _cache, _label), cache(_cache)
2320{
2321}
2322
2323///////////////
2324//
2325// MemSidePort
2326//
2327///////////////
2328bool
2329BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
2330{
2331    cache->recvTimingResp(pkt);
2332    return true;
2333}
2334
2335// Express snooping requests to memside port
2336void
2337BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2338{
2339    // Snoops shouldn't happen when bypassing caches
2340    assert(!cache->system->bypassCaches());
2341
2342    // handle snooping requests
2343    cache->recvTimingSnoopReq(pkt);
2344}
2345
2346Tick
2347BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2348{
2349    // Snoops shouldn't happen when bypassing caches
2350    assert(!cache->system->bypassCaches());
2351
2352    return cache->recvAtomicSnoop(pkt);
2353}
2354
2355void
2356BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2357{
2358    // Snoops shouldn't happen when bypassing caches
2359    assert(!cache->system->bypassCaches());
2360
2361    // functional snoop (note that in contrast to atomic we don't have
2362    // a specific functionalSnoop method, as they have the same
2363    // behaviour regardless)
2364    cache->functionalAccess(pkt, false);
2365}
2366
2367void
2368BaseCache::CacheReqPacketQueue::sendDeferredPacket()
2369{
2370    // sanity check
2371    assert(!waitingOnRetry);
2372
2373    // there should never be any deferred request packets in the
2374    // queue, instead we resly on the cache to provide the packets
2375    // from the MSHR queue or write queue
2376    assert(deferredPacketReadyTime() == MaxTick);
2377
2378    // check for request packets (requests & writebacks)
2379    QueueEntry* entry = cache.getNextQueueEntry();
2380
2381    if (!entry) {
2382        // can happen if e.g. we attempt a writeback and fail, but
2383        // before the retry, the writeback is eliminated because
2384        // we snoop another cache's ReadEx.
2385    } else {
2386        // let our snoop responses go first if there are responses to
2387        // the same addresses
2388        if (checkConflictingSnoop(entry->blkAddr)) {
2389            return;
2390        }
2391        waitingOnRetry = entry->sendPacket(cache);
2392    }
2393
2394    // if we succeeded and are not waiting for a retry, schedule the
2395    // next send considering when the next queue is ready, note that
2396    // snoop responses have their own packet queue and thus schedule
2397    // their own events
2398    if (!waitingOnRetry) {
2399        schedSendEvent(cache.nextQueueReadyTime());
2400    }
2401}
2402
2403BaseCache::MemSidePort::MemSidePort(const std::string &_name,
2404                                    BaseCache *_cache,
2405                                    const std::string &_label)
2406    : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2407      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2408      _snoopRespQueue(*_cache, *this, true, _label), cache(_cache)
2409{
2410}
2411
2412void
2413WriteAllocator::updateMode(Addr write_addr, unsigned write_size,
2414                           Addr blk_addr)
2415{
2416    // check if we are continuing where the last write ended
2417    if (nextAddr == write_addr) {
2418        delayCtr[blk_addr] = delayThreshold;
2419        // stop if we have already saturated
2420        if (mode != WriteMode::NO_ALLOCATE) {
2421            byteCount += write_size;
2422            // switch to streaming mode if we have passed the lower
2423            // threshold
2424            if (mode == WriteMode::ALLOCATE &&
2425                byteCount > coalesceLimit) {
2426                mode = WriteMode::COALESCE;
2427                DPRINTF(Cache, "Switched to write coalescing\n");
2428            } else if (mode == WriteMode::COALESCE &&
2429                       byteCount > noAllocateLimit) {
2430                // and continue and switch to non-allocating mode if we
2431                // pass the upper threshold
2432                mode = WriteMode::NO_ALLOCATE;
2433                DPRINTF(Cache, "Switched to write-no-allocate\n");
2434            }
2435        }
2436    } else {
2437        // we did not see a write matching the previous one, start
2438        // over again
2439        byteCount = write_size;
2440        mode = WriteMode::ALLOCATE;
2441        resetDelay(blk_addr);
2442    }
2443    nextAddr = write_addr + write_size;
2444}
2445
2446WriteAllocator*
2447WriteAllocatorParams::create()
2448{
2449    return new WriteAllocator(this);
2450}
2451