base.cc revision 13222:0dbcc7d7d66f
1/*
2 * Copyright (c) 2012-2013, 2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 *          Nikos Nikoleris
42 */
43
44/**
45 * @file
46 * Definition of BaseCache functions.
47 */
48
49#include "mem/cache/base.hh"
50
51#include "base/compiler.hh"
52#include "base/logging.hh"
53#include "debug/Cache.hh"
54#include "debug/CachePort.hh"
55#include "debug/CacheRepl.hh"
56#include "debug/CacheVerbose.hh"
57#include "mem/cache/mshr.hh"
58#include "mem/cache/prefetch/base.hh"
59#include "mem/cache/queue_entry.hh"
60#include "params/BaseCache.hh"
61#include "sim/core.hh"
62
63class BaseMasterPort;
64class BaseSlavePort;
65
66using namespace std;
67
68BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
69                                          BaseCache *_cache,
70                                          const std::string &_label)
71    : QueuedSlavePort(_name, _cache, queue), queue(*_cache, *this, _label),
72      blocked(false), mustSendRetry(false),
73      sendRetryEvent([this]{ processSendRetry(); }, _name)
74{
75}
76
77BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
78    : MemObject(p),
79      cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
80      memSidePort(p->name + ".mem_side", this, "MemSidePort"),
81      mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
82      writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
83      tags(p->tags),
84      prefetcher(p->prefetcher),
85      prefetchOnAccess(p->prefetch_on_access),
86      writebackClean(p->writeback_clean),
87      tempBlockWriteback(nullptr),
88      writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
89                                    name(), false,
90                                    EventBase::Delayed_Writeback_Pri),
91      blkSize(blk_size),
92      lookupLatency(p->tag_latency),
93      dataLatency(p->data_latency),
94      forwardLatency(p->tag_latency),
95      fillLatency(p->data_latency),
96      responseLatency(p->response_latency),
97      numTarget(p->tgts_per_mshr),
98      forwardSnoops(true),
99      clusivity(p->clusivity),
100      isReadOnly(p->is_read_only),
101      blocked(0),
102      order(0),
103      noTargetMSHR(nullptr),
104      missCount(p->max_miss_count),
105      addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
106      system(p->system)
107{
108    // the MSHR queue has no reserve entries as we check the MSHR
109    // queue on every single allocation, whereas the write queue has
110    // as many reserve entries as we have MSHRs, since every MSHR may
111    // eventually require a writeback, and we do not check the write
112    // buffer before committing to an MSHR
113
114    // forward snoops is overridden in init() once we can query
115    // whether the connected master is actually snooping or not
116
117    tempBlock = new TempCacheBlk(blkSize);
118
119    tags->init(this);
120    if (prefetcher)
121        prefetcher->setCache(this);
122}
123
124BaseCache::~BaseCache()
125{
126    delete tempBlock;
127}
128
129void
130BaseCache::CacheSlavePort::setBlocked()
131{
132    assert(!blocked);
133    DPRINTF(CachePort, "Port is blocking new requests\n");
134    blocked = true;
135    // if we already scheduled a retry in this cycle, but it has not yet
136    // happened, cancel it
137    if (sendRetryEvent.scheduled()) {
138        owner.deschedule(sendRetryEvent);
139        DPRINTF(CachePort, "Port descheduled retry\n");
140        mustSendRetry = true;
141    }
142}
143
144void
145BaseCache::CacheSlavePort::clearBlocked()
146{
147    assert(blocked);
148    DPRINTF(CachePort, "Port is accepting new requests\n");
149    blocked = false;
150    if (mustSendRetry) {
151        // @TODO: need to find a better time (next cycle?)
152        owner.schedule(sendRetryEvent, curTick() + 1);
153    }
154}
155
156void
157BaseCache::CacheSlavePort::processSendRetry()
158{
159    DPRINTF(CachePort, "Port is sending retry\n");
160
161    // reset the flag and call retry
162    mustSendRetry = false;
163    sendRetryReq();
164}
165
166Addr
167BaseCache::regenerateBlkAddr(CacheBlk* blk)
168{
169    if (blk != tempBlock) {
170        return tags->regenerateBlkAddr(blk);
171    } else {
172        return tempBlock->getAddr();
173    }
174}
175
176void
177BaseCache::init()
178{
179    if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
180        fatal("Cache ports on %s are not connected\n", name());
181    cpuSidePort.sendRangeChange();
182    forwardSnoops = cpuSidePort.isSnooping();
183}
184
185BaseMasterPort &
186BaseCache::getMasterPort(const std::string &if_name, PortID idx)
187{
188    if (if_name == "mem_side") {
189        return memSidePort;
190    }  else {
191        return MemObject::getMasterPort(if_name, idx);
192    }
193}
194
195BaseSlavePort &
196BaseCache::getSlavePort(const std::string &if_name, PortID idx)
197{
198    if (if_name == "cpu_side") {
199        return cpuSidePort;
200    } else {
201        return MemObject::getSlavePort(if_name, idx);
202    }
203}
204
205bool
206BaseCache::inRange(Addr addr) const
207{
208    for (const auto& r : addrRanges) {
209        if (r.contains(addr)) {
210            return true;
211       }
212    }
213    return false;
214}
215
216void
217BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
218{
219    if (pkt->needsResponse()) {
220        pkt->makeTimingResponse();
221        // @todo: Make someone pay for this
222        pkt->headerDelay = pkt->payloadDelay = 0;
223
224        // In this case we are considering request_time that takes
225        // into account the delay of the xbar, if any, and just
226        // lat, neglecting responseLatency, modelling hit latency
227        // just as lookupLatency or or the value of lat overriden
228        // by access(), that calls accessBlock() function.
229        cpuSidePort.schedTimingResp(pkt, request_time, true);
230    } else {
231        DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
232                pkt->print());
233
234        // queue the packet for deletion, as the sending cache is
235        // still relying on it; if the block is found in access(),
236        // CleanEvict and Writeback messages will be deleted
237        // here as well
238        pendingDelete.reset(pkt);
239    }
240}
241
242void
243BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
244                               Tick forward_time, Tick request_time)
245{
246    if (mshr) {
247        /// MSHR hit
248        /// @note writebacks will be checked in getNextMSHR()
249        /// for any conflicting requests to the same block
250
251        //@todo remove hw_pf here
252
253        // Coalesce unless it was a software prefetch (see above).
254        if (pkt) {
255            assert(!pkt->isWriteback());
256            // CleanEvicts corresponding to blocks which have
257            // outstanding requests in MSHRs are simply sunk here
258            if (pkt->cmd == MemCmd::CleanEvict) {
259                pendingDelete.reset(pkt);
260            } else if (pkt->cmd == MemCmd::WriteClean) {
261                // A WriteClean should never coalesce with any
262                // outstanding cache maintenance requests.
263
264                // We use forward_time here because there is an
265                // uncached memory write, forwarded to WriteBuffer.
266                allocateWriteBuffer(pkt, forward_time);
267            } else {
268                DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
269                        pkt->print());
270
271                assert(pkt->req->masterId() < system->maxMasters());
272                mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
273
274                // We use forward_time here because it is the same
275                // considering new targets. We have multiple
276                // requests for the same address here. It
277                // specifies the latency to allocate an internal
278                // buffer and to schedule an event to the queued
279                // port and also takes into account the additional
280                // delay of the xbar.
281                mshr->allocateTarget(pkt, forward_time, order++,
282                                     allocOnFill(pkt->cmd));
283                if (mshr->getNumTargets() == numTarget) {
284                    noTargetMSHR = mshr;
285                    setBlocked(Blocked_NoTargets);
286                    // need to be careful with this... if this mshr isn't
287                    // ready yet (i.e. time > curTick()), we don't want to
288                    // move it ahead of mshrs that are ready
289                    // mshrQueue.moveToFront(mshr);
290                }
291            }
292        }
293    } else {
294        // no MSHR
295        assert(pkt->req->masterId() < system->maxMasters());
296        mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
297
298        if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
299            // We use forward_time here because there is an
300            // writeback or writeclean, forwarded to WriteBuffer.
301            allocateWriteBuffer(pkt, forward_time);
302        } else {
303            if (blk && blk->isValid()) {
304                // If we have a write miss to a valid block, we
305                // need to mark the block non-readable.  Otherwise
306                // if we allow reads while there's an outstanding
307                // write miss, the read could return stale data
308                // out of the cache block... a more aggressive
309                // system could detect the overlap (if any) and
310                // forward data out of the MSHRs, but we don't do
311                // that yet.  Note that we do need to leave the
312                // block valid so that it stays in the cache, in
313                // case we get an upgrade response (and hence no
314                // new data) when the write miss completes.
315                // As long as CPUs do proper store/load forwarding
316                // internally, and have a sufficiently weak memory
317                // model, this is probably unnecessary, but at some
318                // point it must have seemed like we needed it...
319                assert((pkt->needsWritable() && !blk->isWritable()) ||
320                       pkt->req->isCacheMaintenance());
321                blk->status &= ~BlkReadable;
322            }
323            // Here we are using forward_time, modelling the latency of
324            // a miss (outbound) just as forwardLatency, neglecting the
325            // lookupLatency component.
326            allocateMissBuffer(pkt, forward_time);
327        }
328    }
329}
330
331void
332BaseCache::recvTimingReq(PacketPtr pkt)
333{
334    // anything that is merely forwarded pays for the forward latency and
335    // the delay provided by the crossbar
336    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
337
338    // We use lookupLatency here because it is used to specify the latency
339    // to access.
340    Cycles lat = lookupLatency;
341    CacheBlk *blk = nullptr;
342    bool satisfied = false;
343    {
344        PacketList writebacks;
345        // Note that lat is passed by reference here. The function
346        // access() calls accessBlock() which can modify lat value.
347        satisfied = access(pkt, blk, lat, writebacks);
348
349        // copy writebacks to write buffer here to ensure they logically
350        // precede anything happening below
351        doWritebacks(writebacks, forward_time);
352    }
353
354    // Here we charge the headerDelay that takes into account the latencies
355    // of the bus, if the packet comes from it.
356    // The latency charged it is just lat that is the value of lookupLatency
357    // modified by access() function, or if not just lookupLatency.
358    // In case of a hit we are neglecting response latency.
359    // In case of a miss we are neglecting forward latency.
360    Tick request_time = clockEdge(lat) + pkt->headerDelay;
361    // Here we reset the timing of the packet.
362    pkt->headerDelay = pkt->payloadDelay = 0;
363    // track time of availability of next prefetch, if any
364    Tick next_pf_time = MaxTick;
365
366    if (satisfied) {
367        // if need to notify the prefetcher we have to do it before
368        // anything else as later handleTimingReqHit might turn the
369        // packet in a response
370        if (prefetcher &&
371            (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
372            if (blk)
373                blk->status &= ~BlkHWPrefetched;
374
375            // Don't notify on SWPrefetch
376            if (!pkt->cmd.isSWPrefetch()) {
377                assert(!pkt->req->isCacheMaintenance());
378                next_pf_time = prefetcher->notify(pkt);
379            }
380        }
381
382        handleTimingReqHit(pkt, blk, request_time);
383    } else {
384        handleTimingReqMiss(pkt, blk, forward_time, request_time);
385
386        // We should call the prefetcher reguardless if the request is
387        // satisfied or not, reguardless if the request is in the MSHR
388        // or not. The request could be a ReadReq hit, but still not
389        // satisfied (potentially because of a prior write to the same
390        // cache line. So, even when not satisfied, there is an MSHR
391        // already allocated for this, we need to let the prefetcher
392        // know about the request
393
394        // Don't notify prefetcher on SWPrefetch or cache maintenance
395        // operations
396        if (prefetcher && pkt &&
397            !pkt->cmd.isSWPrefetch() &&
398            !pkt->req->isCacheMaintenance()) {
399            next_pf_time = prefetcher->notify(pkt);
400        }
401    }
402
403    if (next_pf_time != MaxTick) {
404        schedMemSideSendEvent(next_pf_time);
405    }
406}
407
408void
409BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
410{
411    Tick completion_time = clockEdge(responseLatency) +
412        pkt->headerDelay + pkt->payloadDelay;
413
414    // Reset the bus additional time as it is now accounted for
415    pkt->headerDelay = pkt->payloadDelay = 0;
416
417    cpuSidePort.schedTimingResp(pkt, completion_time, true);
418}
419
420void
421BaseCache::recvTimingResp(PacketPtr pkt)
422{
423    assert(pkt->isResponse());
424
425    // all header delay should be paid for by the crossbar, unless
426    // this is a prefetch response from above
427    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
428             "%s saw a non-zero packet delay\n", name());
429
430    const bool is_error = pkt->isError();
431
432    if (is_error) {
433        DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
434                pkt->print());
435    }
436
437    DPRINTF(Cache, "%s: Handling response %s\n", __func__,
438            pkt->print());
439
440    // if this is a write, we should be looking at an uncacheable
441    // write
442    if (pkt->isWrite()) {
443        assert(pkt->req->isUncacheable());
444        handleUncacheableWriteResp(pkt);
445        return;
446    }
447
448    // we have dealt with any (uncacheable) writes above, from here on
449    // we know we are dealing with an MSHR due to a miss or a prefetch
450    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
451    assert(mshr);
452
453    if (mshr == noTargetMSHR) {
454        // we always clear at least one target
455        clearBlocked(Blocked_NoTargets);
456        noTargetMSHR = nullptr;
457    }
458
459    // Initial target is used just for stats
460    MSHR::Target *initial_tgt = mshr->getTarget();
461    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
462    Tick miss_latency = curTick() - initial_tgt->recvTime;
463
464    if (pkt->req->isUncacheable()) {
465        assert(pkt->req->masterId() < system->maxMasters());
466        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
467            miss_latency;
468    } else {
469        assert(pkt->req->masterId() < system->maxMasters());
470        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
471            miss_latency;
472    }
473
474    PacketList writebacks;
475
476    bool is_fill = !mshr->isForward &&
477        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
478
479    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
480
481    if (is_fill && !is_error) {
482        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
483                pkt->getAddr());
484
485        blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
486        assert(blk != nullptr);
487    }
488
489    if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
490        // The block was marked not readable while there was a pending
491        // cache maintenance operation, restore its flag.
492        blk->status |= BlkReadable;
493
494        // This was a cache clean operation (without invalidate)
495        // and we have a copy of the block already. Since there
496        // is no invalidation, we can promote targets that don't
497        // require a writable copy
498        mshr->promoteReadable();
499    }
500
501    if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
502        // If at this point the referenced block is writable and the
503        // response is not a cache invalidate, we promote targets that
504        // were deferred as we couldn't guarrantee a writable copy
505        mshr->promoteWritable();
506    }
507
508    serviceMSHRTargets(mshr, pkt, blk, writebacks);
509
510    if (mshr->promoteDeferredTargets()) {
511        // avoid later read getting stale data while write miss is
512        // outstanding.. see comment in timingAccess()
513        if (blk) {
514            blk->status &= ~BlkReadable;
515        }
516        mshrQueue.markPending(mshr);
517        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
518    } else {
519        // while we deallocate an mshr from the queue we still have to
520        // check the isFull condition before and after as we might
521        // have been using the reserved entries already
522        const bool was_full = mshrQueue.isFull();
523        mshrQueue.deallocate(mshr);
524        if (was_full && !mshrQueue.isFull()) {
525            clearBlocked(Blocked_NoMSHRs);
526        }
527
528        // Request the bus for a prefetch if this deallocation freed enough
529        // MSHRs for a prefetch to take place
530        if (prefetcher && mshrQueue.canPrefetch()) {
531            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
532                                         clockEdge());
533            if (next_pf_time != MaxTick)
534                schedMemSideSendEvent(next_pf_time);
535        }
536    }
537
538    // if we used temp block, check to see if its valid and then clear it out
539    if (blk == tempBlock && tempBlock->isValid()) {
540        evictBlock(blk, writebacks);
541    }
542
543    const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
544    // copy writebacks to write buffer
545    doWritebacks(writebacks, forward_time);
546
547    DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
548    delete pkt;
549}
550
551
552Tick
553BaseCache::recvAtomic(PacketPtr pkt)
554{
555    // We are in atomic mode so we pay just for lookupLatency here.
556    Cycles lat = lookupLatency;
557
558    // follow the same flow as in recvTimingReq, and check if a cache
559    // above us is responding
560    if (pkt->cacheResponding() && !pkt->isClean()) {
561        assert(!pkt->req->isCacheInvalidate());
562        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
563                pkt->print());
564
565        // if a cache is responding, and it had the line in Owned
566        // rather than Modified state, we need to invalidate any
567        // copies that are not on the same path to memory
568        assert(pkt->needsWritable() && !pkt->responderHadWritable());
569        lat += ticksToCycles(memSidePort.sendAtomic(pkt));
570
571        return lat * clockPeriod();
572    }
573
574    // should assert here that there are no outstanding MSHRs or
575    // writebacks... that would mean that someone used an atomic
576    // access in timing mode
577
578    CacheBlk *blk = nullptr;
579    PacketList writebacks;
580    bool satisfied = access(pkt, blk, lat, writebacks);
581
582    if (pkt->isClean() && blk && blk->isDirty()) {
583        // A cache clean opearation is looking for a dirty
584        // block. If a dirty block is encountered a WriteClean
585        // will update any copies to the path to the memory
586        // until the point of reference.
587        DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
588                __func__, pkt->print(), blk->print());
589        PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
590        writebacks.push_back(wb_pkt);
591        pkt->setSatisfied();
592    }
593
594    // handle writebacks resulting from the access here to ensure they
595    // logically precede anything happening below
596    doWritebacksAtomic(writebacks);
597    assert(writebacks.empty());
598
599    if (!satisfied) {
600        lat += handleAtomicReqMiss(pkt, blk, writebacks);
601    }
602
603    // Note that we don't invoke the prefetcher at all in atomic mode.
604    // It's not clear how to do it properly, particularly for
605    // prefetchers that aggressively generate prefetch candidates and
606    // rely on bandwidth contention to throttle them; these will tend
607    // to pollute the cache in atomic mode since there is no bandwidth
608    // contention.  If we ever do want to enable prefetching in atomic
609    // mode, though, this is the place to do it... see timingAccess()
610    // for an example (though we'd want to issue the prefetch(es)
611    // immediately rather than calling requestMemSideBus() as we do
612    // there).
613
614    // do any writebacks resulting from the response handling
615    doWritebacksAtomic(writebacks);
616
617    // if we used temp block, check to see if its valid and if so
618    // clear it out, but only do so after the call to recvAtomic is
619    // finished so that any downstream observers (such as a snoop
620    // filter), first see the fill, and only then see the eviction
621    if (blk == tempBlock && tempBlock->isValid()) {
622        // the atomic CPU calls recvAtomic for fetch and load/store
623        // sequentuially, and we may already have a tempBlock
624        // writeback from the fetch that we have not yet sent
625        if (tempBlockWriteback) {
626            // if that is the case, write the prevoius one back, and
627            // do not schedule any new event
628            writebackTempBlockAtomic();
629        } else {
630            // the writeback/clean eviction happens after the call to
631            // recvAtomic has finished (but before any successive
632            // calls), so that the response handling from the fill is
633            // allowed to happen first
634            schedule(writebackTempBlockAtomicEvent, curTick());
635        }
636
637        tempBlockWriteback = evictBlock(blk);
638    }
639
640    if (pkt->needsResponse()) {
641        pkt->makeAtomicResponse();
642    }
643
644    return lat * clockPeriod();
645}
646
647void
648BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
649{
650    Addr blk_addr = pkt->getBlockAddr(blkSize);
651    bool is_secure = pkt->isSecure();
652    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
653    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
654
655    pkt->pushLabel(name());
656
657    CacheBlkPrintWrapper cbpw(blk);
658
659    // Note that just because an L2/L3 has valid data doesn't mean an
660    // L1 doesn't have a more up-to-date modified copy that still
661    // needs to be found.  As a result we always update the request if
662    // we have it, but only declare it satisfied if we are the owner.
663
664    // see if we have data at all (owned or otherwise)
665    bool have_data = blk && blk->isValid()
666        && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize,
667                                     blk->data);
668
669    // data we have is dirty if marked as such or if we have an
670    // in-service MSHR that is pending a modified line
671    bool have_dirty =
672        have_data && (blk->isDirty() ||
673                      (mshr && mshr->inService && mshr->isPendingModified()));
674
675    bool done = have_dirty ||
676        cpuSidePort.trySatisfyFunctional(pkt) ||
677        mshrQueue.trySatisfyFunctional(pkt, blk_addr) ||
678        writeBuffer.trySatisfyFunctional(pkt, blk_addr) ||
679        memSidePort.trySatisfyFunctional(pkt);
680
681    DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__,  pkt->print(),
682            (blk && blk->isValid()) ? "valid " : "",
683            have_data ? "data " : "", done ? "done " : "");
684
685    // We're leaving the cache, so pop cache->name() label
686    pkt->popLabel();
687
688    if (done) {
689        pkt->makeResponse();
690    } else {
691        // if it came as a request from the CPU side then make sure it
692        // continues towards the memory side
693        if (from_cpu_side) {
694            memSidePort.sendFunctional(pkt);
695        } else if (cpuSidePort.isSnooping()) {
696            // if it came from the memory side, it must be a snoop request
697            // and we should only forward it if we are forwarding snoops
698            cpuSidePort.sendFunctionalSnoop(pkt);
699        }
700    }
701}
702
703
704void
705BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
706{
707    assert(pkt->isRequest());
708
709    uint64_t overwrite_val;
710    bool overwrite_mem;
711    uint64_t condition_val64;
712    uint32_t condition_val32;
713
714    int offset = pkt->getOffset(blkSize);
715    uint8_t *blk_data = blk->data + offset;
716
717    assert(sizeof(uint64_t) >= pkt->getSize());
718
719    overwrite_mem = true;
720    // keep a copy of our possible write value, and copy what is at the
721    // memory address into the packet
722    pkt->writeData((uint8_t *)&overwrite_val);
723    pkt->setData(blk_data);
724
725    if (pkt->req->isCondSwap()) {
726        if (pkt->getSize() == sizeof(uint64_t)) {
727            condition_val64 = pkt->req->getExtraData();
728            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
729                                         sizeof(uint64_t));
730        } else if (pkt->getSize() == sizeof(uint32_t)) {
731            condition_val32 = (uint32_t)pkt->req->getExtraData();
732            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
733                                         sizeof(uint32_t));
734        } else
735            panic("Invalid size for conditional read/write\n");
736    }
737
738    if (overwrite_mem) {
739        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
740        blk->status |= BlkDirty;
741    }
742}
743
744QueueEntry*
745BaseCache::getNextQueueEntry()
746{
747    // Check both MSHR queue and write buffer for potential requests,
748    // note that null does not mean there is no request, it could
749    // simply be that it is not ready
750    MSHR *miss_mshr  = mshrQueue.getNext();
751    WriteQueueEntry *wq_entry = writeBuffer.getNext();
752
753    // If we got a write buffer request ready, first priority is a
754    // full write buffer, otherwise we favour the miss requests
755    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
756        // need to search MSHR queue for conflicting earlier miss.
757        MSHR *conflict_mshr =
758            mshrQueue.findPending(wq_entry->blkAddr,
759                                  wq_entry->isSecure);
760
761        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
762            // Service misses in order until conflict is cleared.
763            return conflict_mshr;
764
765            // @todo Note that we ignore the ready time of the conflict here
766        }
767
768        // No conflicts; issue write
769        return wq_entry;
770    } else if (miss_mshr) {
771        // need to check for conflicting earlier writeback
772        WriteQueueEntry *conflict_mshr =
773            writeBuffer.findPending(miss_mshr->blkAddr,
774                                    miss_mshr->isSecure);
775        if (conflict_mshr) {
776            // not sure why we don't check order here... it was in the
777            // original code but commented out.
778
779            // The only way this happens is if we are
780            // doing a write and we didn't have permissions
781            // then subsequently saw a writeback (owned got evicted)
782            // We need to make sure to perform the writeback first
783            // To preserve the dirty data, then we can issue the write
784
785            // should we return wq_entry here instead?  I.e. do we
786            // have to flush writes in order?  I don't think so... not
787            // for Alpha anyway.  Maybe for x86?
788            return conflict_mshr;
789
790            // @todo Note that we ignore the ready time of the conflict here
791        }
792
793        // No conflicts; issue read
794        return miss_mshr;
795    }
796
797    // fall through... no pending requests.  Try a prefetch.
798    assert(!miss_mshr && !wq_entry);
799    if (prefetcher && mshrQueue.canPrefetch()) {
800        // If we have a miss queue slot, we can try a prefetch
801        PacketPtr pkt = prefetcher->getPacket();
802        if (pkt) {
803            Addr pf_addr = pkt->getBlockAddr(blkSize);
804            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
805                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
806                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
807                // Update statistic on number of prefetches issued
808                // (hwpf_mshr_misses)
809                assert(pkt->req->masterId() < system->maxMasters());
810                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
811
812                // allocate an MSHR and return it, note
813                // that we send the packet straight away, so do not
814                // schedule the send
815                return allocateMissBuffer(pkt, curTick(), false);
816            } else {
817                // free the request and packet
818                delete pkt;
819            }
820        }
821    }
822
823    return nullptr;
824}
825
826void
827BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
828{
829    assert(pkt->isRequest());
830
831    assert(blk && blk->isValid());
832    // Occasionally this is not true... if we are a lower-level cache
833    // satisfying a string of Read and ReadEx requests from
834    // upper-level caches, a Read will mark the block as shared but we
835    // can satisfy a following ReadEx anyway since we can rely on the
836    // Read requester(s) to have buffered the ReadEx snoop and to
837    // invalidate their blocks after receiving them.
838    // assert(!pkt->needsWritable() || blk->isWritable());
839    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
840
841    // Check RMW operations first since both isRead() and
842    // isWrite() will be true for them
843    if (pkt->cmd == MemCmd::SwapReq) {
844        if (pkt->isAtomicOp()) {
845            // extract data from cache and save it into the data field in
846            // the packet as a return value from this atomic op
847
848            int offset = tags->extractBlkOffset(pkt->getAddr());
849            uint8_t *blk_data = blk->data + offset;
850            std::memcpy(pkt->getPtr<uint8_t>(), blk_data, pkt->getSize());
851
852            // execute AMO operation
853            (*(pkt->getAtomicOp()))(blk_data);
854
855            // set block status to dirty
856            blk->status |= BlkDirty;
857        } else {
858            cmpAndSwap(blk, pkt);
859        }
860    } else if (pkt->isWrite()) {
861        // we have the block in a writable state and can go ahead,
862        // note that the line may be also be considered writable in
863        // downstream caches along the path to memory, but always
864        // Exclusive, and never Modified
865        assert(blk->isWritable());
866        // Write or WriteLine at the first cache with block in writable state
867        if (blk->checkWrite(pkt)) {
868            pkt->writeDataToBlock(blk->data, blkSize);
869        }
870        // Always mark the line as dirty (and thus transition to the
871        // Modified state) even if we are a failed StoreCond so we
872        // supply data to any snoops that have appended themselves to
873        // this cache before knowing the store will fail.
874        blk->status |= BlkDirty;
875        DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
876    } else if (pkt->isRead()) {
877        if (pkt->isLLSC()) {
878            blk->trackLoadLocked(pkt);
879        }
880
881        // all read responses have a data payload
882        assert(pkt->hasRespData());
883        pkt->setDataFromBlock(blk->data, blkSize);
884    } else if (pkt->isUpgrade()) {
885        // sanity check
886        assert(!pkt->hasSharers());
887
888        if (blk->isDirty()) {
889            // we were in the Owned state, and a cache above us that
890            // has the line in Shared state needs to be made aware
891            // that the data it already has is in fact dirty
892            pkt->setCacheResponding();
893            blk->status &= ~BlkDirty;
894        }
895    } else if (pkt->isClean()) {
896        blk->status &= ~BlkDirty;
897    } else {
898        assert(pkt->isInvalidate());
899        invalidateBlock(blk);
900        DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
901                pkt->print());
902    }
903}
904
905/////////////////////////////////////////////////////
906//
907// Access path: requests coming in from the CPU side
908//
909/////////////////////////////////////////////////////
910
911bool
912BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
913                  PacketList &writebacks)
914{
915    // sanity check
916    assert(pkt->isRequest());
917
918    chatty_assert(!(isReadOnly && pkt->isWrite()),
919                  "Should never see a write in a read-only cache %s\n",
920                  name());
921
922    // Here lat is the value passed as parameter to accessBlock() function
923    // that can modify its value.
924    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat);
925
926    DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
927            blk ? "hit " + blk->print() : "miss");
928
929    if (pkt->req->isCacheMaintenance()) {
930        // A cache maintenance operation is always forwarded to the
931        // memory below even if the block is found in dirty state.
932
933        // We defer any changes to the state of the block until we
934        // create and mark as in service the mshr for the downstream
935        // packet.
936        return false;
937    }
938
939    if (pkt->isEviction()) {
940        // We check for presence of block in above caches before issuing
941        // Writeback or CleanEvict to write buffer. Therefore the only
942        // possible cases can be of a CleanEvict packet coming from above
943        // encountering a Writeback generated in this cache peer cache and
944        // waiting in the write buffer. Cases of upper level peer caches
945        // generating CleanEvict and Writeback or simply CleanEvict and
946        // CleanEvict almost simultaneously will be caught by snoops sent out
947        // by crossbar.
948        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
949                                                          pkt->isSecure());
950        if (wb_entry) {
951            assert(wb_entry->getNumTargets() == 1);
952            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
953            assert(wbPkt->isWriteback());
954
955            if (pkt->isCleanEviction()) {
956                // The CleanEvict and WritebackClean snoops into other
957                // peer caches of the same level while traversing the
958                // crossbar. If a copy of the block is found, the
959                // packet is deleted in the crossbar. Hence, none of
960                // the other upper level caches connected to this
961                // cache have the block, so we can clear the
962                // BLOCK_CACHED flag in the Writeback if set and
963                // discard the CleanEvict by returning true.
964                wbPkt->clearBlockCached();
965                return true;
966            } else {
967                assert(pkt->cmd == MemCmd::WritebackDirty);
968                // Dirty writeback from above trumps our clean
969                // writeback... discard here
970                // Note: markInService will remove entry from writeback buffer.
971                markInService(wb_entry);
972                delete wbPkt;
973            }
974        }
975    }
976
977    // Writeback handling is special case.  We can write the block into
978    // the cache without having a writeable copy (or any copy at all).
979    if (pkt->isWriteback()) {
980        assert(blkSize == pkt->getSize());
981
982        // we could get a clean writeback while we are having
983        // outstanding accesses to a block, do the simple thing for
984        // now and drop the clean writeback so that we do not upset
985        // any ordering/decisions about ownership already taken
986        if (pkt->cmd == MemCmd::WritebackClean &&
987            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
988            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
989                    "dropping\n", pkt->getAddr());
990            return true;
991        }
992
993        if (!blk) {
994            // need to do a replacement
995            blk = allocateBlock(pkt, writebacks);
996            if (!blk) {
997                // no replaceable block available: give up, fwd to next level.
998                incMissCount(pkt);
999                return false;
1000            }
1001
1002            blk->status |= (BlkValid | BlkReadable);
1003        }
1004        // only mark the block dirty if we got a writeback command,
1005        // and leave it as is for a clean writeback
1006        if (pkt->cmd == MemCmd::WritebackDirty) {
1007            // TODO: the coherent cache can assert(!blk->isDirty());
1008            blk->status |= BlkDirty;
1009        }
1010        // if the packet does not have sharers, it is passing
1011        // writable, and we got the writeback in Modified or Exclusive
1012        // state, if not we are in the Owned or Shared state
1013        if (!pkt->hasSharers()) {
1014            blk->status |= BlkWritable;
1015        }
1016        // nothing else to do; writeback doesn't expect response
1017        assert(!pkt->needsResponse());
1018        pkt->writeDataToBlock(blk->data, blkSize);
1019        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1020        incHitCount(pkt);
1021        // populate the time when the block will be ready to access.
1022        blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
1023            pkt->payloadDelay;
1024        return true;
1025    } else if (pkt->cmd == MemCmd::CleanEvict) {
1026        if (blk) {
1027            // Found the block in the tags, need to stop CleanEvict from
1028            // propagating further down the hierarchy. Returning true will
1029            // treat the CleanEvict like a satisfied write request and delete
1030            // it.
1031            return true;
1032        }
1033        // We didn't find the block here, propagate the CleanEvict further
1034        // down the memory hierarchy. Returning false will treat the CleanEvict
1035        // like a Writeback which could not find a replaceable block so has to
1036        // go to next level.
1037        return false;
1038    } else if (pkt->cmd == MemCmd::WriteClean) {
1039        // WriteClean handling is a special case. We can allocate a
1040        // block directly if it doesn't exist and we can update the
1041        // block immediately. The WriteClean transfers the ownership
1042        // of the block as well.
1043        assert(blkSize == pkt->getSize());
1044
1045        if (!blk) {
1046            if (pkt->writeThrough()) {
1047                // if this is a write through packet, we don't try to
1048                // allocate if the block is not present
1049                return false;
1050            } else {
1051                // a writeback that misses needs to allocate a new block
1052                blk = allocateBlock(pkt, writebacks);
1053                if (!blk) {
1054                    // no replaceable block available: give up, fwd to
1055                    // next level.
1056                    incMissCount(pkt);
1057                    return false;
1058                }
1059
1060                blk->status |= (BlkValid | BlkReadable);
1061            }
1062        }
1063
1064        // at this point either this is a writeback or a write-through
1065        // write clean operation and the block is already in this
1066        // cache, we need to update the data and the block flags
1067        assert(blk);
1068        // TODO: the coherent cache can assert(!blk->isDirty());
1069        if (!pkt->writeThrough()) {
1070            blk->status |= BlkDirty;
1071        }
1072        // nothing else to do; writeback doesn't expect response
1073        assert(!pkt->needsResponse());
1074        pkt->writeDataToBlock(blk->data, blkSize);
1075        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1076
1077        incHitCount(pkt);
1078        // populate the time when the block will be ready to access.
1079        blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
1080            pkt->payloadDelay;
1081        // if this a write-through packet it will be sent to cache
1082        // below
1083        return !pkt->writeThrough();
1084    } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
1085                       blk->isReadable())) {
1086        // OK to satisfy access
1087        incHitCount(pkt);
1088        satisfyRequest(pkt, blk);
1089        maintainClusivity(pkt->fromCache(), blk);
1090
1091        return true;
1092    }
1093
1094    // Can't satisfy access normally... either no block (blk == nullptr)
1095    // or have block but need writable
1096
1097    incMissCount(pkt);
1098
1099    if (!blk && pkt->isLLSC() && pkt->isWrite()) {
1100        // complete miss on store conditional... just give up now
1101        pkt->req->setExtraData(0);
1102        return true;
1103    }
1104
1105    return false;
1106}
1107
1108void
1109BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
1110{
1111    if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
1112        clusivity == Enums::mostly_excl) {
1113        // if we have responded to a cache, and our block is still
1114        // valid, but not dirty, and this cache is mostly exclusive
1115        // with respect to the cache above, drop the block
1116        invalidateBlock(blk);
1117    }
1118}
1119
1120CacheBlk*
1121BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1122                      bool allocate)
1123{
1124    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1125    Addr addr = pkt->getAddr();
1126    bool is_secure = pkt->isSecure();
1127#if TRACING_ON
1128    CacheBlk::State old_state = blk ? blk->status : 0;
1129#endif
1130
1131    // When handling a fill, we should have no writes to this line.
1132    assert(addr == pkt->getBlockAddr(blkSize));
1133    assert(!writeBuffer.findMatch(addr, is_secure));
1134
1135    if (!blk) {
1136        // better have read new data...
1137        assert(pkt->hasData());
1138
1139        // only read responses and write-line requests have data;
1140        // note that we don't write the data here for write-line - that
1141        // happens in the subsequent call to satisfyRequest
1142        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1143
1144        // need to do a replacement if allocating, otherwise we stick
1145        // with the temporary storage
1146        blk = allocate ? allocateBlock(pkt, writebacks) : nullptr;
1147
1148        if (!blk) {
1149            // No replaceable block or a mostly exclusive
1150            // cache... just use temporary storage to complete the
1151            // current request and then get rid of it
1152            assert(!tempBlock->isValid());
1153            blk = tempBlock;
1154            tempBlock->insert(addr, is_secure);
1155            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1156                    is_secure ? "s" : "ns");
1157        }
1158
1159        // we should never be overwriting a valid block
1160        assert(!blk->isValid());
1161    } else {
1162        // existing block... probably an upgrade
1163        assert(regenerateBlkAddr(blk) == addr);
1164        assert(blk->isSecure() == is_secure);
1165        // either we're getting new data or the block should already be valid
1166        assert(pkt->hasData() || blk->isValid());
1167        // don't clear block status... if block is already dirty we
1168        // don't want to lose that
1169    }
1170
1171    blk->status |= BlkValid | BlkReadable;
1172
1173    // sanity check for whole-line writes, which should always be
1174    // marked as writable as part of the fill, and then later marked
1175    // dirty as part of satisfyRequest
1176    if (pkt->cmd == MemCmd::WriteLineReq) {
1177        assert(!pkt->hasSharers());
1178    }
1179
1180    // here we deal with setting the appropriate state of the line,
1181    // and we start by looking at the hasSharers flag, and ignore the
1182    // cacheResponding flag (normally signalling dirty data) if the
1183    // packet has sharers, thus the line is never allocated as Owned
1184    // (dirty but not writable), and always ends up being either
1185    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1186    // for more details
1187    if (!pkt->hasSharers()) {
1188        // we could get a writable line from memory (rather than a
1189        // cache) even in a read-only cache, note that we set this bit
1190        // even for a read-only cache, possibly revisit this decision
1191        blk->status |= BlkWritable;
1192
1193        // check if we got this via cache-to-cache transfer (i.e., from a
1194        // cache that had the block in Modified or Owned state)
1195        if (pkt->cacheResponding()) {
1196            // we got the block in Modified state, and invalidated the
1197            // owners copy
1198            blk->status |= BlkDirty;
1199
1200            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1201                          "in read-only cache %s\n", name());
1202        }
1203    }
1204
1205    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1206            addr, is_secure ? "s" : "ns", old_state, blk->print());
1207
1208    // if we got new data, copy it in (checking for a read response
1209    // and a response that has data is the same in the end)
1210    if (pkt->isRead()) {
1211        // sanity checks
1212        assert(pkt->hasData());
1213        assert(pkt->getSize() == blkSize);
1214
1215        pkt->writeDataToBlock(blk->data, blkSize);
1216    }
1217    // We pay for fillLatency here.
1218    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1219        pkt->payloadDelay;
1220
1221    return blk;
1222}
1223
1224CacheBlk*
1225BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks)
1226{
1227    // Get address
1228    const Addr addr = pkt->getAddr();
1229
1230    // Get secure bit
1231    const bool is_secure = pkt->isSecure();
1232
1233    // Find replacement victim
1234    std::vector<CacheBlk*> evict_blks;
1235    CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks);
1236
1237    // It is valid to return nullptr if there is no victim
1238    if (!victim)
1239        return nullptr;
1240
1241    // Print victim block's information
1242    DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print());
1243
1244    // Check for transient state allocations. If any of the entries listed
1245    // for eviction has a transient state, the allocation fails
1246    for (const auto& blk : evict_blks) {
1247        if (blk->isValid()) {
1248            Addr repl_addr = regenerateBlkAddr(blk);
1249            MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1250            if (repl_mshr) {
1251                // must be an outstanding upgrade or clean request
1252                // on a block we're about to replace...
1253                assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1254                       repl_mshr->isCleaning());
1255
1256                // too hard to replace block with transient state
1257                // allocation failed, block not inserted
1258                return nullptr;
1259            }
1260        }
1261    }
1262
1263    // The victim will be replaced by a new entry, so increase the replacement
1264    // counter if a valid block is being replaced
1265    if (victim->isValid()) {
1266        DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1267                "(%s): %s\n", regenerateBlkAddr(victim),
1268                victim->isSecure() ? "s" : "ns",
1269                addr, is_secure ? "s" : "ns",
1270                victim->isDirty() ? "writeback" : "clean");
1271
1272        replacements++;
1273    }
1274
1275    // Evict valid blocks associated to this victim block
1276    for (const auto& blk : evict_blks) {
1277        if (blk->isValid()) {
1278            if (blk->wasPrefetched()) {
1279                unusedPrefetches++;
1280            }
1281
1282            evictBlock(blk, writebacks);
1283        }
1284    }
1285
1286    // Insert new block at victimized entry
1287    tags->insertBlock(addr, is_secure, pkt->req->masterId(),
1288                      pkt->req->taskId(), victim);
1289
1290    return victim;
1291}
1292
1293void
1294BaseCache::invalidateBlock(CacheBlk *blk)
1295{
1296    if (blk != tempBlock)
1297        tags->invalidate(blk);
1298    blk->invalidate();
1299}
1300
1301PacketPtr
1302BaseCache::writebackBlk(CacheBlk *blk)
1303{
1304    chatty_assert(!isReadOnly || writebackClean,
1305                  "Writeback from read-only cache");
1306    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1307
1308    writebacks[Request::wbMasterId]++;
1309
1310    RequestPtr req = std::make_shared<Request>(
1311        regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1312
1313    if (blk->isSecure())
1314        req->setFlags(Request::SECURE);
1315
1316    req->taskId(blk->task_id);
1317
1318    PacketPtr pkt =
1319        new Packet(req, blk->isDirty() ?
1320                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1321
1322    DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1323            pkt->print(), blk->isWritable(), blk->isDirty());
1324
1325    if (blk->isWritable()) {
1326        // not asserting shared means we pass the block in modified
1327        // state, mark our own block non-writeable
1328        blk->status &= ~BlkWritable;
1329    } else {
1330        // we are in the Owned state, tell the receiver
1331        pkt->setHasSharers();
1332    }
1333
1334    // make sure the block is not marked dirty
1335    blk->status &= ~BlkDirty;
1336
1337    pkt->allocate();
1338    pkt->setDataFromBlock(blk->data, blkSize);
1339
1340    return pkt;
1341}
1342
1343PacketPtr
1344BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1345{
1346    RequestPtr req = std::make_shared<Request>(
1347        regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1348
1349    if (blk->isSecure()) {
1350        req->setFlags(Request::SECURE);
1351    }
1352    req->taskId(blk->task_id);
1353
1354    PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1355
1356    if (dest) {
1357        req->setFlags(dest);
1358        pkt->setWriteThrough();
1359    }
1360
1361    DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1362            blk->isWritable(), blk->isDirty());
1363
1364    if (blk->isWritable()) {
1365        // not asserting shared means we pass the block in modified
1366        // state, mark our own block non-writeable
1367        blk->status &= ~BlkWritable;
1368    } else {
1369        // we are in the Owned state, tell the receiver
1370        pkt->setHasSharers();
1371    }
1372
1373    // make sure the block is not marked dirty
1374    blk->status &= ~BlkDirty;
1375
1376    pkt->allocate();
1377    pkt->setDataFromBlock(blk->data, blkSize);
1378
1379    return pkt;
1380}
1381
1382
1383void
1384BaseCache::memWriteback()
1385{
1386    tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
1387}
1388
1389void
1390BaseCache::memInvalidate()
1391{
1392    tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
1393}
1394
1395bool
1396BaseCache::isDirty() const
1397{
1398    return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
1399}
1400
1401void
1402BaseCache::writebackVisitor(CacheBlk &blk)
1403{
1404    if (blk.isDirty()) {
1405        assert(blk.isValid());
1406
1407        RequestPtr request = std::make_shared<Request>(
1408            regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId);
1409
1410        request->taskId(blk.task_id);
1411        if (blk.isSecure()) {
1412            request->setFlags(Request::SECURE);
1413        }
1414
1415        Packet packet(request, MemCmd::WriteReq);
1416        packet.dataStatic(blk.data);
1417
1418        memSidePort.sendFunctional(&packet);
1419
1420        blk.status &= ~BlkDirty;
1421    }
1422}
1423
1424void
1425BaseCache::invalidateVisitor(CacheBlk &blk)
1426{
1427    if (blk.isDirty())
1428        warn_once("Invalidating dirty cache lines. " \
1429                  "Expect things to break.\n");
1430
1431    if (blk.isValid()) {
1432        assert(!blk.isDirty());
1433        invalidateBlock(&blk);
1434    }
1435}
1436
1437Tick
1438BaseCache::nextQueueReadyTime() const
1439{
1440    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
1441                              writeBuffer.nextReadyTime());
1442
1443    // Don't signal prefetch ready time if no MSHRs available
1444    // Will signal once enoguh MSHRs are deallocated
1445    if (prefetcher && mshrQueue.canPrefetch()) {
1446        nextReady = std::min(nextReady,
1447                             prefetcher->nextPrefetchReadyTime());
1448    }
1449
1450    return nextReady;
1451}
1452
1453
1454bool
1455BaseCache::sendMSHRQueuePacket(MSHR* mshr)
1456{
1457    assert(mshr);
1458
1459    // use request from 1st target
1460    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1461
1462    DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1463
1464    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
1465
1466    // either a prefetch that is not present upstream, or a normal
1467    // MSHR request, proceed to get the packet to send downstream
1468    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
1469
1470    mshr->isForward = (pkt == nullptr);
1471
1472    if (mshr->isForward) {
1473        // not a cache block request, but a response is expected
1474        // make copy of current packet to forward, keep current
1475        // copy for response handling
1476        pkt = new Packet(tgt_pkt, false, true);
1477        assert(!pkt->isWrite());
1478    }
1479
1480    // play it safe and append (rather than set) the sender state,
1481    // as forwarded packets may already have existing state
1482    pkt->pushSenderState(mshr);
1483
1484    if (pkt->isClean() && blk && blk->isDirty()) {
1485        // A cache clean opearation is looking for a dirty block. Mark
1486        // the packet so that the destination xbar can determine that
1487        // there will be a follow-up write packet as well.
1488        pkt->setSatisfied();
1489    }
1490
1491    if (!memSidePort.sendTimingReq(pkt)) {
1492        // we are awaiting a retry, but we
1493        // delete the packet and will be creating a new packet
1494        // when we get the opportunity
1495        delete pkt;
1496
1497        // note that we have now masked any requestBus and
1498        // schedSendEvent (we will wait for a retry before
1499        // doing anything), and this is so even if we do not
1500        // care about this packet and might override it before
1501        // it gets retried
1502        return true;
1503    } else {
1504        // As part of the call to sendTimingReq the packet is
1505        // forwarded to all neighbouring caches (and any caches
1506        // above them) as a snoop. Thus at this point we know if
1507        // any of the neighbouring caches are responding, and if
1508        // so, we know it is dirty, and we can determine if it is
1509        // being passed as Modified, making our MSHR the ordering
1510        // point
1511        bool pending_modified_resp = !pkt->hasSharers() &&
1512            pkt->cacheResponding();
1513        markInService(mshr, pending_modified_resp);
1514
1515        if (pkt->isClean() && blk && blk->isDirty()) {
1516            // A cache clean opearation is looking for a dirty
1517            // block. If a dirty block is encountered a WriteClean
1518            // will update any copies to the path to the memory
1519            // until the point of reference.
1520            DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1521                    __func__, pkt->print(), blk->print());
1522            PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
1523                                             pkt->id);
1524            PacketList writebacks;
1525            writebacks.push_back(wb_pkt);
1526            doWritebacks(writebacks, 0);
1527        }
1528
1529        return false;
1530    }
1531}
1532
1533bool
1534BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
1535{
1536    assert(wq_entry);
1537
1538    // always a single target for write queue entries
1539    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
1540
1541    DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
1542
1543    // forward as is, both for evictions and uncacheable writes
1544    if (!memSidePort.sendTimingReq(tgt_pkt)) {
1545        // note that we have now masked any requestBus and
1546        // schedSendEvent (we will wait for a retry before
1547        // doing anything), and this is so even if we do not
1548        // care about this packet and might override it before
1549        // it gets retried
1550        return true;
1551    } else {
1552        markInService(wq_entry);
1553        return false;
1554    }
1555}
1556
1557void
1558BaseCache::serialize(CheckpointOut &cp) const
1559{
1560    bool dirty(isDirty());
1561
1562    if (dirty) {
1563        warn("*** The cache still contains dirty data. ***\n");
1564        warn("    Make sure to drain the system using the correct flags.\n");
1565        warn("    This checkpoint will not restore correctly " \
1566             "and dirty data in the cache will be lost!\n");
1567    }
1568
1569    // Since we don't checkpoint the data in the cache, any dirty data
1570    // will be lost when restoring from a checkpoint of a system that
1571    // wasn't drained properly. Flag the checkpoint as invalid if the
1572    // cache contains dirty data.
1573    bool bad_checkpoint(dirty);
1574    SERIALIZE_SCALAR(bad_checkpoint);
1575}
1576
1577void
1578BaseCache::unserialize(CheckpointIn &cp)
1579{
1580    bool bad_checkpoint;
1581    UNSERIALIZE_SCALAR(bad_checkpoint);
1582    if (bad_checkpoint) {
1583        fatal("Restoring from checkpoints with dirty caches is not "
1584              "supported in the classic memory system. Please remove any "
1585              "caches or drain them properly before taking checkpoints.\n");
1586    }
1587}
1588
1589void
1590BaseCache::regStats()
1591{
1592    MemObject::regStats();
1593
1594    using namespace Stats;
1595
1596    // Hit statistics
1597    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1598        MemCmd cmd(access_idx);
1599        const string &cstr = cmd.toString();
1600
1601        hits[access_idx]
1602            .init(system->maxMasters())
1603            .name(name() + "." + cstr + "_hits")
1604            .desc("number of " + cstr + " hits")
1605            .flags(total | nozero | nonan)
1606            ;
1607        for (int i = 0; i < system->maxMasters(); i++) {
1608            hits[access_idx].subname(i, system->getMasterName(i));
1609        }
1610    }
1611
1612// These macros make it easier to sum the right subset of commands and
1613// to change the subset of commands that are considered "demand" vs
1614// "non-demand"
1615#define SUM_DEMAND(s) \
1616    (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
1617     s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
1618
1619// should writebacks be included here?  prior code was inconsistent...
1620#define SUM_NON_DEMAND(s) \
1621    (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq])
1622
1623    demandHits
1624        .name(name() + ".demand_hits")
1625        .desc("number of demand (read+write) hits")
1626        .flags(total | nozero | nonan)
1627        ;
1628    demandHits = SUM_DEMAND(hits);
1629    for (int i = 0; i < system->maxMasters(); i++) {
1630        demandHits.subname(i, system->getMasterName(i));
1631    }
1632
1633    overallHits
1634        .name(name() + ".overall_hits")
1635        .desc("number of overall hits")
1636        .flags(total | nozero | nonan)
1637        ;
1638    overallHits = demandHits + SUM_NON_DEMAND(hits);
1639    for (int i = 0; i < system->maxMasters(); i++) {
1640        overallHits.subname(i, system->getMasterName(i));
1641    }
1642
1643    // Miss statistics
1644    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1645        MemCmd cmd(access_idx);
1646        const string &cstr = cmd.toString();
1647
1648        misses[access_idx]
1649            .init(system->maxMasters())
1650            .name(name() + "." + cstr + "_misses")
1651            .desc("number of " + cstr + " misses")
1652            .flags(total | nozero | nonan)
1653            ;
1654        for (int i = 0; i < system->maxMasters(); i++) {
1655            misses[access_idx].subname(i, system->getMasterName(i));
1656        }
1657    }
1658
1659    demandMisses
1660        .name(name() + ".demand_misses")
1661        .desc("number of demand (read+write) misses")
1662        .flags(total | nozero | nonan)
1663        ;
1664    demandMisses = SUM_DEMAND(misses);
1665    for (int i = 0; i < system->maxMasters(); i++) {
1666        demandMisses.subname(i, system->getMasterName(i));
1667    }
1668
1669    overallMisses
1670        .name(name() + ".overall_misses")
1671        .desc("number of overall misses")
1672        .flags(total | nozero | nonan)
1673        ;
1674    overallMisses = demandMisses + SUM_NON_DEMAND(misses);
1675    for (int i = 0; i < system->maxMasters(); i++) {
1676        overallMisses.subname(i, system->getMasterName(i));
1677    }
1678
1679    // Miss latency statistics
1680    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1681        MemCmd cmd(access_idx);
1682        const string &cstr = cmd.toString();
1683
1684        missLatency[access_idx]
1685            .init(system->maxMasters())
1686            .name(name() + "." + cstr + "_miss_latency")
1687            .desc("number of " + cstr + " miss cycles")
1688            .flags(total | nozero | nonan)
1689            ;
1690        for (int i = 0; i < system->maxMasters(); i++) {
1691            missLatency[access_idx].subname(i, system->getMasterName(i));
1692        }
1693    }
1694
1695    demandMissLatency
1696        .name(name() + ".demand_miss_latency")
1697        .desc("number of demand (read+write) miss cycles")
1698        .flags(total | nozero | nonan)
1699        ;
1700    demandMissLatency = SUM_DEMAND(missLatency);
1701    for (int i = 0; i < system->maxMasters(); i++) {
1702        demandMissLatency.subname(i, system->getMasterName(i));
1703    }
1704
1705    overallMissLatency
1706        .name(name() + ".overall_miss_latency")
1707        .desc("number of overall miss cycles")
1708        .flags(total | nozero | nonan)
1709        ;
1710    overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
1711    for (int i = 0; i < system->maxMasters(); i++) {
1712        overallMissLatency.subname(i, system->getMasterName(i));
1713    }
1714
1715    // access formulas
1716    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1717        MemCmd cmd(access_idx);
1718        const string &cstr = cmd.toString();
1719
1720        accesses[access_idx]
1721            .name(name() + "." + cstr + "_accesses")
1722            .desc("number of " + cstr + " accesses(hits+misses)")
1723            .flags(total | nozero | nonan)
1724            ;
1725        accesses[access_idx] = hits[access_idx] + misses[access_idx];
1726
1727        for (int i = 0; i < system->maxMasters(); i++) {
1728            accesses[access_idx].subname(i, system->getMasterName(i));
1729        }
1730    }
1731
1732    demandAccesses
1733        .name(name() + ".demand_accesses")
1734        .desc("number of demand (read+write) accesses")
1735        .flags(total | nozero | nonan)
1736        ;
1737    demandAccesses = demandHits + demandMisses;
1738    for (int i = 0; i < system->maxMasters(); i++) {
1739        demandAccesses.subname(i, system->getMasterName(i));
1740    }
1741
1742    overallAccesses
1743        .name(name() + ".overall_accesses")
1744        .desc("number of overall (read+write) accesses")
1745        .flags(total | nozero | nonan)
1746        ;
1747    overallAccesses = overallHits + overallMisses;
1748    for (int i = 0; i < system->maxMasters(); i++) {
1749        overallAccesses.subname(i, system->getMasterName(i));
1750    }
1751
1752    // miss rate formulas
1753    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1754        MemCmd cmd(access_idx);
1755        const string &cstr = cmd.toString();
1756
1757        missRate[access_idx]
1758            .name(name() + "." + cstr + "_miss_rate")
1759            .desc("miss rate for " + cstr + " accesses")
1760            .flags(total | nozero | nonan)
1761            ;
1762        missRate[access_idx] = misses[access_idx] / accesses[access_idx];
1763
1764        for (int i = 0; i < system->maxMasters(); i++) {
1765            missRate[access_idx].subname(i, system->getMasterName(i));
1766        }
1767    }
1768
1769    demandMissRate
1770        .name(name() + ".demand_miss_rate")
1771        .desc("miss rate for demand accesses")
1772        .flags(total | nozero | nonan)
1773        ;
1774    demandMissRate = demandMisses / demandAccesses;
1775    for (int i = 0; i < system->maxMasters(); i++) {
1776        demandMissRate.subname(i, system->getMasterName(i));
1777    }
1778
1779    overallMissRate
1780        .name(name() + ".overall_miss_rate")
1781        .desc("miss rate for overall accesses")
1782        .flags(total | nozero | nonan)
1783        ;
1784    overallMissRate = overallMisses / overallAccesses;
1785    for (int i = 0; i < system->maxMasters(); i++) {
1786        overallMissRate.subname(i, system->getMasterName(i));
1787    }
1788
1789    // miss latency formulas
1790    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1791        MemCmd cmd(access_idx);
1792        const string &cstr = cmd.toString();
1793
1794        avgMissLatency[access_idx]
1795            .name(name() + "." + cstr + "_avg_miss_latency")
1796            .desc("average " + cstr + " miss latency")
1797            .flags(total | nozero | nonan)
1798            ;
1799        avgMissLatency[access_idx] =
1800            missLatency[access_idx] / misses[access_idx];
1801
1802        for (int i = 0; i < system->maxMasters(); i++) {
1803            avgMissLatency[access_idx].subname(i, system->getMasterName(i));
1804        }
1805    }
1806
1807    demandAvgMissLatency
1808        .name(name() + ".demand_avg_miss_latency")
1809        .desc("average overall miss latency")
1810        .flags(total | nozero | nonan)
1811        ;
1812    demandAvgMissLatency = demandMissLatency / demandMisses;
1813    for (int i = 0; i < system->maxMasters(); i++) {
1814        demandAvgMissLatency.subname(i, system->getMasterName(i));
1815    }
1816
1817    overallAvgMissLatency
1818        .name(name() + ".overall_avg_miss_latency")
1819        .desc("average overall miss latency")
1820        .flags(total | nozero | nonan)
1821        ;
1822    overallAvgMissLatency = overallMissLatency / overallMisses;
1823    for (int i = 0; i < system->maxMasters(); i++) {
1824        overallAvgMissLatency.subname(i, system->getMasterName(i));
1825    }
1826
1827    blocked_cycles.init(NUM_BLOCKED_CAUSES);
1828    blocked_cycles
1829        .name(name() + ".blocked_cycles")
1830        .desc("number of cycles access was blocked")
1831        .subname(Blocked_NoMSHRs, "no_mshrs")
1832        .subname(Blocked_NoTargets, "no_targets")
1833        ;
1834
1835
1836    blocked_causes.init(NUM_BLOCKED_CAUSES);
1837    blocked_causes
1838        .name(name() + ".blocked")
1839        .desc("number of cycles access was blocked")
1840        .subname(Blocked_NoMSHRs, "no_mshrs")
1841        .subname(Blocked_NoTargets, "no_targets")
1842        ;
1843
1844    avg_blocked
1845        .name(name() + ".avg_blocked_cycles")
1846        .desc("average number of cycles each access was blocked")
1847        .subname(Blocked_NoMSHRs, "no_mshrs")
1848        .subname(Blocked_NoTargets, "no_targets")
1849        ;
1850
1851    avg_blocked = blocked_cycles / blocked_causes;
1852
1853    unusedPrefetches
1854        .name(name() + ".unused_prefetches")
1855        .desc("number of HardPF blocks evicted w/o reference")
1856        .flags(nozero)
1857        ;
1858
1859    writebacks
1860        .init(system->maxMasters())
1861        .name(name() + ".writebacks")
1862        .desc("number of writebacks")
1863        .flags(total | nozero | nonan)
1864        ;
1865    for (int i = 0; i < system->maxMasters(); i++) {
1866        writebacks.subname(i, system->getMasterName(i));
1867    }
1868
1869    // MSHR statistics
1870    // MSHR hit statistics
1871    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1872        MemCmd cmd(access_idx);
1873        const string &cstr = cmd.toString();
1874
1875        mshr_hits[access_idx]
1876            .init(system->maxMasters())
1877            .name(name() + "." + cstr + "_mshr_hits")
1878            .desc("number of " + cstr + " MSHR hits")
1879            .flags(total | nozero | nonan)
1880            ;
1881        for (int i = 0; i < system->maxMasters(); i++) {
1882            mshr_hits[access_idx].subname(i, system->getMasterName(i));
1883        }
1884    }
1885
1886    demandMshrHits
1887        .name(name() + ".demand_mshr_hits")
1888        .desc("number of demand (read+write) MSHR hits")
1889        .flags(total | nozero | nonan)
1890        ;
1891    demandMshrHits = SUM_DEMAND(mshr_hits);
1892    for (int i = 0; i < system->maxMasters(); i++) {
1893        demandMshrHits.subname(i, system->getMasterName(i));
1894    }
1895
1896    overallMshrHits
1897        .name(name() + ".overall_mshr_hits")
1898        .desc("number of overall MSHR hits")
1899        .flags(total | nozero | nonan)
1900        ;
1901    overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
1902    for (int i = 0; i < system->maxMasters(); i++) {
1903        overallMshrHits.subname(i, system->getMasterName(i));
1904    }
1905
1906    // MSHR miss statistics
1907    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1908        MemCmd cmd(access_idx);
1909        const string &cstr = cmd.toString();
1910
1911        mshr_misses[access_idx]
1912            .init(system->maxMasters())
1913            .name(name() + "." + cstr + "_mshr_misses")
1914            .desc("number of " + cstr + " MSHR misses")
1915            .flags(total | nozero | nonan)
1916            ;
1917        for (int i = 0; i < system->maxMasters(); i++) {
1918            mshr_misses[access_idx].subname(i, system->getMasterName(i));
1919        }
1920    }
1921
1922    demandMshrMisses
1923        .name(name() + ".demand_mshr_misses")
1924        .desc("number of demand (read+write) MSHR misses")
1925        .flags(total | nozero | nonan)
1926        ;
1927    demandMshrMisses = SUM_DEMAND(mshr_misses);
1928    for (int i = 0; i < system->maxMasters(); i++) {
1929        demandMshrMisses.subname(i, system->getMasterName(i));
1930    }
1931
1932    overallMshrMisses
1933        .name(name() + ".overall_mshr_misses")
1934        .desc("number of overall MSHR misses")
1935        .flags(total | nozero | nonan)
1936        ;
1937    overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
1938    for (int i = 0; i < system->maxMasters(); i++) {
1939        overallMshrMisses.subname(i, system->getMasterName(i));
1940    }
1941
1942    // MSHR miss latency statistics
1943    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1944        MemCmd cmd(access_idx);
1945        const string &cstr = cmd.toString();
1946
1947        mshr_miss_latency[access_idx]
1948            .init(system->maxMasters())
1949            .name(name() + "." + cstr + "_mshr_miss_latency")
1950            .desc("number of " + cstr + " MSHR miss cycles")
1951            .flags(total | nozero | nonan)
1952            ;
1953        for (int i = 0; i < system->maxMasters(); i++) {
1954            mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
1955        }
1956    }
1957
1958    demandMshrMissLatency
1959        .name(name() + ".demand_mshr_miss_latency")
1960        .desc("number of demand (read+write) MSHR miss cycles")
1961        .flags(total | nozero | nonan)
1962        ;
1963    demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
1964    for (int i = 0; i < system->maxMasters(); i++) {
1965        demandMshrMissLatency.subname(i, system->getMasterName(i));
1966    }
1967
1968    overallMshrMissLatency
1969        .name(name() + ".overall_mshr_miss_latency")
1970        .desc("number of overall MSHR miss cycles")
1971        .flags(total | nozero | nonan)
1972        ;
1973    overallMshrMissLatency =
1974        demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
1975    for (int i = 0; i < system->maxMasters(); i++) {
1976        overallMshrMissLatency.subname(i, system->getMasterName(i));
1977    }
1978
1979    // MSHR uncacheable statistics
1980    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1981        MemCmd cmd(access_idx);
1982        const string &cstr = cmd.toString();
1983
1984        mshr_uncacheable[access_idx]
1985            .init(system->maxMasters())
1986            .name(name() + "." + cstr + "_mshr_uncacheable")
1987            .desc("number of " + cstr + " MSHR uncacheable")
1988            .flags(total | nozero | nonan)
1989            ;
1990        for (int i = 0; i < system->maxMasters(); i++) {
1991            mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
1992        }
1993    }
1994
1995    overallMshrUncacheable
1996        .name(name() + ".overall_mshr_uncacheable_misses")
1997        .desc("number of overall MSHR uncacheable misses")
1998        .flags(total | nozero | nonan)
1999        ;
2000    overallMshrUncacheable =
2001        SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
2002    for (int i = 0; i < system->maxMasters(); i++) {
2003        overallMshrUncacheable.subname(i, system->getMasterName(i));
2004    }
2005
2006    // MSHR miss latency statistics
2007    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2008        MemCmd cmd(access_idx);
2009        const string &cstr = cmd.toString();
2010
2011        mshr_uncacheable_lat[access_idx]
2012            .init(system->maxMasters())
2013            .name(name() + "." + cstr + "_mshr_uncacheable_latency")
2014            .desc("number of " + cstr + " MSHR uncacheable cycles")
2015            .flags(total | nozero | nonan)
2016            ;
2017        for (int i = 0; i < system->maxMasters(); i++) {
2018            mshr_uncacheable_lat[access_idx].subname(
2019                i, system->getMasterName(i));
2020        }
2021    }
2022
2023    overallMshrUncacheableLatency
2024        .name(name() + ".overall_mshr_uncacheable_latency")
2025        .desc("number of overall MSHR uncacheable cycles")
2026        .flags(total | nozero | nonan)
2027        ;
2028    overallMshrUncacheableLatency =
2029        SUM_DEMAND(mshr_uncacheable_lat) +
2030        SUM_NON_DEMAND(mshr_uncacheable_lat);
2031    for (int i = 0; i < system->maxMasters(); i++) {
2032        overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
2033    }
2034
2035#if 0
2036    // MSHR access formulas
2037    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2038        MemCmd cmd(access_idx);
2039        const string &cstr = cmd.toString();
2040
2041        mshrAccesses[access_idx]
2042            .name(name() + "." + cstr + "_mshr_accesses")
2043            .desc("number of " + cstr + " mshr accesses(hits+misses)")
2044            .flags(total | nozero | nonan)
2045            ;
2046        mshrAccesses[access_idx] =
2047            mshr_hits[access_idx] + mshr_misses[access_idx]
2048            + mshr_uncacheable[access_idx];
2049    }
2050
2051    demandMshrAccesses
2052        .name(name() + ".demand_mshr_accesses")
2053        .desc("number of demand (read+write) mshr accesses")
2054        .flags(total | nozero | nonan)
2055        ;
2056    demandMshrAccesses = demandMshrHits + demandMshrMisses;
2057
2058    overallMshrAccesses
2059        .name(name() + ".overall_mshr_accesses")
2060        .desc("number of overall (read+write) mshr accesses")
2061        .flags(total | nozero | nonan)
2062        ;
2063    overallMshrAccesses = overallMshrHits + overallMshrMisses
2064        + overallMshrUncacheable;
2065#endif
2066
2067    // MSHR miss rate formulas
2068    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2069        MemCmd cmd(access_idx);
2070        const string &cstr = cmd.toString();
2071
2072        mshrMissRate[access_idx]
2073            .name(name() + "." + cstr + "_mshr_miss_rate")
2074            .desc("mshr miss rate for " + cstr + " accesses")
2075            .flags(total | nozero | nonan)
2076            ;
2077        mshrMissRate[access_idx] =
2078            mshr_misses[access_idx] / accesses[access_idx];
2079
2080        for (int i = 0; i < system->maxMasters(); i++) {
2081            mshrMissRate[access_idx].subname(i, system->getMasterName(i));
2082        }
2083    }
2084
2085    demandMshrMissRate
2086        .name(name() + ".demand_mshr_miss_rate")
2087        .desc("mshr miss rate for demand accesses")
2088        .flags(total | nozero | nonan)
2089        ;
2090    demandMshrMissRate = demandMshrMisses / demandAccesses;
2091    for (int i = 0; i < system->maxMasters(); i++) {
2092        demandMshrMissRate.subname(i, system->getMasterName(i));
2093    }
2094
2095    overallMshrMissRate
2096        .name(name() + ".overall_mshr_miss_rate")
2097        .desc("mshr miss rate for overall accesses")
2098        .flags(total | nozero | nonan)
2099        ;
2100    overallMshrMissRate = overallMshrMisses / overallAccesses;
2101    for (int i = 0; i < system->maxMasters(); i++) {
2102        overallMshrMissRate.subname(i, system->getMasterName(i));
2103    }
2104
2105    // mshrMiss latency formulas
2106    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2107        MemCmd cmd(access_idx);
2108        const string &cstr = cmd.toString();
2109
2110        avgMshrMissLatency[access_idx]
2111            .name(name() + "." + cstr + "_avg_mshr_miss_latency")
2112            .desc("average " + cstr + " mshr miss latency")
2113            .flags(total | nozero | nonan)
2114            ;
2115        avgMshrMissLatency[access_idx] =
2116            mshr_miss_latency[access_idx] / mshr_misses[access_idx];
2117
2118        for (int i = 0; i < system->maxMasters(); i++) {
2119            avgMshrMissLatency[access_idx].subname(
2120                i, system->getMasterName(i));
2121        }
2122    }
2123
2124    demandAvgMshrMissLatency
2125        .name(name() + ".demand_avg_mshr_miss_latency")
2126        .desc("average overall mshr miss latency")
2127        .flags(total | nozero | nonan)
2128        ;
2129    demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
2130    for (int i = 0; i < system->maxMasters(); i++) {
2131        demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
2132    }
2133
2134    overallAvgMshrMissLatency
2135        .name(name() + ".overall_avg_mshr_miss_latency")
2136        .desc("average overall mshr miss latency")
2137        .flags(total | nozero | nonan)
2138        ;
2139    overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
2140    for (int i = 0; i < system->maxMasters(); i++) {
2141        overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
2142    }
2143
2144    // mshrUncacheable latency formulas
2145    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2146        MemCmd cmd(access_idx);
2147        const string &cstr = cmd.toString();
2148
2149        avgMshrUncacheableLatency[access_idx]
2150            .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
2151            .desc("average " + cstr + " mshr uncacheable latency")
2152            .flags(total | nozero | nonan)
2153            ;
2154        avgMshrUncacheableLatency[access_idx] =
2155            mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
2156
2157        for (int i = 0; i < system->maxMasters(); i++) {
2158            avgMshrUncacheableLatency[access_idx].subname(
2159                i, system->getMasterName(i));
2160        }
2161    }
2162
2163    overallAvgMshrUncacheableLatency
2164        .name(name() + ".overall_avg_mshr_uncacheable_latency")
2165        .desc("average overall mshr uncacheable latency")
2166        .flags(total | nozero | nonan)
2167        ;
2168    overallAvgMshrUncacheableLatency =
2169        overallMshrUncacheableLatency / overallMshrUncacheable;
2170    for (int i = 0; i < system->maxMasters(); i++) {
2171        overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2172    }
2173
2174    replacements
2175        .name(name() + ".replacements")
2176        .desc("number of replacements")
2177        ;
2178}
2179
2180///////////////
2181//
2182// CpuSidePort
2183//
2184///////////////
2185bool
2186BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2187{
2188    // Snoops shouldn't happen when bypassing caches
2189    assert(!cache->system->bypassCaches());
2190
2191    assert(pkt->isResponse());
2192
2193    // Express snoop responses from master to slave, e.g., from L1 to L2
2194    cache->recvTimingSnoopResp(pkt);
2195    return true;
2196}
2197
2198
2199bool
2200BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
2201{
2202    if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
2203        // always let express snoop packets through even if blocked
2204        return true;
2205    } else if (blocked || mustSendRetry) {
2206        // either already committed to send a retry, or blocked
2207        mustSendRetry = true;
2208        return false;
2209    }
2210    mustSendRetry = false;
2211    return true;
2212}
2213
2214bool
2215BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2216{
2217    assert(pkt->isRequest());
2218
2219    if (cache->system->bypassCaches()) {
2220        // Just forward the packet if caches are disabled.
2221        // @todo This should really enqueue the packet rather
2222        bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
2223        assert(success);
2224        return true;
2225    } else if (tryTiming(pkt)) {
2226        cache->recvTimingReq(pkt);
2227        return true;
2228    }
2229    return false;
2230}
2231
2232Tick
2233BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
2234{
2235    if (cache->system->bypassCaches()) {
2236        // Forward the request if the system is in cache bypass mode.
2237        return cache->memSidePort.sendAtomic(pkt);
2238    } else {
2239        return cache->recvAtomic(pkt);
2240    }
2241}
2242
2243void
2244BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
2245{
2246    if (cache->system->bypassCaches()) {
2247        // The cache should be flushed if we are in cache bypass mode,
2248        // so we don't need to check if we need to update anything.
2249        cache->memSidePort.sendFunctional(pkt);
2250        return;
2251    }
2252
2253    // functional request
2254    cache->functionalAccess(pkt, true);
2255}
2256
2257AddrRangeList
2258BaseCache::CpuSidePort::getAddrRanges() const
2259{
2260    return cache->getAddrRanges();
2261}
2262
2263
2264BaseCache::
2265CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
2266                         const std::string &_label)
2267    : CacheSlavePort(_name, _cache, _label), cache(_cache)
2268{
2269}
2270
2271///////////////
2272//
2273// MemSidePort
2274//
2275///////////////
2276bool
2277BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
2278{
2279    cache->recvTimingResp(pkt);
2280    return true;
2281}
2282
2283// Express snooping requests to memside port
2284void
2285BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2286{
2287    // Snoops shouldn't happen when bypassing caches
2288    assert(!cache->system->bypassCaches());
2289
2290    // handle snooping requests
2291    cache->recvTimingSnoopReq(pkt);
2292}
2293
2294Tick
2295BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2296{
2297    // Snoops shouldn't happen when bypassing caches
2298    assert(!cache->system->bypassCaches());
2299
2300    return cache->recvAtomicSnoop(pkt);
2301}
2302
2303void
2304BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2305{
2306    // Snoops shouldn't happen when bypassing caches
2307    assert(!cache->system->bypassCaches());
2308
2309    // functional snoop (note that in contrast to atomic we don't have
2310    // a specific functionalSnoop method, as they have the same
2311    // behaviour regardless)
2312    cache->functionalAccess(pkt, false);
2313}
2314
2315void
2316BaseCache::CacheReqPacketQueue::sendDeferredPacket()
2317{
2318    // sanity check
2319    assert(!waitingOnRetry);
2320
2321    // there should never be any deferred request packets in the
2322    // queue, instead we resly on the cache to provide the packets
2323    // from the MSHR queue or write queue
2324    assert(deferredPacketReadyTime() == MaxTick);
2325
2326    // check for request packets (requests & writebacks)
2327    QueueEntry* entry = cache.getNextQueueEntry();
2328
2329    if (!entry) {
2330        // can happen if e.g. we attempt a writeback and fail, but
2331        // before the retry, the writeback is eliminated because
2332        // we snoop another cache's ReadEx.
2333    } else {
2334        // let our snoop responses go first if there are responses to
2335        // the same addresses
2336        if (checkConflictingSnoop(entry->blkAddr)) {
2337            return;
2338        }
2339        waitingOnRetry = entry->sendPacket(cache);
2340    }
2341
2342    // if we succeeded and are not waiting for a retry, schedule the
2343    // next send considering when the next queue is ready, note that
2344    // snoop responses have their own packet queue and thus schedule
2345    // their own events
2346    if (!waitingOnRetry) {
2347        schedSendEvent(cache.nextQueueReadyTime());
2348    }
2349}
2350
2351BaseCache::MemSidePort::MemSidePort(const std::string &_name,
2352                                    BaseCache *_cache,
2353                                    const std::string &_label)
2354    : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2355      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2356      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2357{
2358}
2359