base.cc revision 13216:6ae030076b29
1/*
2 * Copyright (c) 2012-2013, 2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 *          Nikos Nikoleris
42 */
43
44/**
45 * @file
46 * Definition of BaseCache functions.
47 */
48
49#include "mem/cache/base.hh"
50
51#include "base/compiler.hh"
52#include "base/logging.hh"
53#include "debug/Cache.hh"
54#include "debug/CachePort.hh"
55#include "debug/CacheVerbose.hh"
56#include "mem/cache/mshr.hh"
57#include "mem/cache/prefetch/base.hh"
58#include "mem/cache/queue_entry.hh"
59#include "params/BaseCache.hh"
60#include "sim/core.hh"
61
62class BaseMasterPort;
63class BaseSlavePort;
64
65using namespace std;
66
67BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
68                                          BaseCache *_cache,
69                                          const std::string &_label)
70    : QueuedSlavePort(_name, _cache, queue), queue(*_cache, *this, _label),
71      blocked(false), mustSendRetry(false),
72      sendRetryEvent([this]{ processSendRetry(); }, _name)
73{
74}
75
76BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
77    : MemObject(p),
78      cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
79      memSidePort(p->name + ".mem_side", this, "MemSidePort"),
80      mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
81      writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
82      tags(p->tags),
83      prefetcher(p->prefetcher),
84      prefetchOnAccess(p->prefetch_on_access),
85      writebackClean(p->writeback_clean),
86      tempBlockWriteback(nullptr),
87      writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
88                                    name(), false,
89                                    EventBase::Delayed_Writeback_Pri),
90      blkSize(blk_size),
91      lookupLatency(p->tag_latency),
92      dataLatency(p->data_latency),
93      forwardLatency(p->tag_latency),
94      fillLatency(p->data_latency),
95      responseLatency(p->response_latency),
96      numTarget(p->tgts_per_mshr),
97      forwardSnoops(true),
98      clusivity(p->clusivity),
99      isReadOnly(p->is_read_only),
100      blocked(0),
101      order(0),
102      noTargetMSHR(nullptr),
103      missCount(p->max_miss_count),
104      addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
105      system(p->system)
106{
107    // the MSHR queue has no reserve entries as we check the MSHR
108    // queue on every single allocation, whereas the write queue has
109    // as many reserve entries as we have MSHRs, since every MSHR may
110    // eventually require a writeback, and we do not check the write
111    // buffer before committing to an MSHR
112
113    // forward snoops is overridden in init() once we can query
114    // whether the connected master is actually snooping or not
115
116    tempBlock = new TempCacheBlk(blkSize);
117
118    tags->init(this);
119    if (prefetcher)
120        prefetcher->setCache(this);
121}
122
123BaseCache::~BaseCache()
124{
125    delete tempBlock;
126}
127
128void
129BaseCache::CacheSlavePort::setBlocked()
130{
131    assert(!blocked);
132    DPRINTF(CachePort, "Port is blocking new requests\n");
133    blocked = true;
134    // if we already scheduled a retry in this cycle, but it has not yet
135    // happened, cancel it
136    if (sendRetryEvent.scheduled()) {
137        owner.deschedule(sendRetryEvent);
138        DPRINTF(CachePort, "Port descheduled retry\n");
139        mustSendRetry = true;
140    }
141}
142
143void
144BaseCache::CacheSlavePort::clearBlocked()
145{
146    assert(blocked);
147    DPRINTF(CachePort, "Port is accepting new requests\n");
148    blocked = false;
149    if (mustSendRetry) {
150        // @TODO: need to find a better time (next cycle?)
151        owner.schedule(sendRetryEvent, curTick() + 1);
152    }
153}
154
155void
156BaseCache::CacheSlavePort::processSendRetry()
157{
158    DPRINTF(CachePort, "Port is sending retry\n");
159
160    // reset the flag and call retry
161    mustSendRetry = false;
162    sendRetryReq();
163}
164
165Addr
166BaseCache::regenerateBlkAddr(CacheBlk* blk)
167{
168    if (blk != tempBlock) {
169        return tags->regenerateBlkAddr(blk);
170    } else {
171        return tempBlock->getAddr();
172    }
173}
174
175void
176BaseCache::init()
177{
178    if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
179        fatal("Cache ports on %s are not connected\n", name());
180    cpuSidePort.sendRangeChange();
181    forwardSnoops = cpuSidePort.isSnooping();
182}
183
184BaseMasterPort &
185BaseCache::getMasterPort(const std::string &if_name, PortID idx)
186{
187    if (if_name == "mem_side") {
188        return memSidePort;
189    }  else {
190        return MemObject::getMasterPort(if_name, idx);
191    }
192}
193
194BaseSlavePort &
195BaseCache::getSlavePort(const std::string &if_name, PortID idx)
196{
197    if (if_name == "cpu_side") {
198        return cpuSidePort;
199    } else {
200        return MemObject::getSlavePort(if_name, idx);
201    }
202}
203
204bool
205BaseCache::inRange(Addr addr) const
206{
207    for (const auto& r : addrRanges) {
208        if (r.contains(addr)) {
209            return true;
210       }
211    }
212    return false;
213}
214
215void
216BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
217{
218    if (pkt->needsResponse()) {
219        pkt->makeTimingResponse();
220        // @todo: Make someone pay for this
221        pkt->headerDelay = pkt->payloadDelay = 0;
222
223        // In this case we are considering request_time that takes
224        // into account the delay of the xbar, if any, and just
225        // lat, neglecting responseLatency, modelling hit latency
226        // just as lookupLatency or or the value of lat overriden
227        // by access(), that calls accessBlock() function.
228        cpuSidePort.schedTimingResp(pkt, request_time, true);
229    } else {
230        DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
231                pkt->print());
232
233        // queue the packet for deletion, as the sending cache is
234        // still relying on it; if the block is found in access(),
235        // CleanEvict and Writeback messages will be deleted
236        // here as well
237        pendingDelete.reset(pkt);
238    }
239}
240
241void
242BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
243                               Tick forward_time, Tick request_time)
244{
245    if (mshr) {
246        /// MSHR hit
247        /// @note writebacks will be checked in getNextMSHR()
248        /// for any conflicting requests to the same block
249
250        //@todo remove hw_pf here
251
252        // Coalesce unless it was a software prefetch (see above).
253        if (pkt) {
254            assert(!pkt->isWriteback());
255            // CleanEvicts corresponding to blocks which have
256            // outstanding requests in MSHRs are simply sunk here
257            if (pkt->cmd == MemCmd::CleanEvict) {
258                pendingDelete.reset(pkt);
259            } else if (pkt->cmd == MemCmd::WriteClean) {
260                // A WriteClean should never coalesce with any
261                // outstanding cache maintenance requests.
262
263                // We use forward_time here because there is an
264                // uncached memory write, forwarded to WriteBuffer.
265                allocateWriteBuffer(pkt, forward_time);
266            } else {
267                DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
268                        pkt->print());
269
270                assert(pkt->req->masterId() < system->maxMasters());
271                mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
272
273                // We use forward_time here because it is the same
274                // considering new targets. We have multiple
275                // requests for the same address here. It
276                // specifies the latency to allocate an internal
277                // buffer and to schedule an event to the queued
278                // port and also takes into account the additional
279                // delay of the xbar.
280                mshr->allocateTarget(pkt, forward_time, order++,
281                                     allocOnFill(pkt->cmd));
282                if (mshr->getNumTargets() == numTarget) {
283                    noTargetMSHR = mshr;
284                    setBlocked(Blocked_NoTargets);
285                    // need to be careful with this... if this mshr isn't
286                    // ready yet (i.e. time > curTick()), we don't want to
287                    // move it ahead of mshrs that are ready
288                    // mshrQueue.moveToFront(mshr);
289                }
290            }
291        }
292    } else {
293        // no MSHR
294        assert(pkt->req->masterId() < system->maxMasters());
295        mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
296
297        if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
298            // We use forward_time here because there is an
299            // writeback or writeclean, forwarded to WriteBuffer.
300            allocateWriteBuffer(pkt, forward_time);
301        } else {
302            if (blk && blk->isValid()) {
303                // If we have a write miss to a valid block, we
304                // need to mark the block non-readable.  Otherwise
305                // if we allow reads while there's an outstanding
306                // write miss, the read could return stale data
307                // out of the cache block... a more aggressive
308                // system could detect the overlap (if any) and
309                // forward data out of the MSHRs, but we don't do
310                // that yet.  Note that we do need to leave the
311                // block valid so that it stays in the cache, in
312                // case we get an upgrade response (and hence no
313                // new data) when the write miss completes.
314                // As long as CPUs do proper store/load forwarding
315                // internally, and have a sufficiently weak memory
316                // model, this is probably unnecessary, but at some
317                // point it must have seemed like we needed it...
318                assert((pkt->needsWritable() && !blk->isWritable()) ||
319                       pkt->req->isCacheMaintenance());
320                blk->status &= ~BlkReadable;
321            }
322            // Here we are using forward_time, modelling the latency of
323            // a miss (outbound) just as forwardLatency, neglecting the
324            // lookupLatency component.
325            allocateMissBuffer(pkt, forward_time);
326        }
327    }
328}
329
330void
331BaseCache::recvTimingReq(PacketPtr pkt)
332{
333    // anything that is merely forwarded pays for the forward latency and
334    // the delay provided by the crossbar
335    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
336
337    // We use lookupLatency here because it is used to specify the latency
338    // to access.
339    Cycles lat = lookupLatency;
340    CacheBlk *blk = nullptr;
341    bool satisfied = false;
342    {
343        PacketList writebacks;
344        // Note that lat is passed by reference here. The function
345        // access() calls accessBlock() which can modify lat value.
346        satisfied = access(pkt, blk, lat, writebacks);
347
348        // copy writebacks to write buffer here to ensure they logically
349        // precede anything happening below
350        doWritebacks(writebacks, forward_time);
351    }
352
353    // Here we charge the headerDelay that takes into account the latencies
354    // of the bus, if the packet comes from it.
355    // The latency charged it is just lat that is the value of lookupLatency
356    // modified by access() function, or if not just lookupLatency.
357    // In case of a hit we are neglecting response latency.
358    // In case of a miss we are neglecting forward latency.
359    Tick request_time = clockEdge(lat) + pkt->headerDelay;
360    // Here we reset the timing of the packet.
361    pkt->headerDelay = pkt->payloadDelay = 0;
362    // track time of availability of next prefetch, if any
363    Tick next_pf_time = MaxTick;
364
365    if (satisfied) {
366        // if need to notify the prefetcher we have to do it before
367        // anything else as later handleTimingReqHit might turn the
368        // packet in a response
369        if (prefetcher &&
370            (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
371            if (blk)
372                blk->status &= ~BlkHWPrefetched;
373
374            // Don't notify on SWPrefetch
375            if (!pkt->cmd.isSWPrefetch()) {
376                assert(!pkt->req->isCacheMaintenance());
377                next_pf_time = prefetcher->notify(pkt);
378            }
379        }
380
381        handleTimingReqHit(pkt, blk, request_time);
382    } else {
383        handleTimingReqMiss(pkt, blk, forward_time, request_time);
384
385        // We should call the prefetcher reguardless if the request is
386        // satisfied or not, reguardless if the request is in the MSHR
387        // or not. The request could be a ReadReq hit, but still not
388        // satisfied (potentially because of a prior write to the same
389        // cache line. So, even when not satisfied, there is an MSHR
390        // already allocated for this, we need to let the prefetcher
391        // know about the request
392
393        // Don't notify prefetcher on SWPrefetch or cache maintenance
394        // operations
395        if (prefetcher && pkt &&
396            !pkt->cmd.isSWPrefetch() &&
397            !pkt->req->isCacheMaintenance()) {
398            next_pf_time = prefetcher->notify(pkt);
399        }
400    }
401
402    if (next_pf_time != MaxTick) {
403        schedMemSideSendEvent(next_pf_time);
404    }
405}
406
407void
408BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
409{
410    Tick completion_time = clockEdge(responseLatency) +
411        pkt->headerDelay + pkt->payloadDelay;
412
413    // Reset the bus additional time as it is now accounted for
414    pkt->headerDelay = pkt->payloadDelay = 0;
415
416    cpuSidePort.schedTimingResp(pkt, completion_time, true);
417}
418
419void
420BaseCache::recvTimingResp(PacketPtr pkt)
421{
422    assert(pkt->isResponse());
423
424    // all header delay should be paid for by the crossbar, unless
425    // this is a prefetch response from above
426    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
427             "%s saw a non-zero packet delay\n", name());
428
429    const bool is_error = pkt->isError();
430
431    if (is_error) {
432        DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
433                pkt->print());
434    }
435
436    DPRINTF(Cache, "%s: Handling response %s\n", __func__,
437            pkt->print());
438
439    // if this is a write, we should be looking at an uncacheable
440    // write
441    if (pkt->isWrite()) {
442        assert(pkt->req->isUncacheable());
443        handleUncacheableWriteResp(pkt);
444        return;
445    }
446
447    // we have dealt with any (uncacheable) writes above, from here on
448    // we know we are dealing with an MSHR due to a miss or a prefetch
449    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
450    assert(mshr);
451
452    if (mshr == noTargetMSHR) {
453        // we always clear at least one target
454        clearBlocked(Blocked_NoTargets);
455        noTargetMSHR = nullptr;
456    }
457
458    // Initial target is used just for stats
459    MSHR::Target *initial_tgt = mshr->getTarget();
460    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
461    Tick miss_latency = curTick() - initial_tgt->recvTime;
462
463    if (pkt->req->isUncacheable()) {
464        assert(pkt->req->masterId() < system->maxMasters());
465        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
466            miss_latency;
467    } else {
468        assert(pkt->req->masterId() < system->maxMasters());
469        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
470            miss_latency;
471    }
472
473    PacketList writebacks;
474
475    bool is_fill = !mshr->isForward &&
476        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
477
478    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
479
480    if (is_fill && !is_error) {
481        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
482                pkt->getAddr());
483
484        blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
485        assert(blk != nullptr);
486    }
487
488    if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
489        // The block was marked not readable while there was a pending
490        // cache maintenance operation, restore its flag.
491        blk->status |= BlkReadable;
492
493        // This was a cache clean operation (without invalidate)
494        // and we have a copy of the block already. Since there
495        // is no invalidation, we can promote targets that don't
496        // require a writable copy
497        mshr->promoteReadable();
498    }
499
500    if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
501        // If at this point the referenced block is writable and the
502        // response is not a cache invalidate, we promote targets that
503        // were deferred as we couldn't guarrantee a writable copy
504        mshr->promoteWritable();
505    }
506
507    serviceMSHRTargets(mshr, pkt, blk, writebacks);
508
509    if (mshr->promoteDeferredTargets()) {
510        // avoid later read getting stale data while write miss is
511        // outstanding.. see comment in timingAccess()
512        if (blk) {
513            blk->status &= ~BlkReadable;
514        }
515        mshrQueue.markPending(mshr);
516        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
517    } else {
518        // while we deallocate an mshr from the queue we still have to
519        // check the isFull condition before and after as we might
520        // have been using the reserved entries already
521        const bool was_full = mshrQueue.isFull();
522        mshrQueue.deallocate(mshr);
523        if (was_full && !mshrQueue.isFull()) {
524            clearBlocked(Blocked_NoMSHRs);
525        }
526
527        // Request the bus for a prefetch if this deallocation freed enough
528        // MSHRs for a prefetch to take place
529        if (prefetcher && mshrQueue.canPrefetch()) {
530            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
531                                         clockEdge());
532            if (next_pf_time != MaxTick)
533                schedMemSideSendEvent(next_pf_time);
534        }
535    }
536
537    // if we used temp block, check to see if its valid and then clear it out
538    if (blk == tempBlock && tempBlock->isValid()) {
539        evictBlock(blk, writebacks);
540    }
541
542    const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
543    // copy writebacks to write buffer
544    doWritebacks(writebacks, forward_time);
545
546    DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
547    delete pkt;
548}
549
550
551Tick
552BaseCache::recvAtomic(PacketPtr pkt)
553{
554    // We are in atomic mode so we pay just for lookupLatency here.
555    Cycles lat = lookupLatency;
556
557    // follow the same flow as in recvTimingReq, and check if a cache
558    // above us is responding
559    if (pkt->cacheResponding() && !pkt->isClean()) {
560        assert(!pkt->req->isCacheInvalidate());
561        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
562                pkt->print());
563
564        // if a cache is responding, and it had the line in Owned
565        // rather than Modified state, we need to invalidate any
566        // copies that are not on the same path to memory
567        assert(pkt->needsWritable() && !pkt->responderHadWritable());
568        lat += ticksToCycles(memSidePort.sendAtomic(pkt));
569
570        return lat * clockPeriod();
571    }
572
573    // should assert here that there are no outstanding MSHRs or
574    // writebacks... that would mean that someone used an atomic
575    // access in timing mode
576
577    CacheBlk *blk = nullptr;
578    PacketList writebacks;
579    bool satisfied = access(pkt, blk, lat, writebacks);
580
581    if (pkt->isClean() && blk && blk->isDirty()) {
582        // A cache clean opearation is looking for a dirty
583        // block. If a dirty block is encountered a WriteClean
584        // will update any copies to the path to the memory
585        // until the point of reference.
586        DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
587                __func__, pkt->print(), blk->print());
588        PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
589        writebacks.push_back(wb_pkt);
590        pkt->setSatisfied();
591    }
592
593    // handle writebacks resulting from the access here to ensure they
594    // logically precede anything happening below
595    doWritebacksAtomic(writebacks);
596    assert(writebacks.empty());
597
598    if (!satisfied) {
599        lat += handleAtomicReqMiss(pkt, blk, writebacks);
600    }
601
602    // Note that we don't invoke the prefetcher at all in atomic mode.
603    // It's not clear how to do it properly, particularly for
604    // prefetchers that aggressively generate prefetch candidates and
605    // rely on bandwidth contention to throttle them; these will tend
606    // to pollute the cache in atomic mode since there is no bandwidth
607    // contention.  If we ever do want to enable prefetching in atomic
608    // mode, though, this is the place to do it... see timingAccess()
609    // for an example (though we'd want to issue the prefetch(es)
610    // immediately rather than calling requestMemSideBus() as we do
611    // there).
612
613    // do any writebacks resulting from the response handling
614    doWritebacksAtomic(writebacks);
615
616    // if we used temp block, check to see if its valid and if so
617    // clear it out, but only do so after the call to recvAtomic is
618    // finished so that any downstream observers (such as a snoop
619    // filter), first see the fill, and only then see the eviction
620    if (blk == tempBlock && tempBlock->isValid()) {
621        // the atomic CPU calls recvAtomic for fetch and load/store
622        // sequentuially, and we may already have a tempBlock
623        // writeback from the fetch that we have not yet sent
624        if (tempBlockWriteback) {
625            // if that is the case, write the prevoius one back, and
626            // do not schedule any new event
627            writebackTempBlockAtomic();
628        } else {
629            // the writeback/clean eviction happens after the call to
630            // recvAtomic has finished (but before any successive
631            // calls), so that the response handling from the fill is
632            // allowed to happen first
633            schedule(writebackTempBlockAtomicEvent, curTick());
634        }
635
636        tempBlockWriteback = evictBlock(blk);
637    }
638
639    if (pkt->needsResponse()) {
640        pkt->makeAtomicResponse();
641    }
642
643    return lat * clockPeriod();
644}
645
646void
647BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
648{
649    Addr blk_addr = pkt->getBlockAddr(blkSize);
650    bool is_secure = pkt->isSecure();
651    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
652    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
653
654    pkt->pushLabel(name());
655
656    CacheBlkPrintWrapper cbpw(blk);
657
658    // Note that just because an L2/L3 has valid data doesn't mean an
659    // L1 doesn't have a more up-to-date modified copy that still
660    // needs to be found.  As a result we always update the request if
661    // we have it, but only declare it satisfied if we are the owner.
662
663    // see if we have data at all (owned or otherwise)
664    bool have_data = blk && blk->isValid()
665        && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize,
666                                     blk->data);
667
668    // data we have is dirty if marked as such or if we have an
669    // in-service MSHR that is pending a modified line
670    bool have_dirty =
671        have_data && (blk->isDirty() ||
672                      (mshr && mshr->inService && mshr->isPendingModified()));
673
674    bool done = have_dirty ||
675        cpuSidePort.trySatisfyFunctional(pkt) ||
676        mshrQueue.trySatisfyFunctional(pkt, blk_addr) ||
677        writeBuffer.trySatisfyFunctional(pkt, blk_addr) ||
678        memSidePort.trySatisfyFunctional(pkt);
679
680    DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__,  pkt->print(),
681            (blk && blk->isValid()) ? "valid " : "",
682            have_data ? "data " : "", done ? "done " : "");
683
684    // We're leaving the cache, so pop cache->name() label
685    pkt->popLabel();
686
687    if (done) {
688        pkt->makeResponse();
689    } else {
690        // if it came as a request from the CPU side then make sure it
691        // continues towards the memory side
692        if (from_cpu_side) {
693            memSidePort.sendFunctional(pkt);
694        } else if (cpuSidePort.isSnooping()) {
695            // if it came from the memory side, it must be a snoop request
696            // and we should only forward it if we are forwarding snoops
697            cpuSidePort.sendFunctionalSnoop(pkt);
698        }
699    }
700}
701
702
703void
704BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
705{
706    assert(pkt->isRequest());
707
708    uint64_t overwrite_val;
709    bool overwrite_mem;
710    uint64_t condition_val64;
711    uint32_t condition_val32;
712
713    int offset = pkt->getOffset(blkSize);
714    uint8_t *blk_data = blk->data + offset;
715
716    assert(sizeof(uint64_t) >= pkt->getSize());
717
718    overwrite_mem = true;
719    // keep a copy of our possible write value, and copy what is at the
720    // memory address into the packet
721    pkt->writeData((uint8_t *)&overwrite_val);
722    pkt->setData(blk_data);
723
724    if (pkt->req->isCondSwap()) {
725        if (pkt->getSize() == sizeof(uint64_t)) {
726            condition_val64 = pkt->req->getExtraData();
727            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
728                                         sizeof(uint64_t));
729        } else if (pkt->getSize() == sizeof(uint32_t)) {
730            condition_val32 = (uint32_t)pkt->req->getExtraData();
731            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
732                                         sizeof(uint32_t));
733        } else
734            panic("Invalid size for conditional read/write\n");
735    }
736
737    if (overwrite_mem) {
738        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
739        blk->status |= BlkDirty;
740    }
741}
742
743QueueEntry*
744BaseCache::getNextQueueEntry()
745{
746    // Check both MSHR queue and write buffer for potential requests,
747    // note that null does not mean there is no request, it could
748    // simply be that it is not ready
749    MSHR *miss_mshr  = mshrQueue.getNext();
750    WriteQueueEntry *wq_entry = writeBuffer.getNext();
751
752    // If we got a write buffer request ready, first priority is a
753    // full write buffer, otherwise we favour the miss requests
754    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
755        // need to search MSHR queue for conflicting earlier miss.
756        MSHR *conflict_mshr =
757            mshrQueue.findPending(wq_entry->blkAddr,
758                                  wq_entry->isSecure);
759
760        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
761            // Service misses in order until conflict is cleared.
762            return conflict_mshr;
763
764            // @todo Note that we ignore the ready time of the conflict here
765        }
766
767        // No conflicts; issue write
768        return wq_entry;
769    } else if (miss_mshr) {
770        // need to check for conflicting earlier writeback
771        WriteQueueEntry *conflict_mshr =
772            writeBuffer.findPending(miss_mshr->blkAddr,
773                                    miss_mshr->isSecure);
774        if (conflict_mshr) {
775            // not sure why we don't check order here... it was in the
776            // original code but commented out.
777
778            // The only way this happens is if we are
779            // doing a write and we didn't have permissions
780            // then subsequently saw a writeback (owned got evicted)
781            // We need to make sure to perform the writeback first
782            // To preserve the dirty data, then we can issue the write
783
784            // should we return wq_entry here instead?  I.e. do we
785            // have to flush writes in order?  I don't think so... not
786            // for Alpha anyway.  Maybe for x86?
787            return conflict_mshr;
788
789            // @todo Note that we ignore the ready time of the conflict here
790        }
791
792        // No conflicts; issue read
793        return miss_mshr;
794    }
795
796    // fall through... no pending requests.  Try a prefetch.
797    assert(!miss_mshr && !wq_entry);
798    if (prefetcher && mshrQueue.canPrefetch()) {
799        // If we have a miss queue slot, we can try a prefetch
800        PacketPtr pkt = prefetcher->getPacket();
801        if (pkt) {
802            Addr pf_addr = pkt->getBlockAddr(blkSize);
803            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
804                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
805                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
806                // Update statistic on number of prefetches issued
807                // (hwpf_mshr_misses)
808                assert(pkt->req->masterId() < system->maxMasters());
809                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
810
811                // allocate an MSHR and return it, note
812                // that we send the packet straight away, so do not
813                // schedule the send
814                return allocateMissBuffer(pkt, curTick(), false);
815            } else {
816                // free the request and packet
817                delete pkt;
818            }
819        }
820    }
821
822    return nullptr;
823}
824
825void
826BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
827{
828    assert(pkt->isRequest());
829
830    assert(blk && blk->isValid());
831    // Occasionally this is not true... if we are a lower-level cache
832    // satisfying a string of Read and ReadEx requests from
833    // upper-level caches, a Read will mark the block as shared but we
834    // can satisfy a following ReadEx anyway since we can rely on the
835    // Read requester(s) to have buffered the ReadEx snoop and to
836    // invalidate their blocks after receiving them.
837    // assert(!pkt->needsWritable() || blk->isWritable());
838    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
839
840    // Check RMW operations first since both isRead() and
841    // isWrite() will be true for them
842    if (pkt->cmd == MemCmd::SwapReq) {
843        if (pkt->isAtomicOp()) {
844            // extract data from cache and save it into the data field in
845            // the packet as a return value from this atomic op
846
847            int offset = tags->extractBlkOffset(pkt->getAddr());
848            uint8_t *blk_data = blk->data + offset;
849            std::memcpy(pkt->getPtr<uint8_t>(), blk_data, pkt->getSize());
850
851            // execute AMO operation
852            (*(pkt->getAtomicOp()))(blk_data);
853
854            // set block status to dirty
855            blk->status |= BlkDirty;
856        } else {
857            cmpAndSwap(blk, pkt);
858        }
859    } else if (pkt->isWrite()) {
860        // we have the block in a writable state and can go ahead,
861        // note that the line may be also be considered writable in
862        // downstream caches along the path to memory, but always
863        // Exclusive, and never Modified
864        assert(blk->isWritable());
865        // Write or WriteLine at the first cache with block in writable state
866        if (blk->checkWrite(pkt)) {
867            pkt->writeDataToBlock(blk->data, blkSize);
868        }
869        // Always mark the line as dirty (and thus transition to the
870        // Modified state) even if we are a failed StoreCond so we
871        // supply data to any snoops that have appended themselves to
872        // this cache before knowing the store will fail.
873        blk->status |= BlkDirty;
874        DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
875    } else if (pkt->isRead()) {
876        if (pkt->isLLSC()) {
877            blk->trackLoadLocked(pkt);
878        }
879
880        // all read responses have a data payload
881        assert(pkt->hasRespData());
882        pkt->setDataFromBlock(blk->data, blkSize);
883    } else if (pkt->isUpgrade()) {
884        // sanity check
885        assert(!pkt->hasSharers());
886
887        if (blk->isDirty()) {
888            // we were in the Owned state, and a cache above us that
889            // has the line in Shared state needs to be made aware
890            // that the data it already has is in fact dirty
891            pkt->setCacheResponding();
892            blk->status &= ~BlkDirty;
893        }
894    } else if (pkt->isClean()) {
895        blk->status &= ~BlkDirty;
896    } else {
897        assert(pkt->isInvalidate());
898        invalidateBlock(blk);
899        DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
900                pkt->print());
901    }
902}
903
904/////////////////////////////////////////////////////
905//
906// Access path: requests coming in from the CPU side
907//
908/////////////////////////////////////////////////////
909
910bool
911BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
912                  PacketList &writebacks)
913{
914    // sanity check
915    assert(pkt->isRequest());
916
917    chatty_assert(!(isReadOnly && pkt->isWrite()),
918                  "Should never see a write in a read-only cache %s\n",
919                  name());
920
921    // Here lat is the value passed as parameter to accessBlock() function
922    // that can modify its value.
923    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat);
924
925    DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
926            blk ? "hit " + blk->print() : "miss");
927
928    if (pkt->req->isCacheMaintenance()) {
929        // A cache maintenance operation is always forwarded to the
930        // memory below even if the block is found in dirty state.
931
932        // We defer any changes to the state of the block until we
933        // create and mark as in service the mshr for the downstream
934        // packet.
935        return false;
936    }
937
938    if (pkt->isEviction()) {
939        // We check for presence of block in above caches before issuing
940        // Writeback or CleanEvict to write buffer. Therefore the only
941        // possible cases can be of a CleanEvict packet coming from above
942        // encountering a Writeback generated in this cache peer cache and
943        // waiting in the write buffer. Cases of upper level peer caches
944        // generating CleanEvict and Writeback or simply CleanEvict and
945        // CleanEvict almost simultaneously will be caught by snoops sent out
946        // by crossbar.
947        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
948                                                          pkt->isSecure());
949        if (wb_entry) {
950            assert(wb_entry->getNumTargets() == 1);
951            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
952            assert(wbPkt->isWriteback());
953
954            if (pkt->isCleanEviction()) {
955                // The CleanEvict and WritebackClean snoops into other
956                // peer caches of the same level while traversing the
957                // crossbar. If a copy of the block is found, the
958                // packet is deleted in the crossbar. Hence, none of
959                // the other upper level caches connected to this
960                // cache have the block, so we can clear the
961                // BLOCK_CACHED flag in the Writeback if set and
962                // discard the CleanEvict by returning true.
963                wbPkt->clearBlockCached();
964                return true;
965            } else {
966                assert(pkt->cmd == MemCmd::WritebackDirty);
967                // Dirty writeback from above trumps our clean
968                // writeback... discard here
969                // Note: markInService will remove entry from writeback buffer.
970                markInService(wb_entry);
971                delete wbPkt;
972            }
973        }
974    }
975
976    // Writeback handling is special case.  We can write the block into
977    // the cache without having a writeable copy (or any copy at all).
978    if (pkt->isWriteback()) {
979        assert(blkSize == pkt->getSize());
980
981        // we could get a clean writeback while we are having
982        // outstanding accesses to a block, do the simple thing for
983        // now and drop the clean writeback so that we do not upset
984        // any ordering/decisions about ownership already taken
985        if (pkt->cmd == MemCmd::WritebackClean &&
986            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
987            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
988                    "dropping\n", pkt->getAddr());
989            return true;
990        }
991
992        if (!blk) {
993            // need to do a replacement
994            blk = allocateBlock(pkt, writebacks);
995            if (!blk) {
996                // no replaceable block available: give up, fwd to next level.
997                incMissCount(pkt);
998                return false;
999            }
1000
1001            blk->status |= (BlkValid | BlkReadable);
1002        }
1003        // only mark the block dirty if we got a writeback command,
1004        // and leave it as is for a clean writeback
1005        if (pkt->cmd == MemCmd::WritebackDirty) {
1006            // TODO: the coherent cache can assert(!blk->isDirty());
1007            blk->status |= BlkDirty;
1008        }
1009        // if the packet does not have sharers, it is passing
1010        // writable, and we got the writeback in Modified or Exclusive
1011        // state, if not we are in the Owned or Shared state
1012        if (!pkt->hasSharers()) {
1013            blk->status |= BlkWritable;
1014        }
1015        // nothing else to do; writeback doesn't expect response
1016        assert(!pkt->needsResponse());
1017        pkt->writeDataToBlock(blk->data, blkSize);
1018        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1019        incHitCount(pkt);
1020        // populate the time when the block will be ready to access.
1021        blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
1022            pkt->payloadDelay;
1023        return true;
1024    } else if (pkt->cmd == MemCmd::CleanEvict) {
1025        if (blk) {
1026            // Found the block in the tags, need to stop CleanEvict from
1027            // propagating further down the hierarchy. Returning true will
1028            // treat the CleanEvict like a satisfied write request and delete
1029            // it.
1030            return true;
1031        }
1032        // We didn't find the block here, propagate the CleanEvict further
1033        // down the memory hierarchy. Returning false will treat the CleanEvict
1034        // like a Writeback which could not find a replaceable block so has to
1035        // go to next level.
1036        return false;
1037    } else if (pkt->cmd == MemCmd::WriteClean) {
1038        // WriteClean handling is a special case. We can allocate a
1039        // block directly if it doesn't exist and we can update the
1040        // block immediately. The WriteClean transfers the ownership
1041        // of the block as well.
1042        assert(blkSize == pkt->getSize());
1043
1044        if (!blk) {
1045            if (pkt->writeThrough()) {
1046                // if this is a write through packet, we don't try to
1047                // allocate if the block is not present
1048                return false;
1049            } else {
1050                // a writeback that misses needs to allocate a new block
1051                blk = allocateBlock(pkt, writebacks);
1052                if (!blk) {
1053                    // no replaceable block available: give up, fwd to
1054                    // next level.
1055                    incMissCount(pkt);
1056                    return false;
1057                }
1058
1059                blk->status |= (BlkValid | BlkReadable);
1060            }
1061        }
1062
1063        // at this point either this is a writeback or a write-through
1064        // write clean operation and the block is already in this
1065        // cache, we need to update the data and the block flags
1066        assert(blk);
1067        // TODO: the coherent cache can assert(!blk->isDirty());
1068        if (!pkt->writeThrough()) {
1069            blk->status |= BlkDirty;
1070        }
1071        // nothing else to do; writeback doesn't expect response
1072        assert(!pkt->needsResponse());
1073        pkt->writeDataToBlock(blk->data, blkSize);
1074        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1075
1076        incHitCount(pkt);
1077        // populate the time when the block will be ready to access.
1078        blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
1079            pkt->payloadDelay;
1080        // if this a write-through packet it will be sent to cache
1081        // below
1082        return !pkt->writeThrough();
1083    } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
1084                       blk->isReadable())) {
1085        // OK to satisfy access
1086        incHitCount(pkt);
1087        satisfyRequest(pkt, blk);
1088        maintainClusivity(pkt->fromCache(), blk);
1089
1090        return true;
1091    }
1092
1093    // Can't satisfy access normally... either no block (blk == nullptr)
1094    // or have block but need writable
1095
1096    incMissCount(pkt);
1097
1098    if (!blk && pkt->isLLSC() && pkt->isWrite()) {
1099        // complete miss on store conditional... just give up now
1100        pkt->req->setExtraData(0);
1101        return true;
1102    }
1103
1104    return false;
1105}
1106
1107void
1108BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
1109{
1110    if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
1111        clusivity == Enums::mostly_excl) {
1112        // if we have responded to a cache, and our block is still
1113        // valid, but not dirty, and this cache is mostly exclusive
1114        // with respect to the cache above, drop the block
1115        invalidateBlock(blk);
1116    }
1117}
1118
1119CacheBlk*
1120BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1121                      bool allocate)
1122{
1123    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1124    Addr addr = pkt->getAddr();
1125    bool is_secure = pkt->isSecure();
1126#if TRACING_ON
1127    CacheBlk::State old_state = blk ? blk->status : 0;
1128#endif
1129
1130    // When handling a fill, we should have no writes to this line.
1131    assert(addr == pkt->getBlockAddr(blkSize));
1132    assert(!writeBuffer.findMatch(addr, is_secure));
1133
1134    if (!blk) {
1135        // better have read new data...
1136        assert(pkt->hasData());
1137
1138        // only read responses and write-line requests have data;
1139        // note that we don't write the data here for write-line - that
1140        // happens in the subsequent call to satisfyRequest
1141        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1142
1143        // need to do a replacement if allocating, otherwise we stick
1144        // with the temporary storage
1145        blk = allocate ? allocateBlock(pkt, writebacks) : nullptr;
1146
1147        if (!blk) {
1148            // No replaceable block or a mostly exclusive
1149            // cache... just use temporary storage to complete the
1150            // current request and then get rid of it
1151            assert(!tempBlock->isValid());
1152            blk = tempBlock;
1153            tempBlock->insert(addr, is_secure);
1154            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1155                    is_secure ? "s" : "ns");
1156        }
1157
1158        // we should never be overwriting a valid block
1159        assert(!blk->isValid());
1160    } else {
1161        // existing block... probably an upgrade
1162        assert(regenerateBlkAddr(blk) == addr);
1163        assert(blk->isSecure() == is_secure);
1164        // either we're getting new data or the block should already be valid
1165        assert(pkt->hasData() || blk->isValid());
1166        // don't clear block status... if block is already dirty we
1167        // don't want to lose that
1168    }
1169
1170    blk->status |= BlkValid | BlkReadable;
1171
1172    // sanity check for whole-line writes, which should always be
1173    // marked as writable as part of the fill, and then later marked
1174    // dirty as part of satisfyRequest
1175    if (pkt->cmd == MemCmd::WriteLineReq) {
1176        assert(!pkt->hasSharers());
1177    }
1178
1179    // here we deal with setting the appropriate state of the line,
1180    // and we start by looking at the hasSharers flag, and ignore the
1181    // cacheResponding flag (normally signalling dirty data) if the
1182    // packet has sharers, thus the line is never allocated as Owned
1183    // (dirty but not writable), and always ends up being either
1184    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1185    // for more details
1186    if (!pkt->hasSharers()) {
1187        // we could get a writable line from memory (rather than a
1188        // cache) even in a read-only cache, note that we set this bit
1189        // even for a read-only cache, possibly revisit this decision
1190        blk->status |= BlkWritable;
1191
1192        // check if we got this via cache-to-cache transfer (i.e., from a
1193        // cache that had the block in Modified or Owned state)
1194        if (pkt->cacheResponding()) {
1195            // we got the block in Modified state, and invalidated the
1196            // owners copy
1197            blk->status |= BlkDirty;
1198
1199            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1200                          "in read-only cache %s\n", name());
1201        }
1202    }
1203
1204    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1205            addr, is_secure ? "s" : "ns", old_state, blk->print());
1206
1207    // if we got new data, copy it in (checking for a read response
1208    // and a response that has data is the same in the end)
1209    if (pkt->isRead()) {
1210        // sanity checks
1211        assert(pkt->hasData());
1212        assert(pkt->getSize() == blkSize);
1213
1214        pkt->writeDataToBlock(blk->data, blkSize);
1215    }
1216    // We pay for fillLatency here.
1217    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1218        pkt->payloadDelay;
1219
1220    return blk;
1221}
1222
1223CacheBlk*
1224BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks)
1225{
1226    // Get address
1227    const Addr addr = pkt->getAddr();
1228
1229    // Get secure bit
1230    const bool is_secure = pkt->isSecure();
1231
1232    // Find replacement victim
1233    std::vector<CacheBlk*> evict_blks;
1234    CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks);
1235
1236    // It is valid to return nullptr if there is no victim
1237    if (!victim)
1238        return nullptr;
1239
1240    // Check for transient state allocations. If any of the entries listed
1241    // for eviction has a transient state, the allocation fails
1242    for (const auto& blk : evict_blks) {
1243        if (blk->isValid()) {
1244            Addr repl_addr = regenerateBlkAddr(blk);
1245            MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1246            if (repl_mshr) {
1247                // must be an outstanding upgrade or clean request
1248                // on a block we're about to replace...
1249                assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1250                       repl_mshr->isCleaning());
1251
1252                // too hard to replace block with transient state
1253                // allocation failed, block not inserted
1254                return nullptr;
1255            }
1256        }
1257    }
1258
1259    // The victim will be replaced by a new entry, so increase the replacement
1260    // counter if a valid block is being replaced
1261    if (victim->isValid()) {
1262        DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1263                "(%s): %s\n", regenerateBlkAddr(victim),
1264                victim->isSecure() ? "s" : "ns",
1265                addr, is_secure ? "s" : "ns",
1266                victim->isDirty() ? "writeback" : "clean");
1267
1268        replacements++;
1269    }
1270
1271    // Evict valid blocks associated to this victim block
1272    for (const auto& blk : evict_blks) {
1273        if (blk->isValid()) {
1274            if (blk->wasPrefetched()) {
1275                unusedPrefetches++;
1276            }
1277
1278            evictBlock(blk, writebacks);
1279        }
1280    }
1281
1282    // Insert new block at victimized entry
1283    tags->insertBlock(addr, is_secure, pkt->req->masterId(),
1284                      pkt->req->taskId(), victim);
1285
1286    return victim;
1287}
1288
1289void
1290BaseCache::invalidateBlock(CacheBlk *blk)
1291{
1292    if (blk != tempBlock)
1293        tags->invalidate(blk);
1294    blk->invalidate();
1295}
1296
1297PacketPtr
1298BaseCache::writebackBlk(CacheBlk *blk)
1299{
1300    chatty_assert(!isReadOnly || writebackClean,
1301                  "Writeback from read-only cache");
1302    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1303
1304    writebacks[Request::wbMasterId]++;
1305
1306    RequestPtr req = std::make_shared<Request>(
1307        regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1308
1309    if (blk->isSecure())
1310        req->setFlags(Request::SECURE);
1311
1312    req->taskId(blk->task_id);
1313
1314    PacketPtr pkt =
1315        new Packet(req, blk->isDirty() ?
1316                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1317
1318    DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1319            pkt->print(), blk->isWritable(), blk->isDirty());
1320
1321    if (blk->isWritable()) {
1322        // not asserting shared means we pass the block in modified
1323        // state, mark our own block non-writeable
1324        blk->status &= ~BlkWritable;
1325    } else {
1326        // we are in the Owned state, tell the receiver
1327        pkt->setHasSharers();
1328    }
1329
1330    // make sure the block is not marked dirty
1331    blk->status &= ~BlkDirty;
1332
1333    pkt->allocate();
1334    pkt->setDataFromBlock(blk->data, blkSize);
1335
1336    return pkt;
1337}
1338
1339PacketPtr
1340BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1341{
1342    RequestPtr req = std::make_shared<Request>(
1343        regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1344
1345    if (blk->isSecure()) {
1346        req->setFlags(Request::SECURE);
1347    }
1348    req->taskId(blk->task_id);
1349
1350    PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1351
1352    if (dest) {
1353        req->setFlags(dest);
1354        pkt->setWriteThrough();
1355    }
1356
1357    DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1358            blk->isWritable(), blk->isDirty());
1359
1360    if (blk->isWritable()) {
1361        // not asserting shared means we pass the block in modified
1362        // state, mark our own block non-writeable
1363        blk->status &= ~BlkWritable;
1364    } else {
1365        // we are in the Owned state, tell the receiver
1366        pkt->setHasSharers();
1367    }
1368
1369    // make sure the block is not marked dirty
1370    blk->status &= ~BlkDirty;
1371
1372    pkt->allocate();
1373    pkt->setDataFromBlock(blk->data, blkSize);
1374
1375    return pkt;
1376}
1377
1378
1379void
1380BaseCache::memWriteback()
1381{
1382    tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
1383}
1384
1385void
1386BaseCache::memInvalidate()
1387{
1388    tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
1389}
1390
1391bool
1392BaseCache::isDirty() const
1393{
1394    return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
1395}
1396
1397void
1398BaseCache::writebackVisitor(CacheBlk &blk)
1399{
1400    if (blk.isDirty()) {
1401        assert(blk.isValid());
1402
1403        RequestPtr request = std::make_shared<Request>(
1404            regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId);
1405
1406        request->taskId(blk.task_id);
1407        if (blk.isSecure()) {
1408            request->setFlags(Request::SECURE);
1409        }
1410
1411        Packet packet(request, MemCmd::WriteReq);
1412        packet.dataStatic(blk.data);
1413
1414        memSidePort.sendFunctional(&packet);
1415
1416        blk.status &= ~BlkDirty;
1417    }
1418}
1419
1420void
1421BaseCache::invalidateVisitor(CacheBlk &blk)
1422{
1423    if (blk.isDirty())
1424        warn_once("Invalidating dirty cache lines. " \
1425                  "Expect things to break.\n");
1426
1427    if (blk.isValid()) {
1428        assert(!blk.isDirty());
1429        invalidateBlock(&blk);
1430    }
1431}
1432
1433Tick
1434BaseCache::nextQueueReadyTime() const
1435{
1436    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
1437                              writeBuffer.nextReadyTime());
1438
1439    // Don't signal prefetch ready time if no MSHRs available
1440    // Will signal once enoguh MSHRs are deallocated
1441    if (prefetcher && mshrQueue.canPrefetch()) {
1442        nextReady = std::min(nextReady,
1443                             prefetcher->nextPrefetchReadyTime());
1444    }
1445
1446    return nextReady;
1447}
1448
1449
1450bool
1451BaseCache::sendMSHRQueuePacket(MSHR* mshr)
1452{
1453    assert(mshr);
1454
1455    // use request from 1st target
1456    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1457
1458    DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1459
1460    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
1461
1462    // either a prefetch that is not present upstream, or a normal
1463    // MSHR request, proceed to get the packet to send downstream
1464    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
1465
1466    mshr->isForward = (pkt == nullptr);
1467
1468    if (mshr->isForward) {
1469        // not a cache block request, but a response is expected
1470        // make copy of current packet to forward, keep current
1471        // copy for response handling
1472        pkt = new Packet(tgt_pkt, false, true);
1473        assert(!pkt->isWrite());
1474    }
1475
1476    // play it safe and append (rather than set) the sender state,
1477    // as forwarded packets may already have existing state
1478    pkt->pushSenderState(mshr);
1479
1480    if (pkt->isClean() && blk && blk->isDirty()) {
1481        // A cache clean opearation is looking for a dirty block. Mark
1482        // the packet so that the destination xbar can determine that
1483        // there will be a follow-up write packet as well.
1484        pkt->setSatisfied();
1485    }
1486
1487    if (!memSidePort.sendTimingReq(pkt)) {
1488        // we are awaiting a retry, but we
1489        // delete the packet and will be creating a new packet
1490        // when we get the opportunity
1491        delete pkt;
1492
1493        // note that we have now masked any requestBus and
1494        // schedSendEvent (we will wait for a retry before
1495        // doing anything), and this is so even if we do not
1496        // care about this packet and might override it before
1497        // it gets retried
1498        return true;
1499    } else {
1500        // As part of the call to sendTimingReq the packet is
1501        // forwarded to all neighbouring caches (and any caches
1502        // above them) as a snoop. Thus at this point we know if
1503        // any of the neighbouring caches are responding, and if
1504        // so, we know it is dirty, and we can determine if it is
1505        // being passed as Modified, making our MSHR the ordering
1506        // point
1507        bool pending_modified_resp = !pkt->hasSharers() &&
1508            pkt->cacheResponding();
1509        markInService(mshr, pending_modified_resp);
1510
1511        if (pkt->isClean() && blk && blk->isDirty()) {
1512            // A cache clean opearation is looking for a dirty
1513            // block. If a dirty block is encountered a WriteClean
1514            // will update any copies to the path to the memory
1515            // until the point of reference.
1516            DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1517                    __func__, pkt->print(), blk->print());
1518            PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
1519                                             pkt->id);
1520            PacketList writebacks;
1521            writebacks.push_back(wb_pkt);
1522            doWritebacks(writebacks, 0);
1523        }
1524
1525        return false;
1526    }
1527}
1528
1529bool
1530BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
1531{
1532    assert(wq_entry);
1533
1534    // always a single target for write queue entries
1535    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
1536
1537    DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
1538
1539    // forward as is, both for evictions and uncacheable writes
1540    if (!memSidePort.sendTimingReq(tgt_pkt)) {
1541        // note that we have now masked any requestBus and
1542        // schedSendEvent (we will wait for a retry before
1543        // doing anything), and this is so even if we do not
1544        // care about this packet and might override it before
1545        // it gets retried
1546        return true;
1547    } else {
1548        markInService(wq_entry);
1549        return false;
1550    }
1551}
1552
1553void
1554BaseCache::serialize(CheckpointOut &cp) const
1555{
1556    bool dirty(isDirty());
1557
1558    if (dirty) {
1559        warn("*** The cache still contains dirty data. ***\n");
1560        warn("    Make sure to drain the system using the correct flags.\n");
1561        warn("    This checkpoint will not restore correctly " \
1562             "and dirty data in the cache will be lost!\n");
1563    }
1564
1565    // Since we don't checkpoint the data in the cache, any dirty data
1566    // will be lost when restoring from a checkpoint of a system that
1567    // wasn't drained properly. Flag the checkpoint as invalid if the
1568    // cache contains dirty data.
1569    bool bad_checkpoint(dirty);
1570    SERIALIZE_SCALAR(bad_checkpoint);
1571}
1572
1573void
1574BaseCache::unserialize(CheckpointIn &cp)
1575{
1576    bool bad_checkpoint;
1577    UNSERIALIZE_SCALAR(bad_checkpoint);
1578    if (bad_checkpoint) {
1579        fatal("Restoring from checkpoints with dirty caches is not "
1580              "supported in the classic memory system. Please remove any "
1581              "caches or drain them properly before taking checkpoints.\n");
1582    }
1583}
1584
1585void
1586BaseCache::regStats()
1587{
1588    MemObject::regStats();
1589
1590    using namespace Stats;
1591
1592    // Hit statistics
1593    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1594        MemCmd cmd(access_idx);
1595        const string &cstr = cmd.toString();
1596
1597        hits[access_idx]
1598            .init(system->maxMasters())
1599            .name(name() + "." + cstr + "_hits")
1600            .desc("number of " + cstr + " hits")
1601            .flags(total | nozero | nonan)
1602            ;
1603        for (int i = 0; i < system->maxMasters(); i++) {
1604            hits[access_idx].subname(i, system->getMasterName(i));
1605        }
1606    }
1607
1608// These macros make it easier to sum the right subset of commands and
1609// to change the subset of commands that are considered "demand" vs
1610// "non-demand"
1611#define SUM_DEMAND(s) \
1612    (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
1613     s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
1614
1615// should writebacks be included here?  prior code was inconsistent...
1616#define SUM_NON_DEMAND(s) \
1617    (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq])
1618
1619    demandHits
1620        .name(name() + ".demand_hits")
1621        .desc("number of demand (read+write) hits")
1622        .flags(total | nozero | nonan)
1623        ;
1624    demandHits = SUM_DEMAND(hits);
1625    for (int i = 0; i < system->maxMasters(); i++) {
1626        demandHits.subname(i, system->getMasterName(i));
1627    }
1628
1629    overallHits
1630        .name(name() + ".overall_hits")
1631        .desc("number of overall hits")
1632        .flags(total | nozero | nonan)
1633        ;
1634    overallHits = demandHits + SUM_NON_DEMAND(hits);
1635    for (int i = 0; i < system->maxMasters(); i++) {
1636        overallHits.subname(i, system->getMasterName(i));
1637    }
1638
1639    // Miss statistics
1640    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1641        MemCmd cmd(access_idx);
1642        const string &cstr = cmd.toString();
1643
1644        misses[access_idx]
1645            .init(system->maxMasters())
1646            .name(name() + "." + cstr + "_misses")
1647            .desc("number of " + cstr + " misses")
1648            .flags(total | nozero | nonan)
1649            ;
1650        for (int i = 0; i < system->maxMasters(); i++) {
1651            misses[access_idx].subname(i, system->getMasterName(i));
1652        }
1653    }
1654
1655    demandMisses
1656        .name(name() + ".demand_misses")
1657        .desc("number of demand (read+write) misses")
1658        .flags(total | nozero | nonan)
1659        ;
1660    demandMisses = SUM_DEMAND(misses);
1661    for (int i = 0; i < system->maxMasters(); i++) {
1662        demandMisses.subname(i, system->getMasterName(i));
1663    }
1664
1665    overallMisses
1666        .name(name() + ".overall_misses")
1667        .desc("number of overall misses")
1668        .flags(total | nozero | nonan)
1669        ;
1670    overallMisses = demandMisses + SUM_NON_DEMAND(misses);
1671    for (int i = 0; i < system->maxMasters(); i++) {
1672        overallMisses.subname(i, system->getMasterName(i));
1673    }
1674
1675    // Miss latency statistics
1676    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1677        MemCmd cmd(access_idx);
1678        const string &cstr = cmd.toString();
1679
1680        missLatency[access_idx]
1681            .init(system->maxMasters())
1682            .name(name() + "." + cstr + "_miss_latency")
1683            .desc("number of " + cstr + " miss cycles")
1684            .flags(total | nozero | nonan)
1685            ;
1686        for (int i = 0; i < system->maxMasters(); i++) {
1687            missLatency[access_idx].subname(i, system->getMasterName(i));
1688        }
1689    }
1690
1691    demandMissLatency
1692        .name(name() + ".demand_miss_latency")
1693        .desc("number of demand (read+write) miss cycles")
1694        .flags(total | nozero | nonan)
1695        ;
1696    demandMissLatency = SUM_DEMAND(missLatency);
1697    for (int i = 0; i < system->maxMasters(); i++) {
1698        demandMissLatency.subname(i, system->getMasterName(i));
1699    }
1700
1701    overallMissLatency
1702        .name(name() + ".overall_miss_latency")
1703        .desc("number of overall miss cycles")
1704        .flags(total | nozero | nonan)
1705        ;
1706    overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
1707    for (int i = 0; i < system->maxMasters(); i++) {
1708        overallMissLatency.subname(i, system->getMasterName(i));
1709    }
1710
1711    // access formulas
1712    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1713        MemCmd cmd(access_idx);
1714        const string &cstr = cmd.toString();
1715
1716        accesses[access_idx]
1717            .name(name() + "." + cstr + "_accesses")
1718            .desc("number of " + cstr + " accesses(hits+misses)")
1719            .flags(total | nozero | nonan)
1720            ;
1721        accesses[access_idx] = hits[access_idx] + misses[access_idx];
1722
1723        for (int i = 0; i < system->maxMasters(); i++) {
1724            accesses[access_idx].subname(i, system->getMasterName(i));
1725        }
1726    }
1727
1728    demandAccesses
1729        .name(name() + ".demand_accesses")
1730        .desc("number of demand (read+write) accesses")
1731        .flags(total | nozero | nonan)
1732        ;
1733    demandAccesses = demandHits + demandMisses;
1734    for (int i = 0; i < system->maxMasters(); i++) {
1735        demandAccesses.subname(i, system->getMasterName(i));
1736    }
1737
1738    overallAccesses
1739        .name(name() + ".overall_accesses")
1740        .desc("number of overall (read+write) accesses")
1741        .flags(total | nozero | nonan)
1742        ;
1743    overallAccesses = overallHits + overallMisses;
1744    for (int i = 0; i < system->maxMasters(); i++) {
1745        overallAccesses.subname(i, system->getMasterName(i));
1746    }
1747
1748    // miss rate formulas
1749    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1750        MemCmd cmd(access_idx);
1751        const string &cstr = cmd.toString();
1752
1753        missRate[access_idx]
1754            .name(name() + "." + cstr + "_miss_rate")
1755            .desc("miss rate for " + cstr + " accesses")
1756            .flags(total | nozero | nonan)
1757            ;
1758        missRate[access_idx] = misses[access_idx] / accesses[access_idx];
1759
1760        for (int i = 0; i < system->maxMasters(); i++) {
1761            missRate[access_idx].subname(i, system->getMasterName(i));
1762        }
1763    }
1764
1765    demandMissRate
1766        .name(name() + ".demand_miss_rate")
1767        .desc("miss rate for demand accesses")
1768        .flags(total | nozero | nonan)
1769        ;
1770    demandMissRate = demandMisses / demandAccesses;
1771    for (int i = 0; i < system->maxMasters(); i++) {
1772        demandMissRate.subname(i, system->getMasterName(i));
1773    }
1774
1775    overallMissRate
1776        .name(name() + ".overall_miss_rate")
1777        .desc("miss rate for overall accesses")
1778        .flags(total | nozero | nonan)
1779        ;
1780    overallMissRate = overallMisses / overallAccesses;
1781    for (int i = 0; i < system->maxMasters(); i++) {
1782        overallMissRate.subname(i, system->getMasterName(i));
1783    }
1784
1785    // miss latency formulas
1786    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1787        MemCmd cmd(access_idx);
1788        const string &cstr = cmd.toString();
1789
1790        avgMissLatency[access_idx]
1791            .name(name() + "." + cstr + "_avg_miss_latency")
1792            .desc("average " + cstr + " miss latency")
1793            .flags(total | nozero | nonan)
1794            ;
1795        avgMissLatency[access_idx] =
1796            missLatency[access_idx] / misses[access_idx];
1797
1798        for (int i = 0; i < system->maxMasters(); i++) {
1799            avgMissLatency[access_idx].subname(i, system->getMasterName(i));
1800        }
1801    }
1802
1803    demandAvgMissLatency
1804        .name(name() + ".demand_avg_miss_latency")
1805        .desc("average overall miss latency")
1806        .flags(total | nozero | nonan)
1807        ;
1808    demandAvgMissLatency = demandMissLatency / demandMisses;
1809    for (int i = 0; i < system->maxMasters(); i++) {
1810        demandAvgMissLatency.subname(i, system->getMasterName(i));
1811    }
1812
1813    overallAvgMissLatency
1814        .name(name() + ".overall_avg_miss_latency")
1815        .desc("average overall miss latency")
1816        .flags(total | nozero | nonan)
1817        ;
1818    overallAvgMissLatency = overallMissLatency / overallMisses;
1819    for (int i = 0; i < system->maxMasters(); i++) {
1820        overallAvgMissLatency.subname(i, system->getMasterName(i));
1821    }
1822
1823    blocked_cycles.init(NUM_BLOCKED_CAUSES);
1824    blocked_cycles
1825        .name(name() + ".blocked_cycles")
1826        .desc("number of cycles access was blocked")
1827        .subname(Blocked_NoMSHRs, "no_mshrs")
1828        .subname(Blocked_NoTargets, "no_targets")
1829        ;
1830
1831
1832    blocked_causes.init(NUM_BLOCKED_CAUSES);
1833    blocked_causes
1834        .name(name() + ".blocked")
1835        .desc("number of cycles access was blocked")
1836        .subname(Blocked_NoMSHRs, "no_mshrs")
1837        .subname(Blocked_NoTargets, "no_targets")
1838        ;
1839
1840    avg_blocked
1841        .name(name() + ".avg_blocked_cycles")
1842        .desc("average number of cycles each access was blocked")
1843        .subname(Blocked_NoMSHRs, "no_mshrs")
1844        .subname(Blocked_NoTargets, "no_targets")
1845        ;
1846
1847    avg_blocked = blocked_cycles / blocked_causes;
1848
1849    unusedPrefetches
1850        .name(name() + ".unused_prefetches")
1851        .desc("number of HardPF blocks evicted w/o reference")
1852        .flags(nozero)
1853        ;
1854
1855    writebacks
1856        .init(system->maxMasters())
1857        .name(name() + ".writebacks")
1858        .desc("number of writebacks")
1859        .flags(total | nozero | nonan)
1860        ;
1861    for (int i = 0; i < system->maxMasters(); i++) {
1862        writebacks.subname(i, system->getMasterName(i));
1863    }
1864
1865    // MSHR statistics
1866    // MSHR hit statistics
1867    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1868        MemCmd cmd(access_idx);
1869        const string &cstr = cmd.toString();
1870
1871        mshr_hits[access_idx]
1872            .init(system->maxMasters())
1873            .name(name() + "." + cstr + "_mshr_hits")
1874            .desc("number of " + cstr + " MSHR hits")
1875            .flags(total | nozero | nonan)
1876            ;
1877        for (int i = 0; i < system->maxMasters(); i++) {
1878            mshr_hits[access_idx].subname(i, system->getMasterName(i));
1879        }
1880    }
1881
1882    demandMshrHits
1883        .name(name() + ".demand_mshr_hits")
1884        .desc("number of demand (read+write) MSHR hits")
1885        .flags(total | nozero | nonan)
1886        ;
1887    demandMshrHits = SUM_DEMAND(mshr_hits);
1888    for (int i = 0; i < system->maxMasters(); i++) {
1889        demandMshrHits.subname(i, system->getMasterName(i));
1890    }
1891
1892    overallMshrHits
1893        .name(name() + ".overall_mshr_hits")
1894        .desc("number of overall MSHR hits")
1895        .flags(total | nozero | nonan)
1896        ;
1897    overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
1898    for (int i = 0; i < system->maxMasters(); i++) {
1899        overallMshrHits.subname(i, system->getMasterName(i));
1900    }
1901
1902    // MSHR miss statistics
1903    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1904        MemCmd cmd(access_idx);
1905        const string &cstr = cmd.toString();
1906
1907        mshr_misses[access_idx]
1908            .init(system->maxMasters())
1909            .name(name() + "." + cstr + "_mshr_misses")
1910            .desc("number of " + cstr + " MSHR misses")
1911            .flags(total | nozero | nonan)
1912            ;
1913        for (int i = 0; i < system->maxMasters(); i++) {
1914            mshr_misses[access_idx].subname(i, system->getMasterName(i));
1915        }
1916    }
1917
1918    demandMshrMisses
1919        .name(name() + ".demand_mshr_misses")
1920        .desc("number of demand (read+write) MSHR misses")
1921        .flags(total | nozero | nonan)
1922        ;
1923    demandMshrMisses = SUM_DEMAND(mshr_misses);
1924    for (int i = 0; i < system->maxMasters(); i++) {
1925        demandMshrMisses.subname(i, system->getMasterName(i));
1926    }
1927
1928    overallMshrMisses
1929        .name(name() + ".overall_mshr_misses")
1930        .desc("number of overall MSHR misses")
1931        .flags(total | nozero | nonan)
1932        ;
1933    overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
1934    for (int i = 0; i < system->maxMasters(); i++) {
1935        overallMshrMisses.subname(i, system->getMasterName(i));
1936    }
1937
1938    // MSHR miss latency statistics
1939    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1940        MemCmd cmd(access_idx);
1941        const string &cstr = cmd.toString();
1942
1943        mshr_miss_latency[access_idx]
1944            .init(system->maxMasters())
1945            .name(name() + "." + cstr + "_mshr_miss_latency")
1946            .desc("number of " + cstr + " MSHR miss cycles")
1947            .flags(total | nozero | nonan)
1948            ;
1949        for (int i = 0; i < system->maxMasters(); i++) {
1950            mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
1951        }
1952    }
1953
1954    demandMshrMissLatency
1955        .name(name() + ".demand_mshr_miss_latency")
1956        .desc("number of demand (read+write) MSHR miss cycles")
1957        .flags(total | nozero | nonan)
1958        ;
1959    demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
1960    for (int i = 0; i < system->maxMasters(); i++) {
1961        demandMshrMissLatency.subname(i, system->getMasterName(i));
1962    }
1963
1964    overallMshrMissLatency
1965        .name(name() + ".overall_mshr_miss_latency")
1966        .desc("number of overall MSHR miss cycles")
1967        .flags(total | nozero | nonan)
1968        ;
1969    overallMshrMissLatency =
1970        demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
1971    for (int i = 0; i < system->maxMasters(); i++) {
1972        overallMshrMissLatency.subname(i, system->getMasterName(i));
1973    }
1974
1975    // MSHR uncacheable statistics
1976    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1977        MemCmd cmd(access_idx);
1978        const string &cstr = cmd.toString();
1979
1980        mshr_uncacheable[access_idx]
1981            .init(system->maxMasters())
1982            .name(name() + "." + cstr + "_mshr_uncacheable")
1983            .desc("number of " + cstr + " MSHR uncacheable")
1984            .flags(total | nozero | nonan)
1985            ;
1986        for (int i = 0; i < system->maxMasters(); i++) {
1987            mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
1988        }
1989    }
1990
1991    overallMshrUncacheable
1992        .name(name() + ".overall_mshr_uncacheable_misses")
1993        .desc("number of overall MSHR uncacheable misses")
1994        .flags(total | nozero | nonan)
1995        ;
1996    overallMshrUncacheable =
1997        SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
1998    for (int i = 0; i < system->maxMasters(); i++) {
1999        overallMshrUncacheable.subname(i, system->getMasterName(i));
2000    }
2001
2002    // MSHR miss latency statistics
2003    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2004        MemCmd cmd(access_idx);
2005        const string &cstr = cmd.toString();
2006
2007        mshr_uncacheable_lat[access_idx]
2008            .init(system->maxMasters())
2009            .name(name() + "." + cstr + "_mshr_uncacheable_latency")
2010            .desc("number of " + cstr + " MSHR uncacheable cycles")
2011            .flags(total | nozero | nonan)
2012            ;
2013        for (int i = 0; i < system->maxMasters(); i++) {
2014            mshr_uncacheable_lat[access_idx].subname(
2015                i, system->getMasterName(i));
2016        }
2017    }
2018
2019    overallMshrUncacheableLatency
2020        .name(name() + ".overall_mshr_uncacheable_latency")
2021        .desc("number of overall MSHR uncacheable cycles")
2022        .flags(total | nozero | nonan)
2023        ;
2024    overallMshrUncacheableLatency =
2025        SUM_DEMAND(mshr_uncacheable_lat) +
2026        SUM_NON_DEMAND(mshr_uncacheable_lat);
2027    for (int i = 0; i < system->maxMasters(); i++) {
2028        overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
2029    }
2030
2031#if 0
2032    // MSHR access formulas
2033    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2034        MemCmd cmd(access_idx);
2035        const string &cstr = cmd.toString();
2036
2037        mshrAccesses[access_idx]
2038            .name(name() + "." + cstr + "_mshr_accesses")
2039            .desc("number of " + cstr + " mshr accesses(hits+misses)")
2040            .flags(total | nozero | nonan)
2041            ;
2042        mshrAccesses[access_idx] =
2043            mshr_hits[access_idx] + mshr_misses[access_idx]
2044            + mshr_uncacheable[access_idx];
2045    }
2046
2047    demandMshrAccesses
2048        .name(name() + ".demand_mshr_accesses")
2049        .desc("number of demand (read+write) mshr accesses")
2050        .flags(total | nozero | nonan)
2051        ;
2052    demandMshrAccesses = demandMshrHits + demandMshrMisses;
2053
2054    overallMshrAccesses
2055        .name(name() + ".overall_mshr_accesses")
2056        .desc("number of overall (read+write) mshr accesses")
2057        .flags(total | nozero | nonan)
2058        ;
2059    overallMshrAccesses = overallMshrHits + overallMshrMisses
2060        + overallMshrUncacheable;
2061#endif
2062
2063    // MSHR miss rate formulas
2064    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2065        MemCmd cmd(access_idx);
2066        const string &cstr = cmd.toString();
2067
2068        mshrMissRate[access_idx]
2069            .name(name() + "." + cstr + "_mshr_miss_rate")
2070            .desc("mshr miss rate for " + cstr + " accesses")
2071            .flags(total | nozero | nonan)
2072            ;
2073        mshrMissRate[access_idx] =
2074            mshr_misses[access_idx] / accesses[access_idx];
2075
2076        for (int i = 0; i < system->maxMasters(); i++) {
2077            mshrMissRate[access_idx].subname(i, system->getMasterName(i));
2078        }
2079    }
2080
2081    demandMshrMissRate
2082        .name(name() + ".demand_mshr_miss_rate")
2083        .desc("mshr miss rate for demand accesses")
2084        .flags(total | nozero | nonan)
2085        ;
2086    demandMshrMissRate = demandMshrMisses / demandAccesses;
2087    for (int i = 0; i < system->maxMasters(); i++) {
2088        demandMshrMissRate.subname(i, system->getMasterName(i));
2089    }
2090
2091    overallMshrMissRate
2092        .name(name() + ".overall_mshr_miss_rate")
2093        .desc("mshr miss rate for overall accesses")
2094        .flags(total | nozero | nonan)
2095        ;
2096    overallMshrMissRate = overallMshrMisses / overallAccesses;
2097    for (int i = 0; i < system->maxMasters(); i++) {
2098        overallMshrMissRate.subname(i, system->getMasterName(i));
2099    }
2100
2101    // mshrMiss latency formulas
2102    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2103        MemCmd cmd(access_idx);
2104        const string &cstr = cmd.toString();
2105
2106        avgMshrMissLatency[access_idx]
2107            .name(name() + "." + cstr + "_avg_mshr_miss_latency")
2108            .desc("average " + cstr + " mshr miss latency")
2109            .flags(total | nozero | nonan)
2110            ;
2111        avgMshrMissLatency[access_idx] =
2112            mshr_miss_latency[access_idx] / mshr_misses[access_idx];
2113
2114        for (int i = 0; i < system->maxMasters(); i++) {
2115            avgMshrMissLatency[access_idx].subname(
2116                i, system->getMasterName(i));
2117        }
2118    }
2119
2120    demandAvgMshrMissLatency
2121        .name(name() + ".demand_avg_mshr_miss_latency")
2122        .desc("average overall mshr miss latency")
2123        .flags(total | nozero | nonan)
2124        ;
2125    demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
2126    for (int i = 0; i < system->maxMasters(); i++) {
2127        demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
2128    }
2129
2130    overallAvgMshrMissLatency
2131        .name(name() + ".overall_avg_mshr_miss_latency")
2132        .desc("average overall mshr miss latency")
2133        .flags(total | nozero | nonan)
2134        ;
2135    overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
2136    for (int i = 0; i < system->maxMasters(); i++) {
2137        overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
2138    }
2139
2140    // mshrUncacheable latency formulas
2141    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2142        MemCmd cmd(access_idx);
2143        const string &cstr = cmd.toString();
2144
2145        avgMshrUncacheableLatency[access_idx]
2146            .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
2147            .desc("average " + cstr + " mshr uncacheable latency")
2148            .flags(total | nozero | nonan)
2149            ;
2150        avgMshrUncacheableLatency[access_idx] =
2151            mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
2152
2153        for (int i = 0; i < system->maxMasters(); i++) {
2154            avgMshrUncacheableLatency[access_idx].subname(
2155                i, system->getMasterName(i));
2156        }
2157    }
2158
2159    overallAvgMshrUncacheableLatency
2160        .name(name() + ".overall_avg_mshr_uncacheable_latency")
2161        .desc("average overall mshr uncacheable latency")
2162        .flags(total | nozero | nonan)
2163        ;
2164    overallAvgMshrUncacheableLatency =
2165        overallMshrUncacheableLatency / overallMshrUncacheable;
2166    for (int i = 0; i < system->maxMasters(); i++) {
2167        overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2168    }
2169
2170    replacements
2171        .name(name() + ".replacements")
2172        .desc("number of replacements")
2173        ;
2174}
2175
2176///////////////
2177//
2178// CpuSidePort
2179//
2180///////////////
2181bool
2182BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2183{
2184    // Snoops shouldn't happen when bypassing caches
2185    assert(!cache->system->bypassCaches());
2186
2187    assert(pkt->isResponse());
2188
2189    // Express snoop responses from master to slave, e.g., from L1 to L2
2190    cache->recvTimingSnoopResp(pkt);
2191    return true;
2192}
2193
2194
2195bool
2196BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
2197{
2198    if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
2199        // always let express snoop packets through even if blocked
2200        return true;
2201    } else if (blocked || mustSendRetry) {
2202        // either already committed to send a retry, or blocked
2203        mustSendRetry = true;
2204        return false;
2205    }
2206    mustSendRetry = false;
2207    return true;
2208}
2209
2210bool
2211BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2212{
2213    assert(pkt->isRequest());
2214
2215    if (cache->system->bypassCaches()) {
2216        // Just forward the packet if caches are disabled.
2217        // @todo This should really enqueue the packet rather
2218        bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
2219        assert(success);
2220        return true;
2221    } else if (tryTiming(pkt)) {
2222        cache->recvTimingReq(pkt);
2223        return true;
2224    }
2225    return false;
2226}
2227
2228Tick
2229BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
2230{
2231    if (cache->system->bypassCaches()) {
2232        // Forward the request if the system is in cache bypass mode.
2233        return cache->memSidePort.sendAtomic(pkt);
2234    } else {
2235        return cache->recvAtomic(pkt);
2236    }
2237}
2238
2239void
2240BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
2241{
2242    if (cache->system->bypassCaches()) {
2243        // The cache should be flushed if we are in cache bypass mode,
2244        // so we don't need to check if we need to update anything.
2245        cache->memSidePort.sendFunctional(pkt);
2246        return;
2247    }
2248
2249    // functional request
2250    cache->functionalAccess(pkt, true);
2251}
2252
2253AddrRangeList
2254BaseCache::CpuSidePort::getAddrRanges() const
2255{
2256    return cache->getAddrRanges();
2257}
2258
2259
2260BaseCache::
2261CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
2262                         const std::string &_label)
2263    : CacheSlavePort(_name, _cache, _label), cache(_cache)
2264{
2265}
2266
2267///////////////
2268//
2269// MemSidePort
2270//
2271///////////////
2272bool
2273BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
2274{
2275    cache->recvTimingResp(pkt);
2276    return true;
2277}
2278
2279// Express snooping requests to memside port
2280void
2281BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2282{
2283    // Snoops shouldn't happen when bypassing caches
2284    assert(!cache->system->bypassCaches());
2285
2286    // handle snooping requests
2287    cache->recvTimingSnoopReq(pkt);
2288}
2289
2290Tick
2291BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2292{
2293    // Snoops shouldn't happen when bypassing caches
2294    assert(!cache->system->bypassCaches());
2295
2296    return cache->recvAtomicSnoop(pkt);
2297}
2298
2299void
2300BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2301{
2302    // Snoops shouldn't happen when bypassing caches
2303    assert(!cache->system->bypassCaches());
2304
2305    // functional snoop (note that in contrast to atomic we don't have
2306    // a specific functionalSnoop method, as they have the same
2307    // behaviour regardless)
2308    cache->functionalAccess(pkt, false);
2309}
2310
2311void
2312BaseCache::CacheReqPacketQueue::sendDeferredPacket()
2313{
2314    // sanity check
2315    assert(!waitingOnRetry);
2316
2317    // there should never be any deferred request packets in the
2318    // queue, instead we resly on the cache to provide the packets
2319    // from the MSHR queue or write queue
2320    assert(deferredPacketReadyTime() == MaxTick);
2321
2322    // check for request packets (requests & writebacks)
2323    QueueEntry* entry = cache.getNextQueueEntry();
2324
2325    if (!entry) {
2326        // can happen if e.g. we attempt a writeback and fail, but
2327        // before the retry, the writeback is eliminated because
2328        // we snoop another cache's ReadEx.
2329    } else {
2330        // let our snoop responses go first if there are responses to
2331        // the same addresses
2332        if (checkConflictingSnoop(entry->blkAddr)) {
2333            return;
2334        }
2335        waitingOnRetry = entry->sendPacket(cache);
2336    }
2337
2338    // if we succeeded and are not waiting for a retry, schedule the
2339    // next send considering when the next queue is ready, note that
2340    // snoop responses have their own packet queue and thus schedule
2341    // their own events
2342    if (!waitingOnRetry) {
2343        schedSendEvent(cache.nextQueueReadyTime());
2344    }
2345}
2346
2347BaseCache::MemSidePort::MemSidePort(const std::string &_name,
2348                                    BaseCache *_cache,
2349                                    const std::string &_label)
2350    : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2351      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2352      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2353{
2354}
2355