base.cc revision 13746
1/*
2 * Copyright (c) 2012-2013, 2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 *          Nikos Nikoleris
42 */
43
44/**
45 * @file
46 * Definition of BaseCache functions.
47 */
48
49#include "mem/cache/base.hh"
50
51#include "base/compiler.hh"
52#include "base/logging.hh"
53#include "debug/Cache.hh"
54#include "debug/CachePort.hh"
55#include "debug/CacheRepl.hh"
56#include "debug/CacheVerbose.hh"
57#include "mem/cache/mshr.hh"
58#include "mem/cache/prefetch/base.hh"
59#include "mem/cache/queue_entry.hh"
60#include "params/BaseCache.hh"
61#include "params/WriteAllocator.hh"
62#include "sim/core.hh"
63
64class BaseMasterPort;
65class BaseSlavePort;
66
67using namespace std;
68
69BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
70                                          BaseCache *_cache,
71                                          const std::string &_label)
72    : QueuedSlavePort(_name, _cache, queue),
73      queue(*_cache, *this, true, _label),
74      blocked(false), mustSendRetry(false),
75      sendRetryEvent([this]{ processSendRetry(); }, _name)
76{
77}
78
79BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
80    : MemObject(p),
81      cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
82      memSidePort(p->name + ".mem_side", this, "MemSidePort"),
83      mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
84      writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
85      tags(p->tags),
86      prefetcher(p->prefetcher),
87      writeAllocator(p->write_allocator),
88      writebackClean(p->writeback_clean),
89      tempBlockWriteback(nullptr),
90      writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
91                                    name(), false,
92                                    EventBase::Delayed_Writeback_Pri),
93      blkSize(blk_size),
94      lookupLatency(p->tag_latency),
95      dataLatency(p->data_latency),
96      forwardLatency(p->tag_latency),
97      fillLatency(p->data_latency),
98      responseLatency(p->response_latency),
99      sequentialAccess(p->sequential_access),
100      numTarget(p->tgts_per_mshr),
101      forwardSnoops(true),
102      clusivity(p->clusivity),
103      isReadOnly(p->is_read_only),
104      blocked(0),
105      order(0),
106      noTargetMSHR(nullptr),
107      missCount(p->max_miss_count),
108      addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
109      system(p->system)
110{
111    // the MSHR queue has no reserve entries as we check the MSHR
112    // queue on every single allocation, whereas the write queue has
113    // as many reserve entries as we have MSHRs, since every MSHR may
114    // eventually require a writeback, and we do not check the write
115    // buffer before committing to an MSHR
116
117    // forward snoops is overridden in init() once we can query
118    // whether the connected master is actually snooping or not
119
120    tempBlock = new TempCacheBlk(blkSize);
121
122    tags->tagsInit();
123    if (prefetcher)
124        prefetcher->setCache(this);
125}
126
127BaseCache::~BaseCache()
128{
129    delete tempBlock;
130}
131
132void
133BaseCache::CacheSlavePort::setBlocked()
134{
135    assert(!blocked);
136    DPRINTF(CachePort, "Port is blocking new requests\n");
137    blocked = true;
138    // if we already scheduled a retry in this cycle, but it has not yet
139    // happened, cancel it
140    if (sendRetryEvent.scheduled()) {
141        owner.deschedule(sendRetryEvent);
142        DPRINTF(CachePort, "Port descheduled retry\n");
143        mustSendRetry = true;
144    }
145}
146
147void
148BaseCache::CacheSlavePort::clearBlocked()
149{
150    assert(blocked);
151    DPRINTF(CachePort, "Port is accepting new requests\n");
152    blocked = false;
153    if (mustSendRetry) {
154        // @TODO: need to find a better time (next cycle?)
155        owner.schedule(sendRetryEvent, curTick() + 1);
156    }
157}
158
159void
160BaseCache::CacheSlavePort::processSendRetry()
161{
162    DPRINTF(CachePort, "Port is sending retry\n");
163
164    // reset the flag and call retry
165    mustSendRetry = false;
166    sendRetryReq();
167}
168
169Addr
170BaseCache::regenerateBlkAddr(CacheBlk* blk)
171{
172    if (blk != tempBlock) {
173        return tags->regenerateBlkAddr(blk);
174    } else {
175        return tempBlock->getAddr();
176    }
177}
178
179void
180BaseCache::init()
181{
182    if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
183        fatal("Cache ports on %s are not connected\n", name());
184    cpuSidePort.sendRangeChange();
185    forwardSnoops = cpuSidePort.isSnooping();
186}
187
188BaseMasterPort &
189BaseCache::getMasterPort(const std::string &if_name, PortID idx)
190{
191    if (if_name == "mem_side") {
192        return memSidePort;
193    }  else {
194        return MemObject::getMasterPort(if_name, idx);
195    }
196}
197
198BaseSlavePort &
199BaseCache::getSlavePort(const std::string &if_name, PortID idx)
200{
201    if (if_name == "cpu_side") {
202        return cpuSidePort;
203    } else {
204        return MemObject::getSlavePort(if_name, idx);
205    }
206}
207
208bool
209BaseCache::inRange(Addr addr) const
210{
211    for (const auto& r : addrRanges) {
212        if (r.contains(addr)) {
213            return true;
214       }
215    }
216    return false;
217}
218
219void
220BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
221{
222    if (pkt->needsResponse()) {
223        // These delays should have been consumed by now
224        assert(pkt->headerDelay == 0);
225        assert(pkt->payloadDelay == 0);
226
227        pkt->makeTimingResponse();
228
229        // In this case we are considering request_time that takes
230        // into account the delay of the xbar, if any, and just
231        // lat, neglecting responseLatency, modelling hit latency
232        // just as the value of lat overriden by access(), which calls
233        // the calculateAccessLatency() function.
234        cpuSidePort.schedTimingResp(pkt, request_time);
235    } else {
236        DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
237                pkt->print());
238
239        // queue the packet for deletion, as the sending cache is
240        // still relying on it; if the block is found in access(),
241        // CleanEvict and Writeback messages will be deleted
242        // here as well
243        pendingDelete.reset(pkt);
244    }
245}
246
247void
248BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
249                               Tick forward_time, Tick request_time)
250{
251    if (writeAllocator &&
252        pkt && pkt->isWrite() && !pkt->req->isUncacheable()) {
253        writeAllocator->updateMode(pkt->getAddr(), pkt->getSize(),
254                                   pkt->getBlockAddr(blkSize));
255    }
256
257    if (mshr) {
258        /// MSHR hit
259        /// @note writebacks will be checked in getNextMSHR()
260        /// for any conflicting requests to the same block
261
262        //@todo remove hw_pf here
263
264        // Coalesce unless it was a software prefetch (see above).
265        if (pkt) {
266            assert(!pkt->isWriteback());
267            // CleanEvicts corresponding to blocks which have
268            // outstanding requests in MSHRs are simply sunk here
269            if (pkt->cmd == MemCmd::CleanEvict) {
270                pendingDelete.reset(pkt);
271            } else if (pkt->cmd == MemCmd::WriteClean) {
272                // A WriteClean should never coalesce with any
273                // outstanding cache maintenance requests.
274
275                // We use forward_time here because there is an
276                // uncached memory write, forwarded to WriteBuffer.
277                allocateWriteBuffer(pkt, forward_time);
278            } else {
279                DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
280                        pkt->print());
281
282                assert(pkt->req->masterId() < system->maxMasters());
283                mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
284
285                // We use forward_time here because it is the same
286                // considering new targets. We have multiple
287                // requests for the same address here. It
288                // specifies the latency to allocate an internal
289                // buffer and to schedule an event to the queued
290                // port and also takes into account the additional
291                // delay of the xbar.
292                mshr->allocateTarget(pkt, forward_time, order++,
293                                     allocOnFill(pkt->cmd));
294                if (mshr->getNumTargets() == numTarget) {
295                    noTargetMSHR = mshr;
296                    setBlocked(Blocked_NoTargets);
297                    // need to be careful with this... if this mshr isn't
298                    // ready yet (i.e. time > curTick()), we don't want to
299                    // move it ahead of mshrs that are ready
300                    // mshrQueue.moveToFront(mshr);
301                }
302            }
303        }
304    } else {
305        // no MSHR
306        assert(pkt->req->masterId() < system->maxMasters());
307        mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
308
309        if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
310            // We use forward_time here because there is an
311            // writeback or writeclean, forwarded to WriteBuffer.
312            allocateWriteBuffer(pkt, forward_time);
313        } else {
314            if (blk && blk->isValid()) {
315                // If we have a write miss to a valid block, we
316                // need to mark the block non-readable.  Otherwise
317                // if we allow reads while there's an outstanding
318                // write miss, the read could return stale data
319                // out of the cache block... a more aggressive
320                // system could detect the overlap (if any) and
321                // forward data out of the MSHRs, but we don't do
322                // that yet.  Note that we do need to leave the
323                // block valid so that it stays in the cache, in
324                // case we get an upgrade response (and hence no
325                // new data) when the write miss completes.
326                // As long as CPUs do proper store/load forwarding
327                // internally, and have a sufficiently weak memory
328                // model, this is probably unnecessary, but at some
329                // point it must have seemed like we needed it...
330                assert((pkt->needsWritable() && !blk->isWritable()) ||
331                       pkt->req->isCacheMaintenance());
332                blk->status &= ~BlkReadable;
333            }
334            // Here we are using forward_time, modelling the latency of
335            // a miss (outbound) just as forwardLatency, neglecting the
336            // lookupLatency component.
337            allocateMissBuffer(pkt, forward_time);
338        }
339    }
340}
341
342void
343BaseCache::recvTimingReq(PacketPtr pkt)
344{
345    // anything that is merely forwarded pays for the forward latency and
346    // the delay provided by the crossbar
347    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
348
349    Cycles lat;
350    CacheBlk *blk = nullptr;
351    bool satisfied = false;
352    {
353        PacketList writebacks;
354        // Note that lat is passed by reference here. The function
355        // access() will set the lat value.
356        satisfied = access(pkt, blk, lat, writebacks);
357
358        // copy writebacks to write buffer here to ensure they logically
359        // precede anything happening below
360        doWritebacks(writebacks, forward_time);
361    }
362
363    // Here we charge the headerDelay that takes into account the latencies
364    // of the bus, if the packet comes from it.
365    // The latency charged is just the value set by the access() function.
366    // In case of a hit we are neglecting response latency.
367    // In case of a miss we are neglecting forward latency.
368    Tick request_time = clockEdge(lat);
369    // Here we reset the timing of the packet.
370    pkt->headerDelay = pkt->payloadDelay = 0;
371
372    if (satisfied) {
373        // notify before anything else as later handleTimingReqHit might turn
374        // the packet in a response
375        ppHit->notify(pkt);
376
377        if (prefetcher && blk && blk->wasPrefetched()) {
378            blk->status &= ~BlkHWPrefetched;
379        }
380
381        handleTimingReqHit(pkt, blk, request_time);
382    } else {
383        handleTimingReqMiss(pkt, blk, forward_time, request_time);
384
385        ppMiss->notify(pkt);
386    }
387
388    if (prefetcher) {
389        // track time of availability of next prefetch, if any
390        Tick next_pf_time = prefetcher->nextPrefetchReadyTime();
391        if (next_pf_time != MaxTick) {
392            schedMemSideSendEvent(next_pf_time);
393        }
394    }
395}
396
397void
398BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
399{
400    Tick completion_time = clockEdge(responseLatency) +
401        pkt->headerDelay + pkt->payloadDelay;
402
403    // Reset the bus additional time as it is now accounted for
404    pkt->headerDelay = pkt->payloadDelay = 0;
405
406    cpuSidePort.schedTimingResp(pkt, completion_time);
407}
408
409void
410BaseCache::recvTimingResp(PacketPtr pkt)
411{
412    assert(pkt->isResponse());
413
414    // all header delay should be paid for by the crossbar, unless
415    // this is a prefetch response from above
416    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
417             "%s saw a non-zero packet delay\n", name());
418
419    const bool is_error = pkt->isError();
420
421    if (is_error) {
422        DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
423                pkt->print());
424    }
425
426    DPRINTF(Cache, "%s: Handling response %s\n", __func__,
427            pkt->print());
428
429    // if this is a write, we should be looking at an uncacheable
430    // write
431    if (pkt->isWrite()) {
432        assert(pkt->req->isUncacheable());
433        handleUncacheableWriteResp(pkt);
434        return;
435    }
436
437    // we have dealt with any (uncacheable) writes above, from here on
438    // we know we are dealing with an MSHR due to a miss or a prefetch
439    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
440    assert(mshr);
441
442    if (mshr == noTargetMSHR) {
443        // we always clear at least one target
444        clearBlocked(Blocked_NoTargets);
445        noTargetMSHR = nullptr;
446    }
447
448    // Initial target is used just for stats
449    MSHR::Target *initial_tgt = mshr->getTarget();
450    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
451    Tick miss_latency = curTick() - initial_tgt->recvTime;
452
453    if (pkt->req->isUncacheable()) {
454        assert(pkt->req->masterId() < system->maxMasters());
455        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
456            miss_latency;
457    } else {
458        assert(pkt->req->masterId() < system->maxMasters());
459        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
460            miss_latency;
461    }
462
463    PacketList writebacks;
464
465    bool is_fill = !mshr->isForward &&
466        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp ||
467         mshr->wasWholeLineWrite);
468
469    // make sure that if the mshr was due to a whole line write then
470    // the response is an invalidation
471    assert(!mshr->wasWholeLineWrite || pkt->isInvalidate());
472
473    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
474
475    if (is_fill && !is_error) {
476        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
477                pkt->getAddr());
478
479        const bool allocate = (writeAllocator && mshr->wasWholeLineWrite) ?
480            writeAllocator->allocate() : mshr->allocOnFill();
481        blk = handleFill(pkt, blk, writebacks, allocate);
482        assert(blk != nullptr);
483        ppFill->notify(pkt);
484    }
485
486    if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
487        // The block was marked not readable while there was a pending
488        // cache maintenance operation, restore its flag.
489        blk->status |= BlkReadable;
490
491        // This was a cache clean operation (without invalidate)
492        // and we have a copy of the block already. Since there
493        // is no invalidation, we can promote targets that don't
494        // require a writable copy
495        mshr->promoteReadable();
496    }
497
498    if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
499        // If at this point the referenced block is writable and the
500        // response is not a cache invalidate, we promote targets that
501        // were deferred as we couldn't guarrantee a writable copy
502        mshr->promoteWritable();
503    }
504
505    serviceMSHRTargets(mshr, pkt, blk);
506
507    if (mshr->promoteDeferredTargets()) {
508        // avoid later read getting stale data while write miss is
509        // outstanding.. see comment in timingAccess()
510        if (blk) {
511            blk->status &= ~BlkReadable;
512        }
513        mshrQueue.markPending(mshr);
514        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
515    } else {
516        // while we deallocate an mshr from the queue we still have to
517        // check the isFull condition before and after as we might
518        // have been using the reserved entries already
519        const bool was_full = mshrQueue.isFull();
520        mshrQueue.deallocate(mshr);
521        if (was_full && !mshrQueue.isFull()) {
522            clearBlocked(Blocked_NoMSHRs);
523        }
524
525        // Request the bus for a prefetch if this deallocation freed enough
526        // MSHRs for a prefetch to take place
527        if (prefetcher && mshrQueue.canPrefetch()) {
528            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
529                                         clockEdge());
530            if (next_pf_time != MaxTick)
531                schedMemSideSendEvent(next_pf_time);
532        }
533    }
534
535    // if we used temp block, check to see if its valid and then clear it out
536    if (blk == tempBlock && tempBlock->isValid()) {
537        evictBlock(blk, writebacks);
538    }
539
540    const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
541    // copy writebacks to write buffer
542    doWritebacks(writebacks, forward_time);
543
544    DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
545    delete pkt;
546}
547
548
549Tick
550BaseCache::recvAtomic(PacketPtr pkt)
551{
552    // should assert here that there are no outstanding MSHRs or
553    // writebacks... that would mean that someone used an atomic
554    // access in timing mode
555
556    // We use lookupLatency here because it is used to specify the latency
557    // to access.
558    Cycles lat = lookupLatency;
559
560    CacheBlk *blk = nullptr;
561    PacketList writebacks;
562    bool satisfied = access(pkt, blk, lat, writebacks);
563
564    if (pkt->isClean() && blk && blk->isDirty()) {
565        // A cache clean opearation is looking for a dirty
566        // block. If a dirty block is encountered a WriteClean
567        // will update any copies to the path to the memory
568        // until the point of reference.
569        DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
570                __func__, pkt->print(), blk->print());
571        PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
572        writebacks.push_back(wb_pkt);
573        pkt->setSatisfied();
574    }
575
576    // handle writebacks resulting from the access here to ensure they
577    // logically precede anything happening below
578    doWritebacksAtomic(writebacks);
579    assert(writebacks.empty());
580
581    if (!satisfied) {
582        lat += handleAtomicReqMiss(pkt, blk, writebacks);
583    }
584
585    // Note that we don't invoke the prefetcher at all in atomic mode.
586    // It's not clear how to do it properly, particularly for
587    // prefetchers that aggressively generate prefetch candidates and
588    // rely on bandwidth contention to throttle them; these will tend
589    // to pollute the cache in atomic mode since there is no bandwidth
590    // contention.  If we ever do want to enable prefetching in atomic
591    // mode, though, this is the place to do it... see timingAccess()
592    // for an example (though we'd want to issue the prefetch(es)
593    // immediately rather than calling requestMemSideBus() as we do
594    // there).
595
596    // do any writebacks resulting from the response handling
597    doWritebacksAtomic(writebacks);
598
599    // if we used temp block, check to see if its valid and if so
600    // clear it out, but only do so after the call to recvAtomic is
601    // finished so that any downstream observers (such as a snoop
602    // filter), first see the fill, and only then see the eviction
603    if (blk == tempBlock && tempBlock->isValid()) {
604        // the atomic CPU calls recvAtomic for fetch and load/store
605        // sequentuially, and we may already have a tempBlock
606        // writeback from the fetch that we have not yet sent
607        if (tempBlockWriteback) {
608            // if that is the case, write the prevoius one back, and
609            // do not schedule any new event
610            writebackTempBlockAtomic();
611        } else {
612            // the writeback/clean eviction happens after the call to
613            // recvAtomic has finished (but before any successive
614            // calls), so that the response handling from the fill is
615            // allowed to happen first
616            schedule(writebackTempBlockAtomicEvent, curTick());
617        }
618
619        tempBlockWriteback = evictBlock(blk);
620    }
621
622    if (pkt->needsResponse()) {
623        pkt->makeAtomicResponse();
624    }
625
626    return lat * clockPeriod();
627}
628
629void
630BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
631{
632    Addr blk_addr = pkt->getBlockAddr(blkSize);
633    bool is_secure = pkt->isSecure();
634    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
635    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
636
637    pkt->pushLabel(name());
638
639    CacheBlkPrintWrapper cbpw(blk);
640
641    // Note that just because an L2/L3 has valid data doesn't mean an
642    // L1 doesn't have a more up-to-date modified copy that still
643    // needs to be found.  As a result we always update the request if
644    // we have it, but only declare it satisfied if we are the owner.
645
646    // see if we have data at all (owned or otherwise)
647    bool have_data = blk && blk->isValid()
648        && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize,
649                                     blk->data);
650
651    // data we have is dirty if marked as such or if we have an
652    // in-service MSHR that is pending a modified line
653    bool have_dirty =
654        have_data && (blk->isDirty() ||
655                      (mshr && mshr->inService && mshr->isPendingModified()));
656
657    bool done = have_dirty ||
658        cpuSidePort.trySatisfyFunctional(pkt) ||
659        mshrQueue.trySatisfyFunctional(pkt, blk_addr) ||
660        writeBuffer.trySatisfyFunctional(pkt, blk_addr) ||
661        memSidePort.trySatisfyFunctional(pkt);
662
663    DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__,  pkt->print(),
664            (blk && blk->isValid()) ? "valid " : "",
665            have_data ? "data " : "", done ? "done " : "");
666
667    // We're leaving the cache, so pop cache->name() label
668    pkt->popLabel();
669
670    if (done) {
671        pkt->makeResponse();
672    } else {
673        // if it came as a request from the CPU side then make sure it
674        // continues towards the memory side
675        if (from_cpu_side) {
676            memSidePort.sendFunctional(pkt);
677        } else if (cpuSidePort.isSnooping()) {
678            // if it came from the memory side, it must be a snoop request
679            // and we should only forward it if we are forwarding snoops
680            cpuSidePort.sendFunctionalSnoop(pkt);
681        }
682    }
683}
684
685
686void
687BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
688{
689    assert(pkt->isRequest());
690
691    uint64_t overwrite_val;
692    bool overwrite_mem;
693    uint64_t condition_val64;
694    uint32_t condition_val32;
695
696    int offset = pkt->getOffset(blkSize);
697    uint8_t *blk_data = blk->data + offset;
698
699    assert(sizeof(uint64_t) >= pkt->getSize());
700
701    overwrite_mem = true;
702    // keep a copy of our possible write value, and copy what is at the
703    // memory address into the packet
704    pkt->writeData((uint8_t *)&overwrite_val);
705    pkt->setData(blk_data);
706
707    if (pkt->req->isCondSwap()) {
708        if (pkt->getSize() == sizeof(uint64_t)) {
709            condition_val64 = pkt->req->getExtraData();
710            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
711                                         sizeof(uint64_t));
712        } else if (pkt->getSize() == sizeof(uint32_t)) {
713            condition_val32 = (uint32_t)pkt->req->getExtraData();
714            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
715                                         sizeof(uint32_t));
716        } else
717            panic("Invalid size for conditional read/write\n");
718    }
719
720    if (overwrite_mem) {
721        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
722        blk->status |= BlkDirty;
723    }
724}
725
726QueueEntry*
727BaseCache::getNextQueueEntry()
728{
729    // Check both MSHR queue and write buffer for potential requests,
730    // note that null does not mean there is no request, it could
731    // simply be that it is not ready
732    MSHR *miss_mshr  = mshrQueue.getNext();
733    WriteQueueEntry *wq_entry = writeBuffer.getNext();
734
735    // If we got a write buffer request ready, first priority is a
736    // full write buffer, otherwise we favour the miss requests
737    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
738        // need to search MSHR queue for conflicting earlier miss.
739        MSHR *conflict_mshr =
740            mshrQueue.findPending(wq_entry->blkAddr,
741                                  wq_entry->isSecure);
742
743        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
744            // Service misses in order until conflict is cleared.
745            return conflict_mshr;
746
747            // @todo Note that we ignore the ready time of the conflict here
748        }
749
750        // No conflicts; issue write
751        return wq_entry;
752    } else if (miss_mshr) {
753        // need to check for conflicting earlier writeback
754        WriteQueueEntry *conflict_mshr =
755            writeBuffer.findPending(miss_mshr->blkAddr,
756                                    miss_mshr->isSecure);
757        if (conflict_mshr) {
758            // not sure why we don't check order here... it was in the
759            // original code but commented out.
760
761            // The only way this happens is if we are
762            // doing a write and we didn't have permissions
763            // then subsequently saw a writeback (owned got evicted)
764            // We need to make sure to perform the writeback first
765            // To preserve the dirty data, then we can issue the write
766
767            // should we return wq_entry here instead?  I.e. do we
768            // have to flush writes in order?  I don't think so... not
769            // for Alpha anyway.  Maybe for x86?
770            return conflict_mshr;
771
772            // @todo Note that we ignore the ready time of the conflict here
773        }
774
775        // No conflicts; issue read
776        return miss_mshr;
777    }
778
779    // fall through... no pending requests.  Try a prefetch.
780    assert(!miss_mshr && !wq_entry);
781    if (prefetcher && mshrQueue.canPrefetch()) {
782        // If we have a miss queue slot, we can try a prefetch
783        PacketPtr pkt = prefetcher->getPacket();
784        if (pkt) {
785            Addr pf_addr = pkt->getBlockAddr(blkSize);
786            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
787                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
788                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
789                // Update statistic on number of prefetches issued
790                // (hwpf_mshr_misses)
791                assert(pkt->req->masterId() < system->maxMasters());
792                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
793
794                // allocate an MSHR and return it, note
795                // that we send the packet straight away, so do not
796                // schedule the send
797                return allocateMissBuffer(pkt, curTick(), false);
798            } else {
799                // free the request and packet
800                delete pkt;
801            }
802        }
803    }
804
805    return nullptr;
806}
807
808void
809BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
810{
811    assert(pkt->isRequest());
812
813    assert(blk && blk->isValid());
814    // Occasionally this is not true... if we are a lower-level cache
815    // satisfying a string of Read and ReadEx requests from
816    // upper-level caches, a Read will mark the block as shared but we
817    // can satisfy a following ReadEx anyway since we can rely on the
818    // Read requester(s) to have buffered the ReadEx snoop and to
819    // invalidate their blocks after receiving them.
820    // assert(!pkt->needsWritable() || blk->isWritable());
821    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
822
823    // Check RMW operations first since both isRead() and
824    // isWrite() will be true for them
825    if (pkt->cmd == MemCmd::SwapReq) {
826        if (pkt->isAtomicOp()) {
827            // extract data from cache and save it into the data field in
828            // the packet as a return value from this atomic op
829            int offset = tags->extractBlkOffset(pkt->getAddr());
830            uint8_t *blk_data = blk->data + offset;
831            pkt->setData(blk_data);
832
833            // execute AMO operation
834            (*(pkt->getAtomicOp()))(blk_data);
835
836            // set block status to dirty
837            blk->status |= BlkDirty;
838        } else {
839            cmpAndSwap(blk, pkt);
840        }
841    } else if (pkt->isWrite()) {
842        // we have the block in a writable state and can go ahead,
843        // note that the line may be also be considered writable in
844        // downstream caches along the path to memory, but always
845        // Exclusive, and never Modified
846        assert(blk->isWritable());
847        // Write or WriteLine at the first cache with block in writable state
848        if (blk->checkWrite(pkt)) {
849            pkt->writeDataToBlock(blk->data, blkSize);
850        }
851        // Always mark the line as dirty (and thus transition to the
852        // Modified state) even if we are a failed StoreCond so we
853        // supply data to any snoops that have appended themselves to
854        // this cache before knowing the store will fail.
855        blk->status |= BlkDirty;
856        DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
857    } else if (pkt->isRead()) {
858        if (pkt->isLLSC()) {
859            blk->trackLoadLocked(pkt);
860        }
861
862        // all read responses have a data payload
863        assert(pkt->hasRespData());
864        pkt->setDataFromBlock(blk->data, blkSize);
865    } else if (pkt->isUpgrade()) {
866        // sanity check
867        assert(!pkt->hasSharers());
868
869        if (blk->isDirty()) {
870            // we were in the Owned state, and a cache above us that
871            // has the line in Shared state needs to be made aware
872            // that the data it already has is in fact dirty
873            pkt->setCacheResponding();
874            blk->status &= ~BlkDirty;
875        }
876    } else if (pkt->isClean()) {
877        blk->status &= ~BlkDirty;
878    } else {
879        assert(pkt->isInvalidate());
880        invalidateBlock(blk);
881        DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
882                pkt->print());
883    }
884}
885
886/////////////////////////////////////////////////////
887//
888// Access path: requests coming in from the CPU side
889//
890/////////////////////////////////////////////////////
891Cycles
892BaseCache::calculateAccessLatency(const CacheBlk* blk, const uint32_t delay,
893                                  const Cycles lookup_lat) const
894{
895    Cycles lat(0);
896
897    if (blk != nullptr) {
898        // As soon as the access arrives, for sequential accesses first access
899        // tags, then the data entry. In the case of parallel accesses the
900        // latency is dictated by the slowest of tag and data latencies.
901        if (sequentialAccess) {
902            lat = ticksToCycles(delay) + lookup_lat + dataLatency;
903        } else {
904            lat = ticksToCycles(delay) + std::max(lookup_lat, dataLatency);
905        }
906
907        // Check if the block to be accessed is available. If not, apply the
908        // access latency on top of when the block is ready to be accessed.
909        const Tick tick = curTick() + delay;
910        const Tick when_ready = blk->getWhenReady();
911        if (when_ready > tick &&
912            ticksToCycles(when_ready - tick) > lat) {
913            lat += ticksToCycles(when_ready - tick);
914        }
915    } else {
916        // In case of a miss, apply lookup latency on top of the metadata
917        // delay, as the access can only start when it arrives.
918        lat = ticksToCycles(delay) + lookup_lat;
919    }
920
921    return lat;
922}
923
924bool
925BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
926                  PacketList &writebacks)
927{
928    // sanity check
929    assert(pkt->isRequest());
930
931    chatty_assert(!(isReadOnly && pkt->isWrite()),
932                  "Should never see a write in a read-only cache %s\n",
933                  name());
934
935    // Access block in the tags
936    Cycles tag_latency(0);
937    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), tag_latency);
938
939    // Calculate access latency on top of when the packet arrives. This
940    // takes into account the bus delay.
941    lat = calculateAccessLatency(blk, pkt->headerDelay,
942                                 tag_latency);
943
944    DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
945            blk ? "hit " + blk->print() : "miss");
946
947    if (pkt->req->isCacheMaintenance()) {
948        // A cache maintenance operation is always forwarded to the
949        // memory below even if the block is found in dirty state.
950
951        // We defer any changes to the state of the block until we
952        // create and mark as in service the mshr for the downstream
953        // packet.
954        return false;
955    }
956
957    if (pkt->isEviction()) {
958        // We check for presence of block in above caches before issuing
959        // Writeback or CleanEvict to write buffer. Therefore the only
960        // possible cases can be of a CleanEvict packet coming from above
961        // encountering a Writeback generated in this cache peer cache and
962        // waiting in the write buffer. Cases of upper level peer caches
963        // generating CleanEvict and Writeback or simply CleanEvict and
964        // CleanEvict almost simultaneously will be caught by snoops sent out
965        // by crossbar.
966        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
967                                                          pkt->isSecure());
968        if (wb_entry) {
969            assert(wb_entry->getNumTargets() == 1);
970            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
971            assert(wbPkt->isWriteback());
972
973            if (pkt->isCleanEviction()) {
974                // The CleanEvict and WritebackClean snoops into other
975                // peer caches of the same level while traversing the
976                // crossbar. If a copy of the block is found, the
977                // packet is deleted in the crossbar. Hence, none of
978                // the other upper level caches connected to this
979                // cache have the block, so we can clear the
980                // BLOCK_CACHED flag in the Writeback if set and
981                // discard the CleanEvict by returning true.
982                wbPkt->clearBlockCached();
983                return true;
984            } else {
985                assert(pkt->cmd == MemCmd::WritebackDirty);
986                // Dirty writeback from above trumps our clean
987                // writeback... discard here
988                // Note: markInService will remove entry from writeback buffer.
989                markInService(wb_entry);
990                delete wbPkt;
991            }
992        }
993    }
994
995    // Writeback handling is special case.  We can write the block into
996    // the cache without having a writeable copy (or any copy at all).
997    if (pkt->isWriteback()) {
998        assert(blkSize == pkt->getSize());
999
1000        // we could get a clean writeback while we are having
1001        // outstanding accesses to a block, do the simple thing for
1002        // now and drop the clean writeback so that we do not upset
1003        // any ordering/decisions about ownership already taken
1004        if (pkt->cmd == MemCmd::WritebackClean &&
1005            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
1006            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
1007                    "dropping\n", pkt->getAddr());
1008            return true;
1009        }
1010
1011        if (!blk) {
1012            // need to do a replacement
1013            blk = allocateBlock(pkt, writebacks);
1014            if (!blk) {
1015                // no replaceable block available: give up, fwd to next level.
1016                incMissCount(pkt);
1017                return false;
1018            }
1019
1020            blk->status |= BlkReadable;
1021        }
1022        // only mark the block dirty if we got a writeback command,
1023        // and leave it as is for a clean writeback
1024        if (pkt->cmd == MemCmd::WritebackDirty) {
1025            // TODO: the coherent cache can assert(!blk->isDirty());
1026            blk->status |= BlkDirty;
1027        }
1028        // if the packet does not have sharers, it is passing
1029        // writable, and we got the writeback in Modified or Exclusive
1030        // state, if not we are in the Owned or Shared state
1031        if (!pkt->hasSharers()) {
1032            blk->status |= BlkWritable;
1033        }
1034        // nothing else to do; writeback doesn't expect response
1035        assert(!pkt->needsResponse());
1036        pkt->writeDataToBlock(blk->data, blkSize);
1037        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1038        incHitCount(pkt);
1039        // populate the time when the block will be ready to access.
1040        blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1041            pkt->payloadDelay);
1042        return true;
1043    } else if (pkt->cmd == MemCmd::CleanEvict) {
1044        if (blk) {
1045            // Found the block in the tags, need to stop CleanEvict from
1046            // propagating further down the hierarchy. Returning true will
1047            // treat the CleanEvict like a satisfied write request and delete
1048            // it.
1049            return true;
1050        }
1051        // We didn't find the block here, propagate the CleanEvict further
1052        // down the memory hierarchy. Returning false will treat the CleanEvict
1053        // like a Writeback which could not find a replaceable block so has to
1054        // go to next level.
1055        return false;
1056    } else if (pkt->cmd == MemCmd::WriteClean) {
1057        // WriteClean handling is a special case. We can allocate a
1058        // block directly if it doesn't exist and we can update the
1059        // block immediately. The WriteClean transfers the ownership
1060        // of the block as well.
1061        assert(blkSize == pkt->getSize());
1062
1063        if (!blk) {
1064            if (pkt->writeThrough()) {
1065                // if this is a write through packet, we don't try to
1066                // allocate if the block is not present
1067                return false;
1068            } else {
1069                // a writeback that misses needs to allocate a new block
1070                blk = allocateBlock(pkt, writebacks);
1071                if (!blk) {
1072                    // no replaceable block available: give up, fwd to
1073                    // next level.
1074                    incMissCount(pkt);
1075                    return false;
1076                }
1077
1078                blk->status |= BlkReadable;
1079            }
1080        }
1081
1082        // at this point either this is a writeback or a write-through
1083        // write clean operation and the block is already in this
1084        // cache, we need to update the data and the block flags
1085        assert(blk);
1086        // TODO: the coherent cache can assert(!blk->isDirty());
1087        if (!pkt->writeThrough()) {
1088            blk->status |= BlkDirty;
1089        }
1090        // nothing else to do; writeback doesn't expect response
1091        assert(!pkt->needsResponse());
1092        pkt->writeDataToBlock(blk->data, blkSize);
1093        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1094
1095        incHitCount(pkt);
1096        // populate the time when the block will be ready to access.
1097        blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1098            pkt->payloadDelay);
1099        // if this a write-through packet it will be sent to cache
1100        // below
1101        return !pkt->writeThrough();
1102    } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
1103                       blk->isReadable())) {
1104        // OK to satisfy access
1105        incHitCount(pkt);
1106        satisfyRequest(pkt, blk);
1107        maintainClusivity(pkt->fromCache(), blk);
1108
1109        return true;
1110    }
1111
1112    // Can't satisfy access normally... either no block (blk == nullptr)
1113    // or have block but need writable
1114
1115    incMissCount(pkt);
1116
1117    if (!blk && pkt->isLLSC() && pkt->isWrite()) {
1118        // complete miss on store conditional... just give up now
1119        pkt->req->setExtraData(0);
1120        return true;
1121    }
1122
1123    return false;
1124}
1125
1126void
1127BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
1128{
1129    if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
1130        clusivity == Enums::mostly_excl) {
1131        // if we have responded to a cache, and our block is still
1132        // valid, but not dirty, and this cache is mostly exclusive
1133        // with respect to the cache above, drop the block
1134        invalidateBlock(blk);
1135    }
1136}
1137
1138CacheBlk*
1139BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1140                      bool allocate)
1141{
1142    assert(pkt->isResponse());
1143    Addr addr = pkt->getAddr();
1144    bool is_secure = pkt->isSecure();
1145#if TRACING_ON
1146    CacheBlk::State old_state = blk ? blk->status : 0;
1147#endif
1148
1149    // When handling a fill, we should have no writes to this line.
1150    assert(addr == pkt->getBlockAddr(blkSize));
1151    assert(!writeBuffer.findMatch(addr, is_secure));
1152
1153    if (!blk) {
1154        // better have read new data...
1155        assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp);
1156
1157        // need to do a replacement if allocating, otherwise we stick
1158        // with the temporary storage
1159        blk = allocate ? allocateBlock(pkt, writebacks) : nullptr;
1160
1161        if (!blk) {
1162            // No replaceable block or a mostly exclusive
1163            // cache... just use temporary storage to complete the
1164            // current request and then get rid of it
1165            blk = tempBlock;
1166            tempBlock->insert(addr, is_secure);
1167            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1168                    is_secure ? "s" : "ns");
1169        }
1170    } else {
1171        // existing block... probably an upgrade
1172        // don't clear block status... if block is already dirty we
1173        // don't want to lose that
1174    }
1175
1176    // Block is guaranteed to be valid at this point
1177    assert(blk->isValid());
1178    assert(blk->isSecure() == is_secure);
1179    assert(regenerateBlkAddr(blk) == addr);
1180
1181    blk->status |= BlkReadable;
1182
1183    // sanity check for whole-line writes, which should always be
1184    // marked as writable as part of the fill, and then later marked
1185    // dirty as part of satisfyRequest
1186    if (pkt->cmd == MemCmd::InvalidateResp) {
1187        assert(!pkt->hasSharers());
1188    }
1189
1190    // here we deal with setting the appropriate state of the line,
1191    // and we start by looking at the hasSharers flag, and ignore the
1192    // cacheResponding flag (normally signalling dirty data) if the
1193    // packet has sharers, thus the line is never allocated as Owned
1194    // (dirty but not writable), and always ends up being either
1195    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1196    // for more details
1197    if (!pkt->hasSharers()) {
1198        // we could get a writable line from memory (rather than a
1199        // cache) even in a read-only cache, note that we set this bit
1200        // even for a read-only cache, possibly revisit this decision
1201        blk->status |= BlkWritable;
1202
1203        // check if we got this via cache-to-cache transfer (i.e., from a
1204        // cache that had the block in Modified or Owned state)
1205        if (pkt->cacheResponding()) {
1206            // we got the block in Modified state, and invalidated the
1207            // owners copy
1208            blk->status |= BlkDirty;
1209
1210            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1211                          "in read-only cache %s\n", name());
1212        }
1213    }
1214
1215    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1216            addr, is_secure ? "s" : "ns", old_state, blk->print());
1217
1218    // if we got new data, copy it in (checking for a read response
1219    // and a response that has data is the same in the end)
1220    if (pkt->isRead()) {
1221        // sanity checks
1222        assert(pkt->hasData());
1223        assert(pkt->getSize() == blkSize);
1224
1225        pkt->writeDataToBlock(blk->data, blkSize);
1226    }
1227    // We pay for fillLatency here.
1228    blk->setWhenReady(clockEdge(fillLatency) + pkt->payloadDelay);
1229
1230    return blk;
1231}
1232
1233CacheBlk*
1234BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks)
1235{
1236    // Get address
1237    const Addr addr = pkt->getAddr();
1238
1239    // Get secure bit
1240    const bool is_secure = pkt->isSecure();
1241
1242    // Find replacement victim
1243    std::vector<CacheBlk*> evict_blks;
1244    CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks);
1245
1246    // It is valid to return nullptr if there is no victim
1247    if (!victim)
1248        return nullptr;
1249
1250    // Print victim block's information
1251    DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print());
1252
1253    // Check for transient state allocations. If any of the entries listed
1254    // for eviction has a transient state, the allocation fails
1255    for (const auto& blk : evict_blks) {
1256        if (blk->isValid()) {
1257            Addr repl_addr = regenerateBlkAddr(blk);
1258            MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1259            if (repl_mshr) {
1260                // must be an outstanding upgrade or clean request
1261                // on a block we're about to replace...
1262                assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1263                       repl_mshr->isCleaning());
1264
1265                // too hard to replace block with transient state
1266                // allocation failed, block not inserted
1267                return nullptr;
1268            }
1269        }
1270    }
1271
1272    // The victim will be replaced by a new entry, so increase the replacement
1273    // counter if a valid block is being replaced
1274    if (victim->isValid()) {
1275        DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1276                "(%s): %s\n", regenerateBlkAddr(victim),
1277                victim->isSecure() ? "s" : "ns",
1278                addr, is_secure ? "s" : "ns",
1279                victim->isDirty() ? "writeback" : "clean");
1280
1281        replacements++;
1282    }
1283
1284    // Evict valid blocks associated to this victim block
1285    for (const auto& blk : evict_blks) {
1286        if (blk->isValid()) {
1287            if (blk->wasPrefetched()) {
1288                unusedPrefetches++;
1289            }
1290
1291            evictBlock(blk, writebacks);
1292        }
1293    }
1294
1295    // Insert new block at victimized entry
1296    tags->insertBlock(addr, is_secure, pkt->req->masterId(),
1297                      pkt->req->taskId(), victim);
1298
1299    return victim;
1300}
1301
1302void
1303BaseCache::invalidateBlock(CacheBlk *blk)
1304{
1305    // If handling a block present in the Tags, let it do its invalidation
1306    // process, which will update stats and invalidate the block itself
1307    if (blk != tempBlock) {
1308        tags->invalidate(blk);
1309    } else {
1310        tempBlock->invalidate();
1311    }
1312}
1313
1314void
1315BaseCache::evictBlock(CacheBlk *blk, PacketList &writebacks)
1316{
1317    PacketPtr pkt = evictBlock(blk);
1318    if (pkt) {
1319        writebacks.push_back(pkt);
1320    }
1321}
1322
1323PacketPtr
1324BaseCache::writebackBlk(CacheBlk *blk)
1325{
1326    chatty_assert(!isReadOnly || writebackClean,
1327                  "Writeback from read-only cache");
1328    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1329
1330    writebacks[Request::wbMasterId]++;
1331
1332    RequestPtr req = std::make_shared<Request>(
1333        regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1334
1335    if (blk->isSecure())
1336        req->setFlags(Request::SECURE);
1337
1338    req->taskId(blk->task_id);
1339
1340    PacketPtr pkt =
1341        new Packet(req, blk->isDirty() ?
1342                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1343
1344    DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1345            pkt->print(), blk->isWritable(), blk->isDirty());
1346
1347    if (blk->isWritable()) {
1348        // not asserting shared means we pass the block in modified
1349        // state, mark our own block non-writeable
1350        blk->status &= ~BlkWritable;
1351    } else {
1352        // we are in the Owned state, tell the receiver
1353        pkt->setHasSharers();
1354    }
1355
1356    // make sure the block is not marked dirty
1357    blk->status &= ~BlkDirty;
1358
1359    pkt->allocate();
1360    pkt->setDataFromBlock(blk->data, blkSize);
1361
1362    return pkt;
1363}
1364
1365PacketPtr
1366BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1367{
1368    RequestPtr req = std::make_shared<Request>(
1369        regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1370
1371    if (blk->isSecure()) {
1372        req->setFlags(Request::SECURE);
1373    }
1374    req->taskId(blk->task_id);
1375
1376    PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1377
1378    if (dest) {
1379        req->setFlags(dest);
1380        pkt->setWriteThrough();
1381    }
1382
1383    DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1384            blk->isWritable(), blk->isDirty());
1385
1386    if (blk->isWritable()) {
1387        // not asserting shared means we pass the block in modified
1388        // state, mark our own block non-writeable
1389        blk->status &= ~BlkWritable;
1390    } else {
1391        // we are in the Owned state, tell the receiver
1392        pkt->setHasSharers();
1393    }
1394
1395    // make sure the block is not marked dirty
1396    blk->status &= ~BlkDirty;
1397
1398    pkt->allocate();
1399    pkt->setDataFromBlock(blk->data, blkSize);
1400
1401    return pkt;
1402}
1403
1404
1405void
1406BaseCache::memWriteback()
1407{
1408    tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
1409}
1410
1411void
1412BaseCache::memInvalidate()
1413{
1414    tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
1415}
1416
1417bool
1418BaseCache::isDirty() const
1419{
1420    return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
1421}
1422
1423bool
1424BaseCache::coalesce() const
1425{
1426    return writeAllocator && writeAllocator->coalesce();
1427}
1428
1429void
1430BaseCache::writebackVisitor(CacheBlk &blk)
1431{
1432    if (blk.isDirty()) {
1433        assert(blk.isValid());
1434
1435        RequestPtr request = std::make_shared<Request>(
1436            regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId);
1437
1438        request->taskId(blk.task_id);
1439        if (blk.isSecure()) {
1440            request->setFlags(Request::SECURE);
1441        }
1442
1443        Packet packet(request, MemCmd::WriteReq);
1444        packet.dataStatic(blk.data);
1445
1446        memSidePort.sendFunctional(&packet);
1447
1448        blk.status &= ~BlkDirty;
1449    }
1450}
1451
1452void
1453BaseCache::invalidateVisitor(CacheBlk &blk)
1454{
1455    if (blk.isDirty())
1456        warn_once("Invalidating dirty cache lines. " \
1457                  "Expect things to break.\n");
1458
1459    if (blk.isValid()) {
1460        assert(!blk.isDirty());
1461        invalidateBlock(&blk);
1462    }
1463}
1464
1465Tick
1466BaseCache::nextQueueReadyTime() const
1467{
1468    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
1469                              writeBuffer.nextReadyTime());
1470
1471    // Don't signal prefetch ready time if no MSHRs available
1472    // Will signal once enoguh MSHRs are deallocated
1473    if (prefetcher && mshrQueue.canPrefetch()) {
1474        nextReady = std::min(nextReady,
1475                             prefetcher->nextPrefetchReadyTime());
1476    }
1477
1478    return nextReady;
1479}
1480
1481
1482bool
1483BaseCache::sendMSHRQueuePacket(MSHR* mshr)
1484{
1485    assert(mshr);
1486
1487    // use request from 1st target
1488    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1489
1490    DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1491
1492    // if the cache is in write coalescing mode or (additionally) in
1493    // no allocation mode, and we have a write packet with an MSHR
1494    // that is not a whole-line write (due to incompatible flags etc),
1495    // then reset the write mode
1496    if (writeAllocator && writeAllocator->coalesce() && tgt_pkt->isWrite()) {
1497        if (!mshr->isWholeLineWrite()) {
1498            // if we are currently write coalescing, hold on the
1499            // MSHR as many cycles extra as we need to completely
1500            // write a cache line
1501            if (writeAllocator->delay(mshr->blkAddr)) {
1502                Tick delay = blkSize / tgt_pkt->getSize() * clockPeriod();
1503                DPRINTF(CacheVerbose, "Delaying pkt %s %llu ticks to allow "
1504                        "for write coalescing\n", tgt_pkt->print(), delay);
1505                mshrQueue.delay(mshr, delay);
1506                return false;
1507            } else {
1508                writeAllocator->reset();
1509            }
1510        } else {
1511            writeAllocator->resetDelay(mshr->blkAddr);
1512        }
1513    }
1514
1515    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
1516
1517    // either a prefetch that is not present upstream, or a normal
1518    // MSHR request, proceed to get the packet to send downstream
1519    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(),
1520                                     mshr->isWholeLineWrite());
1521
1522    mshr->isForward = (pkt == nullptr);
1523
1524    if (mshr->isForward) {
1525        // not a cache block request, but a response is expected
1526        // make copy of current packet to forward, keep current
1527        // copy for response handling
1528        pkt = new Packet(tgt_pkt, false, true);
1529        assert(!pkt->isWrite());
1530    }
1531
1532    // play it safe and append (rather than set) the sender state,
1533    // as forwarded packets may already have existing state
1534    pkt->pushSenderState(mshr);
1535
1536    if (pkt->isClean() && blk && blk->isDirty()) {
1537        // A cache clean opearation is looking for a dirty block. Mark
1538        // the packet so that the destination xbar can determine that
1539        // there will be a follow-up write packet as well.
1540        pkt->setSatisfied();
1541    }
1542
1543    if (!memSidePort.sendTimingReq(pkt)) {
1544        // we are awaiting a retry, but we
1545        // delete the packet and will be creating a new packet
1546        // when we get the opportunity
1547        delete pkt;
1548
1549        // note that we have now masked any requestBus and
1550        // schedSendEvent (we will wait for a retry before
1551        // doing anything), and this is so even if we do not
1552        // care about this packet and might override it before
1553        // it gets retried
1554        return true;
1555    } else {
1556        // As part of the call to sendTimingReq the packet is
1557        // forwarded to all neighbouring caches (and any caches
1558        // above them) as a snoop. Thus at this point we know if
1559        // any of the neighbouring caches are responding, and if
1560        // so, we know it is dirty, and we can determine if it is
1561        // being passed as Modified, making our MSHR the ordering
1562        // point
1563        bool pending_modified_resp = !pkt->hasSharers() &&
1564            pkt->cacheResponding();
1565        markInService(mshr, pending_modified_resp);
1566
1567        if (pkt->isClean() && blk && blk->isDirty()) {
1568            // A cache clean opearation is looking for a dirty
1569            // block. If a dirty block is encountered a WriteClean
1570            // will update any copies to the path to the memory
1571            // until the point of reference.
1572            DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1573                    __func__, pkt->print(), blk->print());
1574            PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
1575                                             pkt->id);
1576            PacketList writebacks;
1577            writebacks.push_back(wb_pkt);
1578            doWritebacks(writebacks, 0);
1579        }
1580
1581        return false;
1582    }
1583}
1584
1585bool
1586BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
1587{
1588    assert(wq_entry);
1589
1590    // always a single target for write queue entries
1591    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
1592
1593    DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
1594
1595    // forward as is, both for evictions and uncacheable writes
1596    if (!memSidePort.sendTimingReq(tgt_pkt)) {
1597        // note that we have now masked any requestBus and
1598        // schedSendEvent (we will wait for a retry before
1599        // doing anything), and this is so even if we do not
1600        // care about this packet and might override it before
1601        // it gets retried
1602        return true;
1603    } else {
1604        markInService(wq_entry);
1605        return false;
1606    }
1607}
1608
1609void
1610BaseCache::serialize(CheckpointOut &cp) const
1611{
1612    bool dirty(isDirty());
1613
1614    if (dirty) {
1615        warn("*** The cache still contains dirty data. ***\n");
1616        warn("    Make sure to drain the system using the correct flags.\n");
1617        warn("    This checkpoint will not restore correctly " \
1618             "and dirty data in the cache will be lost!\n");
1619    }
1620
1621    // Since we don't checkpoint the data in the cache, any dirty data
1622    // will be lost when restoring from a checkpoint of a system that
1623    // wasn't drained properly. Flag the checkpoint as invalid if the
1624    // cache contains dirty data.
1625    bool bad_checkpoint(dirty);
1626    SERIALIZE_SCALAR(bad_checkpoint);
1627}
1628
1629void
1630BaseCache::unserialize(CheckpointIn &cp)
1631{
1632    bool bad_checkpoint;
1633    UNSERIALIZE_SCALAR(bad_checkpoint);
1634    if (bad_checkpoint) {
1635        fatal("Restoring from checkpoints with dirty caches is not "
1636              "supported in the classic memory system. Please remove any "
1637              "caches or drain them properly before taking checkpoints.\n");
1638    }
1639}
1640
1641void
1642BaseCache::regStats()
1643{
1644    MemObject::regStats();
1645
1646    using namespace Stats;
1647
1648    // Hit statistics
1649    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1650        MemCmd cmd(access_idx);
1651        const string &cstr = cmd.toString();
1652
1653        hits[access_idx]
1654            .init(system->maxMasters())
1655            .name(name() + "." + cstr + "_hits")
1656            .desc("number of " + cstr + " hits")
1657            .flags(total | nozero | nonan)
1658            ;
1659        for (int i = 0; i < system->maxMasters(); i++) {
1660            hits[access_idx].subname(i, system->getMasterName(i));
1661        }
1662    }
1663
1664// These macros make it easier to sum the right subset of commands and
1665// to change the subset of commands that are considered "demand" vs
1666// "non-demand"
1667#define SUM_DEMAND(s) \
1668    (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
1669     s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
1670
1671// should writebacks be included here?  prior code was inconsistent...
1672#define SUM_NON_DEMAND(s) \
1673    (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq] + s[MemCmd::SoftPFExReq])
1674
1675    demandHits
1676        .name(name() + ".demand_hits")
1677        .desc("number of demand (read+write) hits")
1678        .flags(total | nozero | nonan)
1679        ;
1680    demandHits = SUM_DEMAND(hits);
1681    for (int i = 0; i < system->maxMasters(); i++) {
1682        demandHits.subname(i, system->getMasterName(i));
1683    }
1684
1685    overallHits
1686        .name(name() + ".overall_hits")
1687        .desc("number of overall hits")
1688        .flags(total | nozero | nonan)
1689        ;
1690    overallHits = demandHits + SUM_NON_DEMAND(hits);
1691    for (int i = 0; i < system->maxMasters(); i++) {
1692        overallHits.subname(i, system->getMasterName(i));
1693    }
1694
1695    // Miss statistics
1696    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1697        MemCmd cmd(access_idx);
1698        const string &cstr = cmd.toString();
1699
1700        misses[access_idx]
1701            .init(system->maxMasters())
1702            .name(name() + "." + cstr + "_misses")
1703            .desc("number of " + cstr + " misses")
1704            .flags(total | nozero | nonan)
1705            ;
1706        for (int i = 0; i < system->maxMasters(); i++) {
1707            misses[access_idx].subname(i, system->getMasterName(i));
1708        }
1709    }
1710
1711    demandMisses
1712        .name(name() + ".demand_misses")
1713        .desc("number of demand (read+write) misses")
1714        .flags(total | nozero | nonan)
1715        ;
1716    demandMisses = SUM_DEMAND(misses);
1717    for (int i = 0; i < system->maxMasters(); i++) {
1718        demandMisses.subname(i, system->getMasterName(i));
1719    }
1720
1721    overallMisses
1722        .name(name() + ".overall_misses")
1723        .desc("number of overall misses")
1724        .flags(total | nozero | nonan)
1725        ;
1726    overallMisses = demandMisses + SUM_NON_DEMAND(misses);
1727    for (int i = 0; i < system->maxMasters(); i++) {
1728        overallMisses.subname(i, system->getMasterName(i));
1729    }
1730
1731    // Miss latency statistics
1732    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1733        MemCmd cmd(access_idx);
1734        const string &cstr = cmd.toString();
1735
1736        missLatency[access_idx]
1737            .init(system->maxMasters())
1738            .name(name() + "." + cstr + "_miss_latency")
1739            .desc("number of " + cstr + " miss cycles")
1740            .flags(total | nozero | nonan)
1741            ;
1742        for (int i = 0; i < system->maxMasters(); i++) {
1743            missLatency[access_idx].subname(i, system->getMasterName(i));
1744        }
1745    }
1746
1747    demandMissLatency
1748        .name(name() + ".demand_miss_latency")
1749        .desc("number of demand (read+write) miss cycles")
1750        .flags(total | nozero | nonan)
1751        ;
1752    demandMissLatency = SUM_DEMAND(missLatency);
1753    for (int i = 0; i < system->maxMasters(); i++) {
1754        demandMissLatency.subname(i, system->getMasterName(i));
1755    }
1756
1757    overallMissLatency
1758        .name(name() + ".overall_miss_latency")
1759        .desc("number of overall miss cycles")
1760        .flags(total | nozero | nonan)
1761        ;
1762    overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
1763    for (int i = 0; i < system->maxMasters(); i++) {
1764        overallMissLatency.subname(i, system->getMasterName(i));
1765    }
1766
1767    // access formulas
1768    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1769        MemCmd cmd(access_idx);
1770        const string &cstr = cmd.toString();
1771
1772        accesses[access_idx]
1773            .name(name() + "." + cstr + "_accesses")
1774            .desc("number of " + cstr + " accesses(hits+misses)")
1775            .flags(total | nozero | nonan)
1776            ;
1777        accesses[access_idx] = hits[access_idx] + misses[access_idx];
1778
1779        for (int i = 0; i < system->maxMasters(); i++) {
1780            accesses[access_idx].subname(i, system->getMasterName(i));
1781        }
1782    }
1783
1784    demandAccesses
1785        .name(name() + ".demand_accesses")
1786        .desc("number of demand (read+write) accesses")
1787        .flags(total | nozero | nonan)
1788        ;
1789    demandAccesses = demandHits + demandMisses;
1790    for (int i = 0; i < system->maxMasters(); i++) {
1791        demandAccesses.subname(i, system->getMasterName(i));
1792    }
1793
1794    overallAccesses
1795        .name(name() + ".overall_accesses")
1796        .desc("number of overall (read+write) accesses")
1797        .flags(total | nozero | nonan)
1798        ;
1799    overallAccesses = overallHits + overallMisses;
1800    for (int i = 0; i < system->maxMasters(); i++) {
1801        overallAccesses.subname(i, system->getMasterName(i));
1802    }
1803
1804    // miss rate formulas
1805    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1806        MemCmd cmd(access_idx);
1807        const string &cstr = cmd.toString();
1808
1809        missRate[access_idx]
1810            .name(name() + "." + cstr + "_miss_rate")
1811            .desc("miss rate for " + cstr + " accesses")
1812            .flags(total | nozero | nonan)
1813            ;
1814        missRate[access_idx] = misses[access_idx] / accesses[access_idx];
1815
1816        for (int i = 0; i < system->maxMasters(); i++) {
1817            missRate[access_idx].subname(i, system->getMasterName(i));
1818        }
1819    }
1820
1821    demandMissRate
1822        .name(name() + ".demand_miss_rate")
1823        .desc("miss rate for demand accesses")
1824        .flags(total | nozero | nonan)
1825        ;
1826    demandMissRate = demandMisses / demandAccesses;
1827    for (int i = 0; i < system->maxMasters(); i++) {
1828        demandMissRate.subname(i, system->getMasterName(i));
1829    }
1830
1831    overallMissRate
1832        .name(name() + ".overall_miss_rate")
1833        .desc("miss rate for overall accesses")
1834        .flags(total | nozero | nonan)
1835        ;
1836    overallMissRate = overallMisses / overallAccesses;
1837    for (int i = 0; i < system->maxMasters(); i++) {
1838        overallMissRate.subname(i, system->getMasterName(i));
1839    }
1840
1841    // miss latency formulas
1842    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1843        MemCmd cmd(access_idx);
1844        const string &cstr = cmd.toString();
1845
1846        avgMissLatency[access_idx]
1847            .name(name() + "." + cstr + "_avg_miss_latency")
1848            .desc("average " + cstr + " miss latency")
1849            .flags(total | nozero | nonan)
1850            ;
1851        avgMissLatency[access_idx] =
1852            missLatency[access_idx] / misses[access_idx];
1853
1854        for (int i = 0; i < system->maxMasters(); i++) {
1855            avgMissLatency[access_idx].subname(i, system->getMasterName(i));
1856        }
1857    }
1858
1859    demandAvgMissLatency
1860        .name(name() + ".demand_avg_miss_latency")
1861        .desc("average overall miss latency")
1862        .flags(total | nozero | nonan)
1863        ;
1864    demandAvgMissLatency = demandMissLatency / demandMisses;
1865    for (int i = 0; i < system->maxMasters(); i++) {
1866        demandAvgMissLatency.subname(i, system->getMasterName(i));
1867    }
1868
1869    overallAvgMissLatency
1870        .name(name() + ".overall_avg_miss_latency")
1871        .desc("average overall miss latency")
1872        .flags(total | nozero | nonan)
1873        ;
1874    overallAvgMissLatency = overallMissLatency / overallMisses;
1875    for (int i = 0; i < system->maxMasters(); i++) {
1876        overallAvgMissLatency.subname(i, system->getMasterName(i));
1877    }
1878
1879    blocked_cycles.init(NUM_BLOCKED_CAUSES);
1880    blocked_cycles
1881        .name(name() + ".blocked_cycles")
1882        .desc("number of cycles access was blocked")
1883        .subname(Blocked_NoMSHRs, "no_mshrs")
1884        .subname(Blocked_NoTargets, "no_targets")
1885        ;
1886
1887
1888    blocked_causes.init(NUM_BLOCKED_CAUSES);
1889    blocked_causes
1890        .name(name() + ".blocked")
1891        .desc("number of cycles access was blocked")
1892        .subname(Blocked_NoMSHRs, "no_mshrs")
1893        .subname(Blocked_NoTargets, "no_targets")
1894        ;
1895
1896    avg_blocked
1897        .name(name() + ".avg_blocked_cycles")
1898        .desc("average number of cycles each access was blocked")
1899        .subname(Blocked_NoMSHRs, "no_mshrs")
1900        .subname(Blocked_NoTargets, "no_targets")
1901        ;
1902
1903    avg_blocked = blocked_cycles / blocked_causes;
1904
1905    unusedPrefetches
1906        .name(name() + ".unused_prefetches")
1907        .desc("number of HardPF blocks evicted w/o reference")
1908        .flags(nozero)
1909        ;
1910
1911    writebacks
1912        .init(system->maxMasters())
1913        .name(name() + ".writebacks")
1914        .desc("number of writebacks")
1915        .flags(total | nozero | nonan)
1916        ;
1917    for (int i = 0; i < system->maxMasters(); i++) {
1918        writebacks.subname(i, system->getMasterName(i));
1919    }
1920
1921    // MSHR statistics
1922    // MSHR hit statistics
1923    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1924        MemCmd cmd(access_idx);
1925        const string &cstr = cmd.toString();
1926
1927        mshr_hits[access_idx]
1928            .init(system->maxMasters())
1929            .name(name() + "." + cstr + "_mshr_hits")
1930            .desc("number of " + cstr + " MSHR hits")
1931            .flags(total | nozero | nonan)
1932            ;
1933        for (int i = 0; i < system->maxMasters(); i++) {
1934            mshr_hits[access_idx].subname(i, system->getMasterName(i));
1935        }
1936    }
1937
1938    demandMshrHits
1939        .name(name() + ".demand_mshr_hits")
1940        .desc("number of demand (read+write) MSHR hits")
1941        .flags(total | nozero | nonan)
1942        ;
1943    demandMshrHits = SUM_DEMAND(mshr_hits);
1944    for (int i = 0; i < system->maxMasters(); i++) {
1945        demandMshrHits.subname(i, system->getMasterName(i));
1946    }
1947
1948    overallMshrHits
1949        .name(name() + ".overall_mshr_hits")
1950        .desc("number of overall MSHR hits")
1951        .flags(total | nozero | nonan)
1952        ;
1953    overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
1954    for (int i = 0; i < system->maxMasters(); i++) {
1955        overallMshrHits.subname(i, system->getMasterName(i));
1956    }
1957
1958    // MSHR miss statistics
1959    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1960        MemCmd cmd(access_idx);
1961        const string &cstr = cmd.toString();
1962
1963        mshr_misses[access_idx]
1964            .init(system->maxMasters())
1965            .name(name() + "." + cstr + "_mshr_misses")
1966            .desc("number of " + cstr + " MSHR misses")
1967            .flags(total | nozero | nonan)
1968            ;
1969        for (int i = 0; i < system->maxMasters(); i++) {
1970            mshr_misses[access_idx].subname(i, system->getMasterName(i));
1971        }
1972    }
1973
1974    demandMshrMisses
1975        .name(name() + ".demand_mshr_misses")
1976        .desc("number of demand (read+write) MSHR misses")
1977        .flags(total | nozero | nonan)
1978        ;
1979    demandMshrMisses = SUM_DEMAND(mshr_misses);
1980    for (int i = 0; i < system->maxMasters(); i++) {
1981        demandMshrMisses.subname(i, system->getMasterName(i));
1982    }
1983
1984    overallMshrMisses
1985        .name(name() + ".overall_mshr_misses")
1986        .desc("number of overall MSHR misses")
1987        .flags(total | nozero | nonan)
1988        ;
1989    overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
1990    for (int i = 0; i < system->maxMasters(); i++) {
1991        overallMshrMisses.subname(i, system->getMasterName(i));
1992    }
1993
1994    // MSHR miss latency statistics
1995    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1996        MemCmd cmd(access_idx);
1997        const string &cstr = cmd.toString();
1998
1999        mshr_miss_latency[access_idx]
2000            .init(system->maxMasters())
2001            .name(name() + "." + cstr + "_mshr_miss_latency")
2002            .desc("number of " + cstr + " MSHR miss cycles")
2003            .flags(total | nozero | nonan)
2004            ;
2005        for (int i = 0; i < system->maxMasters(); i++) {
2006            mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
2007        }
2008    }
2009
2010    demandMshrMissLatency
2011        .name(name() + ".demand_mshr_miss_latency")
2012        .desc("number of demand (read+write) MSHR miss cycles")
2013        .flags(total | nozero | nonan)
2014        ;
2015    demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
2016    for (int i = 0; i < system->maxMasters(); i++) {
2017        demandMshrMissLatency.subname(i, system->getMasterName(i));
2018    }
2019
2020    overallMshrMissLatency
2021        .name(name() + ".overall_mshr_miss_latency")
2022        .desc("number of overall MSHR miss cycles")
2023        .flags(total | nozero | nonan)
2024        ;
2025    overallMshrMissLatency =
2026        demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
2027    for (int i = 0; i < system->maxMasters(); i++) {
2028        overallMshrMissLatency.subname(i, system->getMasterName(i));
2029    }
2030
2031    // MSHR uncacheable statistics
2032    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2033        MemCmd cmd(access_idx);
2034        const string &cstr = cmd.toString();
2035
2036        mshr_uncacheable[access_idx]
2037            .init(system->maxMasters())
2038            .name(name() + "." + cstr + "_mshr_uncacheable")
2039            .desc("number of " + cstr + " MSHR uncacheable")
2040            .flags(total | nozero | nonan)
2041            ;
2042        for (int i = 0; i < system->maxMasters(); i++) {
2043            mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
2044        }
2045    }
2046
2047    overallMshrUncacheable
2048        .name(name() + ".overall_mshr_uncacheable_misses")
2049        .desc("number of overall MSHR uncacheable misses")
2050        .flags(total | nozero | nonan)
2051        ;
2052    overallMshrUncacheable =
2053        SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
2054    for (int i = 0; i < system->maxMasters(); i++) {
2055        overallMshrUncacheable.subname(i, system->getMasterName(i));
2056    }
2057
2058    // MSHR miss latency statistics
2059    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2060        MemCmd cmd(access_idx);
2061        const string &cstr = cmd.toString();
2062
2063        mshr_uncacheable_lat[access_idx]
2064            .init(system->maxMasters())
2065            .name(name() + "." + cstr + "_mshr_uncacheable_latency")
2066            .desc("number of " + cstr + " MSHR uncacheable cycles")
2067            .flags(total | nozero | nonan)
2068            ;
2069        for (int i = 0; i < system->maxMasters(); i++) {
2070            mshr_uncacheable_lat[access_idx].subname(
2071                i, system->getMasterName(i));
2072        }
2073    }
2074
2075    overallMshrUncacheableLatency
2076        .name(name() + ".overall_mshr_uncacheable_latency")
2077        .desc("number of overall MSHR uncacheable cycles")
2078        .flags(total | nozero | nonan)
2079        ;
2080    overallMshrUncacheableLatency =
2081        SUM_DEMAND(mshr_uncacheable_lat) +
2082        SUM_NON_DEMAND(mshr_uncacheable_lat);
2083    for (int i = 0; i < system->maxMasters(); i++) {
2084        overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
2085    }
2086
2087#if 0
2088    // MSHR access formulas
2089    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2090        MemCmd cmd(access_idx);
2091        const string &cstr = cmd.toString();
2092
2093        mshrAccesses[access_idx]
2094            .name(name() + "." + cstr + "_mshr_accesses")
2095            .desc("number of " + cstr + " mshr accesses(hits+misses)")
2096            .flags(total | nozero | nonan)
2097            ;
2098        mshrAccesses[access_idx] =
2099            mshr_hits[access_idx] + mshr_misses[access_idx]
2100            + mshr_uncacheable[access_idx];
2101    }
2102
2103    demandMshrAccesses
2104        .name(name() + ".demand_mshr_accesses")
2105        .desc("number of demand (read+write) mshr accesses")
2106        .flags(total | nozero | nonan)
2107        ;
2108    demandMshrAccesses = demandMshrHits + demandMshrMisses;
2109
2110    overallMshrAccesses
2111        .name(name() + ".overall_mshr_accesses")
2112        .desc("number of overall (read+write) mshr accesses")
2113        .flags(total | nozero | nonan)
2114        ;
2115    overallMshrAccesses = overallMshrHits + overallMshrMisses
2116        + overallMshrUncacheable;
2117#endif
2118
2119    // MSHR miss rate formulas
2120    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2121        MemCmd cmd(access_idx);
2122        const string &cstr = cmd.toString();
2123
2124        mshrMissRate[access_idx]
2125            .name(name() + "." + cstr + "_mshr_miss_rate")
2126            .desc("mshr miss rate for " + cstr + " accesses")
2127            .flags(total | nozero | nonan)
2128            ;
2129        mshrMissRate[access_idx] =
2130            mshr_misses[access_idx] / accesses[access_idx];
2131
2132        for (int i = 0; i < system->maxMasters(); i++) {
2133            mshrMissRate[access_idx].subname(i, system->getMasterName(i));
2134        }
2135    }
2136
2137    demandMshrMissRate
2138        .name(name() + ".demand_mshr_miss_rate")
2139        .desc("mshr miss rate for demand accesses")
2140        .flags(total | nozero | nonan)
2141        ;
2142    demandMshrMissRate = demandMshrMisses / demandAccesses;
2143    for (int i = 0; i < system->maxMasters(); i++) {
2144        demandMshrMissRate.subname(i, system->getMasterName(i));
2145    }
2146
2147    overallMshrMissRate
2148        .name(name() + ".overall_mshr_miss_rate")
2149        .desc("mshr miss rate for overall accesses")
2150        .flags(total | nozero | nonan)
2151        ;
2152    overallMshrMissRate = overallMshrMisses / overallAccesses;
2153    for (int i = 0; i < system->maxMasters(); i++) {
2154        overallMshrMissRate.subname(i, system->getMasterName(i));
2155    }
2156
2157    // mshrMiss latency formulas
2158    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2159        MemCmd cmd(access_idx);
2160        const string &cstr = cmd.toString();
2161
2162        avgMshrMissLatency[access_idx]
2163            .name(name() + "." + cstr + "_avg_mshr_miss_latency")
2164            .desc("average " + cstr + " mshr miss latency")
2165            .flags(total | nozero | nonan)
2166            ;
2167        avgMshrMissLatency[access_idx] =
2168            mshr_miss_latency[access_idx] / mshr_misses[access_idx];
2169
2170        for (int i = 0; i < system->maxMasters(); i++) {
2171            avgMshrMissLatency[access_idx].subname(
2172                i, system->getMasterName(i));
2173        }
2174    }
2175
2176    demandAvgMshrMissLatency
2177        .name(name() + ".demand_avg_mshr_miss_latency")
2178        .desc("average overall mshr miss latency")
2179        .flags(total | nozero | nonan)
2180        ;
2181    demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
2182    for (int i = 0; i < system->maxMasters(); i++) {
2183        demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
2184    }
2185
2186    overallAvgMshrMissLatency
2187        .name(name() + ".overall_avg_mshr_miss_latency")
2188        .desc("average overall mshr miss latency")
2189        .flags(total | nozero | nonan)
2190        ;
2191    overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
2192    for (int i = 0; i < system->maxMasters(); i++) {
2193        overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
2194    }
2195
2196    // mshrUncacheable latency formulas
2197    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2198        MemCmd cmd(access_idx);
2199        const string &cstr = cmd.toString();
2200
2201        avgMshrUncacheableLatency[access_idx]
2202            .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
2203            .desc("average " + cstr + " mshr uncacheable latency")
2204            .flags(total | nozero | nonan)
2205            ;
2206        avgMshrUncacheableLatency[access_idx] =
2207            mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
2208
2209        for (int i = 0; i < system->maxMasters(); i++) {
2210            avgMshrUncacheableLatency[access_idx].subname(
2211                i, system->getMasterName(i));
2212        }
2213    }
2214
2215    overallAvgMshrUncacheableLatency
2216        .name(name() + ".overall_avg_mshr_uncacheable_latency")
2217        .desc("average overall mshr uncacheable latency")
2218        .flags(total | nozero | nonan)
2219        ;
2220    overallAvgMshrUncacheableLatency =
2221        overallMshrUncacheableLatency / overallMshrUncacheable;
2222    for (int i = 0; i < system->maxMasters(); i++) {
2223        overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2224    }
2225
2226    replacements
2227        .name(name() + ".replacements")
2228        .desc("number of replacements")
2229        ;
2230}
2231
2232void
2233BaseCache::regProbePoints()
2234{
2235    ppHit = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Hit");
2236    ppMiss = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Miss");
2237    ppFill = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Fill");
2238}
2239
2240///////////////
2241//
2242// CpuSidePort
2243//
2244///////////////
2245bool
2246BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2247{
2248    // Snoops shouldn't happen when bypassing caches
2249    assert(!cache->system->bypassCaches());
2250
2251    assert(pkt->isResponse());
2252
2253    // Express snoop responses from master to slave, e.g., from L1 to L2
2254    cache->recvTimingSnoopResp(pkt);
2255    return true;
2256}
2257
2258
2259bool
2260BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
2261{
2262    if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
2263        // always let express snoop packets through even if blocked
2264        return true;
2265    } else if (blocked || mustSendRetry) {
2266        // either already committed to send a retry, or blocked
2267        mustSendRetry = true;
2268        return false;
2269    }
2270    mustSendRetry = false;
2271    return true;
2272}
2273
2274bool
2275BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2276{
2277    assert(pkt->isRequest());
2278
2279    if (cache->system->bypassCaches()) {
2280        // Just forward the packet if caches are disabled.
2281        // @todo This should really enqueue the packet rather
2282        bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
2283        assert(success);
2284        return true;
2285    } else if (tryTiming(pkt)) {
2286        cache->recvTimingReq(pkt);
2287        return true;
2288    }
2289    return false;
2290}
2291
2292Tick
2293BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
2294{
2295    if (cache->system->bypassCaches()) {
2296        // Forward the request if the system is in cache bypass mode.
2297        return cache->memSidePort.sendAtomic(pkt);
2298    } else {
2299        return cache->recvAtomic(pkt);
2300    }
2301}
2302
2303void
2304BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
2305{
2306    if (cache->system->bypassCaches()) {
2307        // The cache should be flushed if we are in cache bypass mode,
2308        // so we don't need to check if we need to update anything.
2309        cache->memSidePort.sendFunctional(pkt);
2310        return;
2311    }
2312
2313    // functional request
2314    cache->functionalAccess(pkt, true);
2315}
2316
2317AddrRangeList
2318BaseCache::CpuSidePort::getAddrRanges() const
2319{
2320    return cache->getAddrRanges();
2321}
2322
2323
2324BaseCache::
2325CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
2326                         const std::string &_label)
2327    : CacheSlavePort(_name, _cache, _label), cache(_cache)
2328{
2329}
2330
2331///////////////
2332//
2333// MemSidePort
2334//
2335///////////////
2336bool
2337BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
2338{
2339    cache->recvTimingResp(pkt);
2340    return true;
2341}
2342
2343// Express snooping requests to memside port
2344void
2345BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2346{
2347    // Snoops shouldn't happen when bypassing caches
2348    assert(!cache->system->bypassCaches());
2349
2350    // handle snooping requests
2351    cache->recvTimingSnoopReq(pkt);
2352}
2353
2354Tick
2355BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2356{
2357    // Snoops shouldn't happen when bypassing caches
2358    assert(!cache->system->bypassCaches());
2359
2360    return cache->recvAtomicSnoop(pkt);
2361}
2362
2363void
2364BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2365{
2366    // Snoops shouldn't happen when bypassing caches
2367    assert(!cache->system->bypassCaches());
2368
2369    // functional snoop (note that in contrast to atomic we don't have
2370    // a specific functionalSnoop method, as they have the same
2371    // behaviour regardless)
2372    cache->functionalAccess(pkt, false);
2373}
2374
2375void
2376BaseCache::CacheReqPacketQueue::sendDeferredPacket()
2377{
2378    // sanity check
2379    assert(!waitingOnRetry);
2380
2381    // there should never be any deferred request packets in the
2382    // queue, instead we resly on the cache to provide the packets
2383    // from the MSHR queue or write queue
2384    assert(deferredPacketReadyTime() == MaxTick);
2385
2386    // check for request packets (requests & writebacks)
2387    QueueEntry* entry = cache.getNextQueueEntry();
2388
2389    if (!entry) {
2390        // can happen if e.g. we attempt a writeback and fail, but
2391        // before the retry, the writeback is eliminated because
2392        // we snoop another cache's ReadEx.
2393    } else {
2394        // let our snoop responses go first if there are responses to
2395        // the same addresses
2396        if (checkConflictingSnoop(entry->blkAddr)) {
2397            return;
2398        }
2399        waitingOnRetry = entry->sendPacket(cache);
2400    }
2401
2402    // if we succeeded and are not waiting for a retry, schedule the
2403    // next send considering when the next queue is ready, note that
2404    // snoop responses have their own packet queue and thus schedule
2405    // their own events
2406    if (!waitingOnRetry) {
2407        schedSendEvent(cache.nextQueueReadyTime());
2408    }
2409}
2410
2411BaseCache::MemSidePort::MemSidePort(const std::string &_name,
2412                                    BaseCache *_cache,
2413                                    const std::string &_label)
2414    : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2415      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2416      _snoopRespQueue(*_cache, *this, true, _label), cache(_cache)
2417{
2418}
2419
2420void
2421WriteAllocator::updateMode(Addr write_addr, unsigned write_size,
2422                           Addr blk_addr)
2423{
2424    // check if we are continuing where the last write ended
2425    if (nextAddr == write_addr) {
2426        delayCtr[blk_addr] = delayThreshold;
2427        // stop if we have already saturated
2428        if (mode != WriteMode::NO_ALLOCATE) {
2429            byteCount += write_size;
2430            // switch to streaming mode if we have passed the lower
2431            // threshold
2432            if (mode == WriteMode::ALLOCATE &&
2433                byteCount > coalesceLimit) {
2434                mode = WriteMode::COALESCE;
2435                DPRINTF(Cache, "Switched to write coalescing\n");
2436            } else if (mode == WriteMode::COALESCE &&
2437                       byteCount > noAllocateLimit) {
2438                // and continue and switch to non-allocating mode if we
2439                // pass the upper threshold
2440                mode = WriteMode::NO_ALLOCATE;
2441                DPRINTF(Cache, "Switched to write-no-allocate\n");
2442            }
2443        }
2444    } else {
2445        // we did not see a write matching the previous one, start
2446        // over again
2447        byteCount = write_size;
2448        mode = WriteMode::ALLOCATE;
2449        resetDelay(blk_addr);
2450    }
2451    nextAddr = write_addr + write_size;
2452}
2453
2454WriteAllocator*
2455WriteAllocatorParams::create()
2456{
2457    return new WriteAllocator(this);
2458}
2459