base.cc revision 12823
1/*
2 * Copyright (c) 2012-2013, 2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 *          Nikos Nikoleris
42 */
43
44/**
45 * @file
46 * Definition of BaseCache functions.
47 */
48
49#include "mem/cache/base.hh"
50
51#include "base/compiler.hh"
52#include "base/logging.hh"
53#include "debug/Cache.hh"
54#include "debug/CachePort.hh"
55#include "debug/CacheVerbose.hh"
56#include "mem/cache/mshr.hh"
57#include "mem/cache/prefetch/base.hh"
58#include "mem/cache/queue_entry.hh"
59#include "params/BaseCache.hh"
60#include "sim/core.hh"
61
62class BaseMasterPort;
63class BaseSlavePort;
64
65using namespace std;
66
67BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
68                                          BaseCache *_cache,
69                                          const std::string &_label)
70    : QueuedSlavePort(_name, _cache, queue), queue(*_cache, *this, _label),
71      blocked(false), mustSendRetry(false),
72      sendRetryEvent([this]{ processSendRetry(); }, _name)
73{
74}
75
76BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
77    : MemObject(p),
78      cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
79      memSidePort(p->name + ".mem_side", this, "MemSidePort"),
80      mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
81      writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
82      tags(p->tags),
83      prefetcher(p->prefetcher),
84      prefetchOnAccess(p->prefetch_on_access),
85      writebackClean(p->writeback_clean),
86      tempBlockWriteback(nullptr),
87      writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
88                                    name(), false,
89                                    EventBase::Delayed_Writeback_Pri),
90      blkSize(blk_size),
91      lookupLatency(p->tag_latency),
92      dataLatency(p->data_latency),
93      forwardLatency(p->tag_latency),
94      fillLatency(p->data_latency),
95      responseLatency(p->response_latency),
96      numTarget(p->tgts_per_mshr),
97      forwardSnoops(true),
98      clusivity(p->clusivity),
99      isReadOnly(p->is_read_only),
100      blocked(0),
101      order(0),
102      noTargetMSHR(nullptr),
103      missCount(p->max_miss_count),
104      addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
105      system(p->system)
106{
107    // the MSHR queue has no reserve entries as we check the MSHR
108    // queue on every single allocation, whereas the write queue has
109    // as many reserve entries as we have MSHRs, since every MSHR may
110    // eventually require a writeback, and we do not check the write
111    // buffer before committing to an MSHR
112
113    // forward snoops is overridden in init() once we can query
114    // whether the connected master is actually snooping or not
115
116    tempBlock = new TempCacheBlk();
117    tempBlock->data = new uint8_t[blkSize];
118
119    tags->setCache(this);
120    if (prefetcher)
121        prefetcher->setCache(this);
122}
123
124BaseCache::~BaseCache()
125{
126    delete [] tempBlock->data;
127    delete tempBlock;
128}
129
130void
131BaseCache::CacheSlavePort::setBlocked()
132{
133    assert(!blocked);
134    DPRINTF(CachePort, "Port is blocking new requests\n");
135    blocked = true;
136    // if we already scheduled a retry in this cycle, but it has not yet
137    // happened, cancel it
138    if (sendRetryEvent.scheduled()) {
139        owner.deschedule(sendRetryEvent);
140        DPRINTF(CachePort, "Port descheduled retry\n");
141        mustSendRetry = true;
142    }
143}
144
145void
146BaseCache::CacheSlavePort::clearBlocked()
147{
148    assert(blocked);
149    DPRINTF(CachePort, "Port is accepting new requests\n");
150    blocked = false;
151    if (mustSendRetry) {
152        // @TODO: need to find a better time (next cycle?)
153        owner.schedule(sendRetryEvent, curTick() + 1);
154    }
155}
156
157void
158BaseCache::CacheSlavePort::processSendRetry()
159{
160    DPRINTF(CachePort, "Port is sending retry\n");
161
162    // reset the flag and call retry
163    mustSendRetry = false;
164    sendRetryReq();
165}
166
167Addr
168BaseCache::regenerateBlkAddr(CacheBlk* blk)
169{
170    if (blk != tempBlock) {
171        return tags->regenerateBlkAddr(blk);
172    } else {
173        return tempBlock->getAddr();
174    }
175}
176
177void
178BaseCache::init()
179{
180    if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
181        fatal("Cache ports on %s are not connected\n", name());
182    cpuSidePort.sendRangeChange();
183    forwardSnoops = cpuSidePort.isSnooping();
184}
185
186BaseMasterPort &
187BaseCache::getMasterPort(const std::string &if_name, PortID idx)
188{
189    if (if_name == "mem_side") {
190        return memSidePort;
191    }  else {
192        return MemObject::getMasterPort(if_name, idx);
193    }
194}
195
196BaseSlavePort &
197BaseCache::getSlavePort(const std::string &if_name, PortID idx)
198{
199    if (if_name == "cpu_side") {
200        return cpuSidePort;
201    } else {
202        return MemObject::getSlavePort(if_name, idx);
203    }
204}
205
206bool
207BaseCache::inRange(Addr addr) const
208{
209    for (const auto& r : addrRanges) {
210        if (r.contains(addr)) {
211            return true;
212       }
213    }
214    return false;
215}
216
217void
218BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
219{
220    if (pkt->needsResponse()) {
221        pkt->makeTimingResponse();
222        // @todo: Make someone pay for this
223        pkt->headerDelay = pkt->payloadDelay = 0;
224
225        // In this case we are considering request_time that takes
226        // into account the delay of the xbar, if any, and just
227        // lat, neglecting responseLatency, modelling hit latency
228        // just as lookupLatency or or the value of lat overriden
229        // by access(), that calls accessBlock() function.
230        cpuSidePort.schedTimingResp(pkt, request_time, true);
231    } else {
232        DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
233                pkt->print());
234
235        // queue the packet for deletion, as the sending cache is
236        // still relying on it; if the block is found in access(),
237        // CleanEvict and Writeback messages will be deleted
238        // here as well
239        pendingDelete.reset(pkt);
240    }
241}
242
243void
244BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
245                               Tick forward_time, Tick request_time)
246{
247    if (mshr) {
248        /// MSHR hit
249        /// @note writebacks will be checked in getNextMSHR()
250        /// for any conflicting requests to the same block
251
252        //@todo remove hw_pf here
253
254        // Coalesce unless it was a software prefetch (see above).
255        if (pkt) {
256            assert(!pkt->isWriteback());
257            // CleanEvicts corresponding to blocks which have
258            // outstanding requests in MSHRs are simply sunk here
259            if (pkt->cmd == MemCmd::CleanEvict) {
260                pendingDelete.reset(pkt);
261            } else if (pkt->cmd == MemCmd::WriteClean) {
262                // A WriteClean should never coalesce with any
263                // outstanding cache maintenance requests.
264
265                // We use forward_time here because there is an
266                // uncached memory write, forwarded to WriteBuffer.
267                allocateWriteBuffer(pkt, forward_time);
268            } else {
269                DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
270                        pkt->print());
271
272                assert(pkt->req->masterId() < system->maxMasters());
273                mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
274
275                // We use forward_time here because it is the same
276                // considering new targets. We have multiple
277                // requests for the same address here. It
278                // specifies the latency to allocate an internal
279                // buffer and to schedule an event to the queued
280                // port and also takes into account the additional
281                // delay of the xbar.
282                mshr->allocateTarget(pkt, forward_time, order++,
283                                     allocOnFill(pkt->cmd));
284                if (mshr->getNumTargets() == numTarget) {
285                    noTargetMSHR = mshr;
286                    setBlocked(Blocked_NoTargets);
287                    // need to be careful with this... if this mshr isn't
288                    // ready yet (i.e. time > curTick()), we don't want to
289                    // move it ahead of mshrs that are ready
290                    // mshrQueue.moveToFront(mshr);
291                }
292            }
293        }
294    } else {
295        // no MSHR
296        assert(pkt->req->masterId() < system->maxMasters());
297        mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
298
299        if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
300            // We use forward_time here because there is an
301            // writeback or writeclean, forwarded to WriteBuffer.
302            allocateWriteBuffer(pkt, forward_time);
303        } else {
304            if (blk && blk->isValid()) {
305                // If we have a write miss to a valid block, we
306                // need to mark the block non-readable.  Otherwise
307                // if we allow reads while there's an outstanding
308                // write miss, the read could return stale data
309                // out of the cache block... a more aggressive
310                // system could detect the overlap (if any) and
311                // forward data out of the MSHRs, but we don't do
312                // that yet.  Note that we do need to leave the
313                // block valid so that it stays in the cache, in
314                // case we get an upgrade response (and hence no
315                // new data) when the write miss completes.
316                // As long as CPUs do proper store/load forwarding
317                // internally, and have a sufficiently weak memory
318                // model, this is probably unnecessary, but at some
319                // point it must have seemed like we needed it...
320                assert((pkt->needsWritable() && !blk->isWritable()) ||
321                       pkt->req->isCacheMaintenance());
322                blk->status &= ~BlkReadable;
323            }
324            // Here we are using forward_time, modelling the latency of
325            // a miss (outbound) just as forwardLatency, neglecting the
326            // lookupLatency component.
327            allocateMissBuffer(pkt, forward_time);
328        }
329    }
330}
331
332void
333BaseCache::recvTimingReq(PacketPtr pkt)
334{
335    // anything that is merely forwarded pays for the forward latency and
336    // the delay provided by the crossbar
337    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
338
339    // We use lookupLatency here because it is used to specify the latency
340    // to access.
341    Cycles lat = lookupLatency;
342    CacheBlk *blk = nullptr;
343    bool satisfied = false;
344    {
345        PacketList writebacks;
346        // Note that lat is passed by reference here. The function
347        // access() calls accessBlock() which can modify lat value.
348        satisfied = access(pkt, blk, lat, writebacks);
349
350        // copy writebacks to write buffer here to ensure they logically
351        // precede anything happening below
352        doWritebacks(writebacks, forward_time);
353    }
354
355    // Here we charge the headerDelay that takes into account the latencies
356    // of the bus, if the packet comes from it.
357    // The latency charged it is just lat that is the value of lookupLatency
358    // modified by access() function, or if not just lookupLatency.
359    // In case of a hit we are neglecting response latency.
360    // In case of a miss we are neglecting forward latency.
361    Tick request_time = clockEdge(lat) + pkt->headerDelay;
362    // Here we reset the timing of the packet.
363    pkt->headerDelay = pkt->payloadDelay = 0;
364    // track time of availability of next prefetch, if any
365    Tick next_pf_time = MaxTick;
366
367    if (satisfied) {
368        // if need to notify the prefetcher we have to do it before
369        // anything else as later handleTimingReqHit might turn the
370        // packet in a response
371        if (prefetcher &&
372            (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
373            if (blk)
374                blk->status &= ~BlkHWPrefetched;
375
376            // Don't notify on SWPrefetch
377            if (!pkt->cmd.isSWPrefetch()) {
378                assert(!pkt->req->isCacheMaintenance());
379                next_pf_time = prefetcher->notify(pkt);
380            }
381        }
382
383        handleTimingReqHit(pkt, blk, request_time);
384    } else {
385        handleTimingReqMiss(pkt, blk, forward_time, request_time);
386
387        // We should call the prefetcher reguardless if the request is
388        // satisfied or not, reguardless if the request is in the MSHR
389        // or not. The request could be a ReadReq hit, but still not
390        // satisfied (potentially because of a prior write to the same
391        // cache line. So, even when not satisfied, there is an MSHR
392        // already allocated for this, we need to let the prefetcher
393        // know about the request
394
395        // Don't notify prefetcher on SWPrefetch or cache maintenance
396        // operations
397        if (prefetcher && pkt &&
398            !pkt->cmd.isSWPrefetch() &&
399            !pkt->req->isCacheMaintenance()) {
400            next_pf_time = prefetcher->notify(pkt);
401        }
402    }
403
404    if (next_pf_time != MaxTick) {
405        schedMemSideSendEvent(next_pf_time);
406    }
407}
408
409void
410BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
411{
412    Tick completion_time = clockEdge(responseLatency) +
413        pkt->headerDelay + pkt->payloadDelay;
414
415    // Reset the bus additional time as it is now accounted for
416    pkt->headerDelay = pkt->payloadDelay = 0;
417
418    cpuSidePort.schedTimingResp(pkt, completion_time, true);
419}
420
421void
422BaseCache::recvTimingResp(PacketPtr pkt)
423{
424    assert(pkt->isResponse());
425
426    // all header delay should be paid for by the crossbar, unless
427    // this is a prefetch response from above
428    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
429             "%s saw a non-zero packet delay\n", name());
430
431    const bool is_error = pkt->isError();
432
433    if (is_error) {
434        DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
435                pkt->print());
436    }
437
438    DPRINTF(Cache, "%s: Handling response %s\n", __func__,
439            pkt->print());
440
441    // if this is a write, we should be looking at an uncacheable
442    // write
443    if (pkt->isWrite()) {
444        assert(pkt->req->isUncacheable());
445        handleUncacheableWriteResp(pkt);
446        return;
447    }
448
449    // we have dealt with any (uncacheable) writes above, from here on
450    // we know we are dealing with an MSHR due to a miss or a prefetch
451    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
452    assert(mshr);
453
454    if (mshr == noTargetMSHR) {
455        // we always clear at least one target
456        clearBlocked(Blocked_NoTargets);
457        noTargetMSHR = nullptr;
458    }
459
460    // Initial target is used just for stats
461    MSHR::Target *initial_tgt = mshr->getTarget();
462    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
463    Tick miss_latency = curTick() - initial_tgt->recvTime;
464
465    if (pkt->req->isUncacheable()) {
466        assert(pkt->req->masterId() < system->maxMasters());
467        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
468            miss_latency;
469    } else {
470        assert(pkt->req->masterId() < system->maxMasters());
471        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
472            miss_latency;
473    }
474
475    PacketList writebacks;
476
477    bool is_fill = !mshr->isForward &&
478        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
479
480    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
481
482    if (is_fill && !is_error) {
483        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
484                pkt->getAddr());
485
486        blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
487        assert(blk != nullptr);
488    }
489
490    if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
491        // The block was marked not readable while there was a pending
492        // cache maintenance operation, restore its flag.
493        blk->status |= BlkReadable;
494
495        // This was a cache clean operation (without invalidate)
496        // and we have a copy of the block already. Since there
497        // is no invalidation, we can promote targets that don't
498        // require a writable copy
499        mshr->promoteReadable();
500    }
501
502    if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
503        // If at this point the referenced block is writable and the
504        // response is not a cache invalidate, we promote targets that
505        // were deferred as we couldn't guarrantee a writable copy
506        mshr->promoteWritable();
507    }
508
509    serviceMSHRTargets(mshr, pkt, blk, writebacks);
510
511    if (mshr->promoteDeferredTargets()) {
512        // avoid later read getting stale data while write miss is
513        // outstanding.. see comment in timingAccess()
514        if (blk) {
515            blk->status &= ~BlkReadable;
516        }
517        mshrQueue.markPending(mshr);
518        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
519    } else {
520        // while we deallocate an mshr from the queue we still have to
521        // check the isFull condition before and after as we might
522        // have been using the reserved entries already
523        const bool was_full = mshrQueue.isFull();
524        mshrQueue.deallocate(mshr);
525        if (was_full && !mshrQueue.isFull()) {
526            clearBlocked(Blocked_NoMSHRs);
527        }
528
529        // Request the bus for a prefetch if this deallocation freed enough
530        // MSHRs for a prefetch to take place
531        if (prefetcher && mshrQueue.canPrefetch()) {
532            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
533                                         clockEdge());
534            if (next_pf_time != MaxTick)
535                schedMemSideSendEvent(next_pf_time);
536        }
537    }
538
539    // if we used temp block, check to see if its valid and then clear it out
540    if (blk == tempBlock && tempBlock->isValid()) {
541        evictBlock(blk, writebacks);
542    }
543
544    const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
545    // copy writebacks to write buffer
546    doWritebacks(writebacks, forward_time);
547
548    DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
549    delete pkt;
550}
551
552
553Tick
554BaseCache::recvAtomic(PacketPtr pkt)
555{
556    // We are in atomic mode so we pay just for lookupLatency here.
557    Cycles lat = lookupLatency;
558
559    // follow the same flow as in recvTimingReq, and check if a cache
560    // above us is responding
561    if (pkt->cacheResponding() && !pkt->isClean()) {
562        assert(!pkt->req->isCacheInvalidate());
563        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
564                pkt->print());
565
566        // if a cache is responding, and it had the line in Owned
567        // rather than Modified state, we need to invalidate any
568        // copies that are not on the same path to memory
569        assert(pkt->needsWritable() && !pkt->responderHadWritable());
570        lat += ticksToCycles(memSidePort.sendAtomic(pkt));
571
572        return lat * clockPeriod();
573    }
574
575    // should assert here that there are no outstanding MSHRs or
576    // writebacks... that would mean that someone used an atomic
577    // access in timing mode
578
579    CacheBlk *blk = nullptr;
580    PacketList writebacks;
581    bool satisfied = access(pkt, blk, lat, writebacks);
582
583    if (pkt->isClean() && blk && blk->isDirty()) {
584        // A cache clean opearation is looking for a dirty
585        // block. If a dirty block is encountered a WriteClean
586        // will update any copies to the path to the memory
587        // until the point of reference.
588        DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
589                __func__, pkt->print(), blk->print());
590        PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
591        writebacks.push_back(wb_pkt);
592        pkt->setSatisfied();
593    }
594
595    // handle writebacks resulting from the access here to ensure they
596    // logically precede anything happening below
597    doWritebacksAtomic(writebacks);
598    assert(writebacks.empty());
599
600    if (!satisfied) {
601        lat += handleAtomicReqMiss(pkt, blk, writebacks);
602    }
603
604    // Note that we don't invoke the prefetcher at all in atomic mode.
605    // It's not clear how to do it properly, particularly for
606    // prefetchers that aggressively generate prefetch candidates and
607    // rely on bandwidth contention to throttle them; these will tend
608    // to pollute the cache in atomic mode since there is no bandwidth
609    // contention.  If we ever do want to enable prefetching in atomic
610    // mode, though, this is the place to do it... see timingAccess()
611    // for an example (though we'd want to issue the prefetch(es)
612    // immediately rather than calling requestMemSideBus() as we do
613    // there).
614
615    // do any writebacks resulting from the response handling
616    doWritebacksAtomic(writebacks);
617
618    // if we used temp block, check to see if its valid and if so
619    // clear it out, but only do so after the call to recvAtomic is
620    // finished so that any downstream observers (such as a snoop
621    // filter), first see the fill, and only then see the eviction
622    if (blk == tempBlock && tempBlock->isValid()) {
623        // the atomic CPU calls recvAtomic for fetch and load/store
624        // sequentuially, and we may already have a tempBlock
625        // writeback from the fetch that we have not yet sent
626        if (tempBlockWriteback) {
627            // if that is the case, write the prevoius one back, and
628            // do not schedule any new event
629            writebackTempBlockAtomic();
630        } else {
631            // the writeback/clean eviction happens after the call to
632            // recvAtomic has finished (but before any successive
633            // calls), so that the response handling from the fill is
634            // allowed to happen first
635            schedule(writebackTempBlockAtomicEvent, curTick());
636        }
637
638        tempBlockWriteback = evictBlock(blk);
639    }
640
641    if (pkt->needsResponse()) {
642        pkt->makeAtomicResponse();
643    }
644
645    return lat * clockPeriod();
646}
647
648void
649BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
650{
651    Addr blk_addr = pkt->getBlockAddr(blkSize);
652    bool is_secure = pkt->isSecure();
653    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
654    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
655
656    pkt->pushLabel(name());
657
658    CacheBlkPrintWrapper cbpw(blk);
659
660    // Note that just because an L2/L3 has valid data doesn't mean an
661    // L1 doesn't have a more up-to-date modified copy that still
662    // needs to be found.  As a result we always update the request if
663    // we have it, but only declare it satisfied if we are the owner.
664
665    // see if we have data at all (owned or otherwise)
666    bool have_data = blk && blk->isValid()
667        && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize,
668                                     blk->data);
669
670    // data we have is dirty if marked as such or if we have an
671    // in-service MSHR that is pending a modified line
672    bool have_dirty =
673        have_data && (blk->isDirty() ||
674                      (mshr && mshr->inService && mshr->isPendingModified()));
675
676    bool done = have_dirty ||
677        cpuSidePort.trySatisfyFunctional(pkt) ||
678        mshrQueue.trySatisfyFunctional(pkt, blk_addr) ||
679        writeBuffer.trySatisfyFunctional(pkt, blk_addr) ||
680        memSidePort.trySatisfyFunctional(pkt);
681
682    DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__,  pkt->print(),
683            (blk && blk->isValid()) ? "valid " : "",
684            have_data ? "data " : "", done ? "done " : "");
685
686    // We're leaving the cache, so pop cache->name() label
687    pkt->popLabel();
688
689    if (done) {
690        pkt->makeResponse();
691    } else {
692        // if it came as a request from the CPU side then make sure it
693        // continues towards the memory side
694        if (from_cpu_side) {
695            memSidePort.sendFunctional(pkt);
696        } else if (cpuSidePort.isSnooping()) {
697            // if it came from the memory side, it must be a snoop request
698            // and we should only forward it if we are forwarding snoops
699            cpuSidePort.sendFunctionalSnoop(pkt);
700        }
701    }
702}
703
704
705void
706BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
707{
708    assert(pkt->isRequest());
709
710    uint64_t overwrite_val;
711    bool overwrite_mem;
712    uint64_t condition_val64;
713    uint32_t condition_val32;
714
715    int offset = pkt->getOffset(blkSize);
716    uint8_t *blk_data = blk->data + offset;
717
718    assert(sizeof(uint64_t) >= pkt->getSize());
719
720    overwrite_mem = true;
721    // keep a copy of our possible write value, and copy what is at the
722    // memory address into the packet
723    pkt->writeData((uint8_t *)&overwrite_val);
724    pkt->setData(blk_data);
725
726    if (pkt->req->isCondSwap()) {
727        if (pkt->getSize() == sizeof(uint64_t)) {
728            condition_val64 = pkt->req->getExtraData();
729            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
730                                         sizeof(uint64_t));
731        } else if (pkt->getSize() == sizeof(uint32_t)) {
732            condition_val32 = (uint32_t)pkt->req->getExtraData();
733            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
734                                         sizeof(uint32_t));
735        } else
736            panic("Invalid size for conditional read/write\n");
737    }
738
739    if (overwrite_mem) {
740        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
741        blk->status |= BlkDirty;
742    }
743}
744
745QueueEntry*
746BaseCache::getNextQueueEntry()
747{
748    // Check both MSHR queue and write buffer for potential requests,
749    // note that null does not mean there is no request, it could
750    // simply be that it is not ready
751    MSHR *miss_mshr  = mshrQueue.getNext();
752    WriteQueueEntry *wq_entry = writeBuffer.getNext();
753
754    // If we got a write buffer request ready, first priority is a
755    // full write buffer, otherwise we favour the miss requests
756    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
757        // need to search MSHR queue for conflicting earlier miss.
758        MSHR *conflict_mshr =
759            mshrQueue.findPending(wq_entry->blkAddr,
760                                  wq_entry->isSecure);
761
762        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
763            // Service misses in order until conflict is cleared.
764            return conflict_mshr;
765
766            // @todo Note that we ignore the ready time of the conflict here
767        }
768
769        // No conflicts; issue write
770        return wq_entry;
771    } else if (miss_mshr) {
772        // need to check for conflicting earlier writeback
773        WriteQueueEntry *conflict_mshr =
774            writeBuffer.findPending(miss_mshr->blkAddr,
775                                    miss_mshr->isSecure);
776        if (conflict_mshr) {
777            // not sure why we don't check order here... it was in the
778            // original code but commented out.
779
780            // The only way this happens is if we are
781            // doing a write and we didn't have permissions
782            // then subsequently saw a writeback (owned got evicted)
783            // We need to make sure to perform the writeback first
784            // To preserve the dirty data, then we can issue the write
785
786            // should we return wq_entry here instead?  I.e. do we
787            // have to flush writes in order?  I don't think so... not
788            // for Alpha anyway.  Maybe for x86?
789            return conflict_mshr;
790
791            // @todo Note that we ignore the ready time of the conflict here
792        }
793
794        // No conflicts; issue read
795        return miss_mshr;
796    }
797
798    // fall through... no pending requests.  Try a prefetch.
799    assert(!miss_mshr && !wq_entry);
800    if (prefetcher && mshrQueue.canPrefetch()) {
801        // If we have a miss queue slot, we can try a prefetch
802        PacketPtr pkt = prefetcher->getPacket();
803        if (pkt) {
804            Addr pf_addr = pkt->getBlockAddr(blkSize);
805            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
806                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
807                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
808                // Update statistic on number of prefetches issued
809                // (hwpf_mshr_misses)
810                assert(pkt->req->masterId() < system->maxMasters());
811                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
812
813                // allocate an MSHR and return it, note
814                // that we send the packet straight away, so do not
815                // schedule the send
816                return allocateMissBuffer(pkt, curTick(), false);
817            } else {
818                // free the request and packet
819                delete pkt;
820            }
821        }
822    }
823
824    return nullptr;
825}
826
827void
828BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
829{
830    assert(pkt->isRequest());
831
832    assert(blk && blk->isValid());
833    // Occasionally this is not true... if we are a lower-level cache
834    // satisfying a string of Read and ReadEx requests from
835    // upper-level caches, a Read will mark the block as shared but we
836    // can satisfy a following ReadEx anyway since we can rely on the
837    // Read requester(s) to have buffered the ReadEx snoop and to
838    // invalidate their blocks after receiving them.
839    // assert(!pkt->needsWritable() || blk->isWritable());
840    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
841
842    // Check RMW operations first since both isRead() and
843    // isWrite() will be true for them
844    if (pkt->cmd == MemCmd::SwapReq) {
845        if (pkt->isAtomicOp()) {
846            // extract data from cache and save it into the data field in
847            // the packet as a return value from this atomic op
848
849            int offset = tags->extractBlkOffset(pkt->getAddr());
850            uint8_t *blk_data = blk->data + offset;
851            std::memcpy(pkt->getPtr<uint8_t>(), blk_data, pkt->getSize());
852
853            // execute AMO operation
854            (*(pkt->getAtomicOp()))(blk_data);
855
856            // set block status to dirty
857            blk->status |= BlkDirty;
858        } else {
859            cmpAndSwap(blk, pkt);
860        }
861    } else if (pkt->isWrite()) {
862        // we have the block in a writable state and can go ahead,
863        // note that the line may be also be considered writable in
864        // downstream caches along the path to memory, but always
865        // Exclusive, and never Modified
866        assert(blk->isWritable());
867        // Write or WriteLine at the first cache with block in writable state
868        if (blk->checkWrite(pkt)) {
869            pkt->writeDataToBlock(blk->data, blkSize);
870        }
871        // Always mark the line as dirty (and thus transition to the
872        // Modified state) even if we are a failed StoreCond so we
873        // supply data to any snoops that have appended themselves to
874        // this cache before knowing the store will fail.
875        blk->status |= BlkDirty;
876        DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
877    } else if (pkt->isRead()) {
878        if (pkt->isLLSC()) {
879            blk->trackLoadLocked(pkt);
880        }
881
882        // all read responses have a data payload
883        assert(pkt->hasRespData());
884        pkt->setDataFromBlock(blk->data, blkSize);
885    } else if (pkt->isUpgrade()) {
886        // sanity check
887        assert(!pkt->hasSharers());
888
889        if (blk->isDirty()) {
890            // we were in the Owned state, and a cache above us that
891            // has the line in Shared state needs to be made aware
892            // that the data it already has is in fact dirty
893            pkt->setCacheResponding();
894            blk->status &= ~BlkDirty;
895        }
896    } else if (pkt->isClean()) {
897        blk->status &= ~BlkDirty;
898    } else {
899        assert(pkt->isInvalidate());
900        invalidateBlock(blk);
901        DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
902                pkt->print());
903    }
904}
905
906/////////////////////////////////////////////////////
907//
908// Access path: requests coming in from the CPU side
909//
910/////////////////////////////////////////////////////
911
912bool
913BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
914                  PacketList &writebacks)
915{
916    // sanity check
917    assert(pkt->isRequest());
918
919    chatty_assert(!(isReadOnly && pkt->isWrite()),
920                  "Should never see a write in a read-only cache %s\n",
921                  name());
922
923    // Here lat is the value passed as parameter to accessBlock() function
924    // that can modify its value.
925    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat);
926
927    DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
928            blk ? "hit " + blk->print() : "miss");
929
930    if (pkt->req->isCacheMaintenance()) {
931        // A cache maintenance operation is always forwarded to the
932        // memory below even if the block is found in dirty state.
933
934        // We defer any changes to the state of the block until we
935        // create and mark as in service the mshr for the downstream
936        // packet.
937        return false;
938    }
939
940    if (pkt->isEviction()) {
941        // We check for presence of block in above caches before issuing
942        // Writeback or CleanEvict to write buffer. Therefore the only
943        // possible cases can be of a CleanEvict packet coming from above
944        // encountering a Writeback generated in this cache peer cache and
945        // waiting in the write buffer. Cases of upper level peer caches
946        // generating CleanEvict and Writeback or simply CleanEvict and
947        // CleanEvict almost simultaneously will be caught by snoops sent out
948        // by crossbar.
949        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
950                                                          pkt->isSecure());
951        if (wb_entry) {
952            assert(wb_entry->getNumTargets() == 1);
953            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
954            assert(wbPkt->isWriteback());
955
956            if (pkt->isCleanEviction()) {
957                // The CleanEvict and WritebackClean snoops into other
958                // peer caches of the same level while traversing the
959                // crossbar. If a copy of the block is found, the
960                // packet is deleted in the crossbar. Hence, none of
961                // the other upper level caches connected to this
962                // cache have the block, so we can clear the
963                // BLOCK_CACHED flag in the Writeback if set and
964                // discard the CleanEvict by returning true.
965                wbPkt->clearBlockCached();
966                return true;
967            } else {
968                assert(pkt->cmd == MemCmd::WritebackDirty);
969                // Dirty writeback from above trumps our clean
970                // writeback... discard here
971                // Note: markInService will remove entry from writeback buffer.
972                markInService(wb_entry);
973                delete wbPkt;
974            }
975        }
976    }
977
978    // Writeback handling is special case.  We can write the block into
979    // the cache without having a writeable copy (or any copy at all).
980    if (pkt->isWriteback()) {
981        assert(blkSize == pkt->getSize());
982
983        // we could get a clean writeback while we are having
984        // outstanding accesses to a block, do the simple thing for
985        // now and drop the clean writeback so that we do not upset
986        // any ordering/decisions about ownership already taken
987        if (pkt->cmd == MemCmd::WritebackClean &&
988            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
989            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
990                    "dropping\n", pkt->getAddr());
991            return true;
992        }
993
994        if (!blk) {
995            // need to do a replacement
996            blk = allocateBlock(pkt, writebacks);
997            if (!blk) {
998                // no replaceable block available: give up, fwd to next level.
999                incMissCount(pkt);
1000                return false;
1001            }
1002
1003            blk->status |= (BlkValid | BlkReadable);
1004        }
1005        // only mark the block dirty if we got a writeback command,
1006        // and leave it as is for a clean writeback
1007        if (pkt->cmd == MemCmd::WritebackDirty) {
1008            // TODO: the coherent cache can assert(!blk->isDirty());
1009            blk->status |= BlkDirty;
1010        }
1011        // if the packet does not have sharers, it is passing
1012        // writable, and we got the writeback in Modified or Exclusive
1013        // state, if not we are in the Owned or Shared state
1014        if (!pkt->hasSharers()) {
1015            blk->status |= BlkWritable;
1016        }
1017        // nothing else to do; writeback doesn't expect response
1018        assert(!pkt->needsResponse());
1019        pkt->writeDataToBlock(blk->data, blkSize);
1020        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1021        incHitCount(pkt);
1022        // populate the time when the block will be ready to access.
1023        blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
1024            pkt->payloadDelay;
1025        return true;
1026    } else if (pkt->cmd == MemCmd::CleanEvict) {
1027        if (blk) {
1028            // Found the block in the tags, need to stop CleanEvict from
1029            // propagating further down the hierarchy. Returning true will
1030            // treat the CleanEvict like a satisfied write request and delete
1031            // it.
1032            return true;
1033        }
1034        // We didn't find the block here, propagate the CleanEvict further
1035        // down the memory hierarchy. Returning false will treat the CleanEvict
1036        // like a Writeback which could not find a replaceable block so has to
1037        // go to next level.
1038        return false;
1039    } else if (pkt->cmd == MemCmd::WriteClean) {
1040        // WriteClean handling is a special case. We can allocate a
1041        // block directly if it doesn't exist and we can update the
1042        // block immediately. The WriteClean transfers the ownership
1043        // of the block as well.
1044        assert(blkSize == pkt->getSize());
1045
1046        if (!blk) {
1047            if (pkt->writeThrough()) {
1048                // if this is a write through packet, we don't try to
1049                // allocate if the block is not present
1050                return false;
1051            } else {
1052                // a writeback that misses needs to allocate a new block
1053                blk = allocateBlock(pkt, writebacks);
1054                if (!blk) {
1055                    // no replaceable block available: give up, fwd to
1056                    // next level.
1057                    incMissCount(pkt);
1058                    return false;
1059                }
1060
1061                blk->status |= (BlkValid | BlkReadable);
1062            }
1063        }
1064
1065        // at this point either this is a writeback or a write-through
1066        // write clean operation and the block is already in this
1067        // cache, we need to update the data and the block flags
1068        assert(blk);
1069        // TODO: the coherent cache can assert(!blk->isDirty());
1070        if (!pkt->writeThrough()) {
1071            blk->status |= BlkDirty;
1072        }
1073        // nothing else to do; writeback doesn't expect response
1074        assert(!pkt->needsResponse());
1075        pkt->writeDataToBlock(blk->data, blkSize);
1076        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1077
1078        incHitCount(pkt);
1079        // populate the time when the block will be ready to access.
1080        blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
1081            pkt->payloadDelay;
1082        // if this a write-through packet it will be sent to cache
1083        // below
1084        return !pkt->writeThrough();
1085    } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
1086                       blk->isReadable())) {
1087        // OK to satisfy access
1088        incHitCount(pkt);
1089        satisfyRequest(pkt, blk);
1090        maintainClusivity(pkt->fromCache(), blk);
1091
1092        return true;
1093    }
1094
1095    // Can't satisfy access normally... either no block (blk == nullptr)
1096    // or have block but need writable
1097
1098    incMissCount(pkt);
1099
1100    if (!blk && pkt->isLLSC() && pkt->isWrite()) {
1101        // complete miss on store conditional... just give up now
1102        pkt->req->setExtraData(0);
1103        return true;
1104    }
1105
1106    return false;
1107}
1108
1109void
1110BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
1111{
1112    if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
1113        clusivity == Enums::mostly_excl) {
1114        // if we have responded to a cache, and our block is still
1115        // valid, but not dirty, and this cache is mostly exclusive
1116        // with respect to the cache above, drop the block
1117        invalidateBlock(blk);
1118    }
1119}
1120
1121CacheBlk*
1122BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1123                      bool allocate)
1124{
1125    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1126    Addr addr = pkt->getAddr();
1127    bool is_secure = pkt->isSecure();
1128#if TRACING_ON
1129    CacheBlk::State old_state = blk ? blk->status : 0;
1130#endif
1131
1132    // When handling a fill, we should have no writes to this line.
1133    assert(addr == pkt->getBlockAddr(blkSize));
1134    assert(!writeBuffer.findMatch(addr, is_secure));
1135
1136    if (!blk) {
1137        // better have read new data...
1138        assert(pkt->hasData());
1139
1140        // only read responses and write-line requests have data;
1141        // note that we don't write the data here for write-line - that
1142        // happens in the subsequent call to satisfyRequest
1143        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1144
1145        // need to do a replacement if allocating, otherwise we stick
1146        // with the temporary storage
1147        blk = allocate ? allocateBlock(pkt, writebacks) : nullptr;
1148
1149        if (!blk) {
1150            // No replaceable block or a mostly exclusive
1151            // cache... just use temporary storage to complete the
1152            // current request and then get rid of it
1153            assert(!tempBlock->isValid());
1154            blk = tempBlock;
1155            tempBlock->insert(addr, is_secure);
1156            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1157                    is_secure ? "s" : "ns");
1158        }
1159
1160        // we should never be overwriting a valid block
1161        assert(!blk->isValid());
1162    } else {
1163        // existing block... probably an upgrade
1164        assert(regenerateBlkAddr(blk) == addr);
1165        assert(blk->isSecure() == is_secure);
1166        // either we're getting new data or the block should already be valid
1167        assert(pkt->hasData() || blk->isValid());
1168        // don't clear block status... if block is already dirty we
1169        // don't want to lose that
1170    }
1171
1172    blk->status |= BlkValid | BlkReadable;
1173
1174    // sanity check for whole-line writes, which should always be
1175    // marked as writable as part of the fill, and then later marked
1176    // dirty as part of satisfyRequest
1177    if (pkt->cmd == MemCmd::WriteLineReq) {
1178        assert(!pkt->hasSharers());
1179    }
1180
1181    // here we deal with setting the appropriate state of the line,
1182    // and we start by looking at the hasSharers flag, and ignore the
1183    // cacheResponding flag (normally signalling dirty data) if the
1184    // packet has sharers, thus the line is never allocated as Owned
1185    // (dirty but not writable), and always ends up being either
1186    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1187    // for more details
1188    if (!pkt->hasSharers()) {
1189        // we could get a writable line from memory (rather than a
1190        // cache) even in a read-only cache, note that we set this bit
1191        // even for a read-only cache, possibly revisit this decision
1192        blk->status |= BlkWritable;
1193
1194        // check if we got this via cache-to-cache transfer (i.e., from a
1195        // cache that had the block in Modified or Owned state)
1196        if (pkt->cacheResponding()) {
1197            // we got the block in Modified state, and invalidated the
1198            // owners copy
1199            blk->status |= BlkDirty;
1200
1201            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1202                          "in read-only cache %s\n", name());
1203        }
1204    }
1205
1206    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1207            addr, is_secure ? "s" : "ns", old_state, blk->print());
1208
1209    // if we got new data, copy it in (checking for a read response
1210    // and a response that has data is the same in the end)
1211    if (pkt->isRead()) {
1212        // sanity checks
1213        assert(pkt->hasData());
1214        assert(pkt->getSize() == blkSize);
1215
1216        pkt->writeDataToBlock(blk->data, blkSize);
1217    }
1218    // We pay for fillLatency here.
1219    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1220        pkt->payloadDelay;
1221
1222    return blk;
1223}
1224
1225CacheBlk*
1226BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks)
1227{
1228    // Get address
1229    const Addr addr = pkt->getAddr();
1230
1231    // Get secure bit
1232    const bool is_secure = pkt->isSecure();
1233
1234    // Find replacement victim
1235    std::vector<CacheBlk*> evict_blks;
1236    CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks);
1237
1238    // It is valid to return nullptr if there is no victim
1239    if (!victim)
1240        return nullptr;
1241
1242    // Check for transient state allocations. If any of the entries listed
1243    // for eviction has a transient state, the allocation fails
1244    for (const auto& blk : evict_blks) {
1245        if (blk->isValid()) {
1246            Addr repl_addr = regenerateBlkAddr(blk);
1247            MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1248            if (repl_mshr) {
1249                // must be an outstanding upgrade or clean request
1250                // on a block we're about to replace...
1251                assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1252                       repl_mshr->isCleaning());
1253
1254                // too hard to replace block with transient state
1255                // allocation failed, block not inserted
1256                return nullptr;
1257            }
1258        }
1259    }
1260
1261    // The victim will be replaced by a new entry, so increase the replacement
1262    // counter if a valid block is being replaced
1263    if (victim->isValid()) {
1264        DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1265                "(%s): %s\n", regenerateBlkAddr(victim),
1266                victim->isSecure() ? "s" : "ns",
1267                addr, is_secure ? "s" : "ns",
1268                victim->isDirty() ? "writeback" : "clean");
1269
1270        replacements++;
1271    }
1272
1273    // Evict valid blocks associated to this victim block
1274    for (const auto& blk : evict_blks) {
1275        if (blk->isValid()) {
1276            if (blk->wasPrefetched()) {
1277                unusedPrefetches++;
1278            }
1279
1280            evictBlock(blk, writebacks);
1281        }
1282    }
1283
1284    // Insert new block at victimized entry
1285    tags->insertBlock(pkt, victim);
1286
1287    return victim;
1288}
1289
1290void
1291BaseCache::invalidateBlock(CacheBlk *blk)
1292{
1293    if (blk != tempBlock)
1294        tags->invalidate(blk);
1295    blk->invalidate();
1296}
1297
1298PacketPtr
1299BaseCache::writebackBlk(CacheBlk *blk)
1300{
1301    chatty_assert(!isReadOnly || writebackClean,
1302                  "Writeback from read-only cache");
1303    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1304
1305    writebacks[Request::wbMasterId]++;
1306
1307    RequestPtr req = std::make_shared<Request>(
1308        regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1309
1310    if (blk->isSecure())
1311        req->setFlags(Request::SECURE);
1312
1313    req->taskId(blk->task_id);
1314
1315    PacketPtr pkt =
1316        new Packet(req, blk->isDirty() ?
1317                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1318
1319    DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1320            pkt->print(), blk->isWritable(), blk->isDirty());
1321
1322    if (blk->isWritable()) {
1323        // not asserting shared means we pass the block in modified
1324        // state, mark our own block non-writeable
1325        blk->status &= ~BlkWritable;
1326    } else {
1327        // we are in the Owned state, tell the receiver
1328        pkt->setHasSharers();
1329    }
1330
1331    // make sure the block is not marked dirty
1332    blk->status &= ~BlkDirty;
1333
1334    pkt->allocate();
1335    pkt->setDataFromBlock(blk->data, blkSize);
1336
1337    return pkt;
1338}
1339
1340PacketPtr
1341BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1342{
1343    RequestPtr req = std::make_shared<Request>(
1344        regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1345
1346    if (blk->isSecure()) {
1347        req->setFlags(Request::SECURE);
1348    }
1349    req->taskId(blk->task_id);
1350
1351    PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1352
1353    if (dest) {
1354        req->setFlags(dest);
1355        pkt->setWriteThrough();
1356    }
1357
1358    DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1359            blk->isWritable(), blk->isDirty());
1360
1361    if (blk->isWritable()) {
1362        // not asserting shared means we pass the block in modified
1363        // state, mark our own block non-writeable
1364        blk->status &= ~BlkWritable;
1365    } else {
1366        // we are in the Owned state, tell the receiver
1367        pkt->setHasSharers();
1368    }
1369
1370    // make sure the block is not marked dirty
1371    blk->status &= ~BlkDirty;
1372
1373    pkt->allocate();
1374    pkt->setDataFromBlock(blk->data, blkSize);
1375
1376    return pkt;
1377}
1378
1379
1380void
1381BaseCache::memWriteback()
1382{
1383    tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
1384}
1385
1386void
1387BaseCache::memInvalidate()
1388{
1389    tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
1390}
1391
1392bool
1393BaseCache::isDirty() const
1394{
1395    return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
1396}
1397
1398void
1399BaseCache::writebackVisitor(CacheBlk &blk)
1400{
1401    if (blk.isDirty()) {
1402        assert(blk.isValid());
1403
1404        RequestPtr request = std::make_shared<Request>(
1405            regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId);
1406
1407        request->taskId(blk.task_id);
1408        if (blk.isSecure()) {
1409            request->setFlags(Request::SECURE);
1410        }
1411
1412        Packet packet(request, MemCmd::WriteReq);
1413        packet.dataStatic(blk.data);
1414
1415        memSidePort.sendFunctional(&packet);
1416
1417        blk.status &= ~BlkDirty;
1418    }
1419}
1420
1421void
1422BaseCache::invalidateVisitor(CacheBlk &blk)
1423{
1424    if (blk.isDirty())
1425        warn_once("Invalidating dirty cache lines. " \
1426                  "Expect things to break.\n");
1427
1428    if (blk.isValid()) {
1429        assert(!blk.isDirty());
1430        invalidateBlock(&blk);
1431    }
1432}
1433
1434Tick
1435BaseCache::nextQueueReadyTime() const
1436{
1437    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
1438                              writeBuffer.nextReadyTime());
1439
1440    // Don't signal prefetch ready time if no MSHRs available
1441    // Will signal once enoguh MSHRs are deallocated
1442    if (prefetcher && mshrQueue.canPrefetch()) {
1443        nextReady = std::min(nextReady,
1444                             prefetcher->nextPrefetchReadyTime());
1445    }
1446
1447    return nextReady;
1448}
1449
1450
1451bool
1452BaseCache::sendMSHRQueuePacket(MSHR* mshr)
1453{
1454    assert(mshr);
1455
1456    // use request from 1st target
1457    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1458
1459    DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1460
1461    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
1462
1463    // either a prefetch that is not present upstream, or a normal
1464    // MSHR request, proceed to get the packet to send downstream
1465    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
1466
1467    mshr->isForward = (pkt == nullptr);
1468
1469    if (mshr->isForward) {
1470        // not a cache block request, but a response is expected
1471        // make copy of current packet to forward, keep current
1472        // copy for response handling
1473        pkt = new Packet(tgt_pkt, false, true);
1474        assert(!pkt->isWrite());
1475    }
1476
1477    // play it safe and append (rather than set) the sender state,
1478    // as forwarded packets may already have existing state
1479    pkt->pushSenderState(mshr);
1480
1481    if (pkt->isClean() && blk && blk->isDirty()) {
1482        // A cache clean opearation is looking for a dirty block. Mark
1483        // the packet so that the destination xbar can determine that
1484        // there will be a follow-up write packet as well.
1485        pkt->setSatisfied();
1486    }
1487
1488    if (!memSidePort.sendTimingReq(pkt)) {
1489        // we are awaiting a retry, but we
1490        // delete the packet and will be creating a new packet
1491        // when we get the opportunity
1492        delete pkt;
1493
1494        // note that we have now masked any requestBus and
1495        // schedSendEvent (we will wait for a retry before
1496        // doing anything), and this is so even if we do not
1497        // care about this packet and might override it before
1498        // it gets retried
1499        return true;
1500    } else {
1501        // As part of the call to sendTimingReq the packet is
1502        // forwarded to all neighbouring caches (and any caches
1503        // above them) as a snoop. Thus at this point we know if
1504        // any of the neighbouring caches are responding, and if
1505        // so, we know it is dirty, and we can determine if it is
1506        // being passed as Modified, making our MSHR the ordering
1507        // point
1508        bool pending_modified_resp = !pkt->hasSharers() &&
1509            pkt->cacheResponding();
1510        markInService(mshr, pending_modified_resp);
1511
1512        if (pkt->isClean() && blk && blk->isDirty()) {
1513            // A cache clean opearation is looking for a dirty
1514            // block. If a dirty block is encountered a WriteClean
1515            // will update any copies to the path to the memory
1516            // until the point of reference.
1517            DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1518                    __func__, pkt->print(), blk->print());
1519            PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
1520                                             pkt->id);
1521            PacketList writebacks;
1522            writebacks.push_back(wb_pkt);
1523            doWritebacks(writebacks, 0);
1524        }
1525
1526        return false;
1527    }
1528}
1529
1530bool
1531BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
1532{
1533    assert(wq_entry);
1534
1535    // always a single target for write queue entries
1536    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
1537
1538    DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
1539
1540    // forward as is, both for evictions and uncacheable writes
1541    if (!memSidePort.sendTimingReq(tgt_pkt)) {
1542        // note that we have now masked any requestBus and
1543        // schedSendEvent (we will wait for a retry before
1544        // doing anything), and this is so even if we do not
1545        // care about this packet and might override it before
1546        // it gets retried
1547        return true;
1548    } else {
1549        markInService(wq_entry);
1550        return false;
1551    }
1552}
1553
1554void
1555BaseCache::serialize(CheckpointOut &cp) const
1556{
1557    bool dirty(isDirty());
1558
1559    if (dirty) {
1560        warn("*** The cache still contains dirty data. ***\n");
1561        warn("    Make sure to drain the system using the correct flags.\n");
1562        warn("    This checkpoint will not restore correctly " \
1563             "and dirty data in the cache will be lost!\n");
1564    }
1565
1566    // Since we don't checkpoint the data in the cache, any dirty data
1567    // will be lost when restoring from a checkpoint of a system that
1568    // wasn't drained properly. Flag the checkpoint as invalid if the
1569    // cache contains dirty data.
1570    bool bad_checkpoint(dirty);
1571    SERIALIZE_SCALAR(bad_checkpoint);
1572}
1573
1574void
1575BaseCache::unserialize(CheckpointIn &cp)
1576{
1577    bool bad_checkpoint;
1578    UNSERIALIZE_SCALAR(bad_checkpoint);
1579    if (bad_checkpoint) {
1580        fatal("Restoring from checkpoints with dirty caches is not "
1581              "supported in the classic memory system. Please remove any "
1582              "caches or drain them properly before taking checkpoints.\n");
1583    }
1584}
1585
1586void
1587BaseCache::regStats()
1588{
1589    MemObject::regStats();
1590
1591    using namespace Stats;
1592
1593    // Hit statistics
1594    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1595        MemCmd cmd(access_idx);
1596        const string &cstr = cmd.toString();
1597
1598        hits[access_idx]
1599            .init(system->maxMasters())
1600            .name(name() + "." + cstr + "_hits")
1601            .desc("number of " + cstr + " hits")
1602            .flags(total | nozero | nonan)
1603            ;
1604        for (int i = 0; i < system->maxMasters(); i++) {
1605            hits[access_idx].subname(i, system->getMasterName(i));
1606        }
1607    }
1608
1609// These macros make it easier to sum the right subset of commands and
1610// to change the subset of commands that are considered "demand" vs
1611// "non-demand"
1612#define SUM_DEMAND(s) \
1613    (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
1614     s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
1615
1616// should writebacks be included here?  prior code was inconsistent...
1617#define SUM_NON_DEMAND(s) \
1618    (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq])
1619
1620    demandHits
1621        .name(name() + ".demand_hits")
1622        .desc("number of demand (read+write) hits")
1623        .flags(total | nozero | nonan)
1624        ;
1625    demandHits = SUM_DEMAND(hits);
1626    for (int i = 0; i < system->maxMasters(); i++) {
1627        demandHits.subname(i, system->getMasterName(i));
1628    }
1629
1630    overallHits
1631        .name(name() + ".overall_hits")
1632        .desc("number of overall hits")
1633        .flags(total | nozero | nonan)
1634        ;
1635    overallHits = demandHits + SUM_NON_DEMAND(hits);
1636    for (int i = 0; i < system->maxMasters(); i++) {
1637        overallHits.subname(i, system->getMasterName(i));
1638    }
1639
1640    // Miss statistics
1641    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1642        MemCmd cmd(access_idx);
1643        const string &cstr = cmd.toString();
1644
1645        misses[access_idx]
1646            .init(system->maxMasters())
1647            .name(name() + "." + cstr + "_misses")
1648            .desc("number of " + cstr + " misses")
1649            .flags(total | nozero | nonan)
1650            ;
1651        for (int i = 0; i < system->maxMasters(); i++) {
1652            misses[access_idx].subname(i, system->getMasterName(i));
1653        }
1654    }
1655
1656    demandMisses
1657        .name(name() + ".demand_misses")
1658        .desc("number of demand (read+write) misses")
1659        .flags(total | nozero | nonan)
1660        ;
1661    demandMisses = SUM_DEMAND(misses);
1662    for (int i = 0; i < system->maxMasters(); i++) {
1663        demandMisses.subname(i, system->getMasterName(i));
1664    }
1665
1666    overallMisses
1667        .name(name() + ".overall_misses")
1668        .desc("number of overall misses")
1669        .flags(total | nozero | nonan)
1670        ;
1671    overallMisses = demandMisses + SUM_NON_DEMAND(misses);
1672    for (int i = 0; i < system->maxMasters(); i++) {
1673        overallMisses.subname(i, system->getMasterName(i));
1674    }
1675
1676    // Miss latency statistics
1677    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1678        MemCmd cmd(access_idx);
1679        const string &cstr = cmd.toString();
1680
1681        missLatency[access_idx]
1682            .init(system->maxMasters())
1683            .name(name() + "." + cstr + "_miss_latency")
1684            .desc("number of " + cstr + " miss cycles")
1685            .flags(total | nozero | nonan)
1686            ;
1687        for (int i = 0; i < system->maxMasters(); i++) {
1688            missLatency[access_idx].subname(i, system->getMasterName(i));
1689        }
1690    }
1691
1692    demandMissLatency
1693        .name(name() + ".demand_miss_latency")
1694        .desc("number of demand (read+write) miss cycles")
1695        .flags(total | nozero | nonan)
1696        ;
1697    demandMissLatency = SUM_DEMAND(missLatency);
1698    for (int i = 0; i < system->maxMasters(); i++) {
1699        demandMissLatency.subname(i, system->getMasterName(i));
1700    }
1701
1702    overallMissLatency
1703        .name(name() + ".overall_miss_latency")
1704        .desc("number of overall miss cycles")
1705        .flags(total | nozero | nonan)
1706        ;
1707    overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
1708    for (int i = 0; i < system->maxMasters(); i++) {
1709        overallMissLatency.subname(i, system->getMasterName(i));
1710    }
1711
1712    // access formulas
1713    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1714        MemCmd cmd(access_idx);
1715        const string &cstr = cmd.toString();
1716
1717        accesses[access_idx]
1718            .name(name() + "." + cstr + "_accesses")
1719            .desc("number of " + cstr + " accesses(hits+misses)")
1720            .flags(total | nozero | nonan)
1721            ;
1722        accesses[access_idx] = hits[access_idx] + misses[access_idx];
1723
1724        for (int i = 0; i < system->maxMasters(); i++) {
1725            accesses[access_idx].subname(i, system->getMasterName(i));
1726        }
1727    }
1728
1729    demandAccesses
1730        .name(name() + ".demand_accesses")
1731        .desc("number of demand (read+write) accesses")
1732        .flags(total | nozero | nonan)
1733        ;
1734    demandAccesses = demandHits + demandMisses;
1735    for (int i = 0; i < system->maxMasters(); i++) {
1736        demandAccesses.subname(i, system->getMasterName(i));
1737    }
1738
1739    overallAccesses
1740        .name(name() + ".overall_accesses")
1741        .desc("number of overall (read+write) accesses")
1742        .flags(total | nozero | nonan)
1743        ;
1744    overallAccesses = overallHits + overallMisses;
1745    for (int i = 0; i < system->maxMasters(); i++) {
1746        overallAccesses.subname(i, system->getMasterName(i));
1747    }
1748
1749    // miss rate formulas
1750    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1751        MemCmd cmd(access_idx);
1752        const string &cstr = cmd.toString();
1753
1754        missRate[access_idx]
1755            .name(name() + "." + cstr + "_miss_rate")
1756            .desc("miss rate for " + cstr + " accesses")
1757            .flags(total | nozero | nonan)
1758            ;
1759        missRate[access_idx] = misses[access_idx] / accesses[access_idx];
1760
1761        for (int i = 0; i < system->maxMasters(); i++) {
1762            missRate[access_idx].subname(i, system->getMasterName(i));
1763        }
1764    }
1765
1766    demandMissRate
1767        .name(name() + ".demand_miss_rate")
1768        .desc("miss rate for demand accesses")
1769        .flags(total | nozero | nonan)
1770        ;
1771    demandMissRate = demandMisses / demandAccesses;
1772    for (int i = 0; i < system->maxMasters(); i++) {
1773        demandMissRate.subname(i, system->getMasterName(i));
1774    }
1775
1776    overallMissRate
1777        .name(name() + ".overall_miss_rate")
1778        .desc("miss rate for overall accesses")
1779        .flags(total | nozero | nonan)
1780        ;
1781    overallMissRate = overallMisses / overallAccesses;
1782    for (int i = 0; i < system->maxMasters(); i++) {
1783        overallMissRate.subname(i, system->getMasterName(i));
1784    }
1785
1786    // miss latency formulas
1787    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1788        MemCmd cmd(access_idx);
1789        const string &cstr = cmd.toString();
1790
1791        avgMissLatency[access_idx]
1792            .name(name() + "." + cstr + "_avg_miss_latency")
1793            .desc("average " + cstr + " miss latency")
1794            .flags(total | nozero | nonan)
1795            ;
1796        avgMissLatency[access_idx] =
1797            missLatency[access_idx] / misses[access_idx];
1798
1799        for (int i = 0; i < system->maxMasters(); i++) {
1800            avgMissLatency[access_idx].subname(i, system->getMasterName(i));
1801        }
1802    }
1803
1804    demandAvgMissLatency
1805        .name(name() + ".demand_avg_miss_latency")
1806        .desc("average overall miss latency")
1807        .flags(total | nozero | nonan)
1808        ;
1809    demandAvgMissLatency = demandMissLatency / demandMisses;
1810    for (int i = 0; i < system->maxMasters(); i++) {
1811        demandAvgMissLatency.subname(i, system->getMasterName(i));
1812    }
1813
1814    overallAvgMissLatency
1815        .name(name() + ".overall_avg_miss_latency")
1816        .desc("average overall miss latency")
1817        .flags(total | nozero | nonan)
1818        ;
1819    overallAvgMissLatency = overallMissLatency / overallMisses;
1820    for (int i = 0; i < system->maxMasters(); i++) {
1821        overallAvgMissLatency.subname(i, system->getMasterName(i));
1822    }
1823
1824    blocked_cycles.init(NUM_BLOCKED_CAUSES);
1825    blocked_cycles
1826        .name(name() + ".blocked_cycles")
1827        .desc("number of cycles access was blocked")
1828        .subname(Blocked_NoMSHRs, "no_mshrs")
1829        .subname(Blocked_NoTargets, "no_targets")
1830        ;
1831
1832
1833    blocked_causes.init(NUM_BLOCKED_CAUSES);
1834    blocked_causes
1835        .name(name() + ".blocked")
1836        .desc("number of cycles access was blocked")
1837        .subname(Blocked_NoMSHRs, "no_mshrs")
1838        .subname(Blocked_NoTargets, "no_targets")
1839        ;
1840
1841    avg_blocked
1842        .name(name() + ".avg_blocked_cycles")
1843        .desc("average number of cycles each access was blocked")
1844        .subname(Blocked_NoMSHRs, "no_mshrs")
1845        .subname(Blocked_NoTargets, "no_targets")
1846        ;
1847
1848    avg_blocked = blocked_cycles / blocked_causes;
1849
1850    unusedPrefetches
1851        .name(name() + ".unused_prefetches")
1852        .desc("number of HardPF blocks evicted w/o reference")
1853        .flags(nozero)
1854        ;
1855
1856    writebacks
1857        .init(system->maxMasters())
1858        .name(name() + ".writebacks")
1859        .desc("number of writebacks")
1860        .flags(total | nozero | nonan)
1861        ;
1862    for (int i = 0; i < system->maxMasters(); i++) {
1863        writebacks.subname(i, system->getMasterName(i));
1864    }
1865
1866    // MSHR statistics
1867    // MSHR hit statistics
1868    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1869        MemCmd cmd(access_idx);
1870        const string &cstr = cmd.toString();
1871
1872        mshr_hits[access_idx]
1873            .init(system->maxMasters())
1874            .name(name() + "." + cstr + "_mshr_hits")
1875            .desc("number of " + cstr + " MSHR hits")
1876            .flags(total | nozero | nonan)
1877            ;
1878        for (int i = 0; i < system->maxMasters(); i++) {
1879            mshr_hits[access_idx].subname(i, system->getMasterName(i));
1880        }
1881    }
1882
1883    demandMshrHits
1884        .name(name() + ".demand_mshr_hits")
1885        .desc("number of demand (read+write) MSHR hits")
1886        .flags(total | nozero | nonan)
1887        ;
1888    demandMshrHits = SUM_DEMAND(mshr_hits);
1889    for (int i = 0; i < system->maxMasters(); i++) {
1890        demandMshrHits.subname(i, system->getMasterName(i));
1891    }
1892
1893    overallMshrHits
1894        .name(name() + ".overall_mshr_hits")
1895        .desc("number of overall MSHR hits")
1896        .flags(total | nozero | nonan)
1897        ;
1898    overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
1899    for (int i = 0; i < system->maxMasters(); i++) {
1900        overallMshrHits.subname(i, system->getMasterName(i));
1901    }
1902
1903    // MSHR miss statistics
1904    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1905        MemCmd cmd(access_idx);
1906        const string &cstr = cmd.toString();
1907
1908        mshr_misses[access_idx]
1909            .init(system->maxMasters())
1910            .name(name() + "." + cstr + "_mshr_misses")
1911            .desc("number of " + cstr + " MSHR misses")
1912            .flags(total | nozero | nonan)
1913            ;
1914        for (int i = 0; i < system->maxMasters(); i++) {
1915            mshr_misses[access_idx].subname(i, system->getMasterName(i));
1916        }
1917    }
1918
1919    demandMshrMisses
1920        .name(name() + ".demand_mshr_misses")
1921        .desc("number of demand (read+write) MSHR misses")
1922        .flags(total | nozero | nonan)
1923        ;
1924    demandMshrMisses = SUM_DEMAND(mshr_misses);
1925    for (int i = 0; i < system->maxMasters(); i++) {
1926        demandMshrMisses.subname(i, system->getMasterName(i));
1927    }
1928
1929    overallMshrMisses
1930        .name(name() + ".overall_mshr_misses")
1931        .desc("number of overall MSHR misses")
1932        .flags(total | nozero | nonan)
1933        ;
1934    overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
1935    for (int i = 0; i < system->maxMasters(); i++) {
1936        overallMshrMisses.subname(i, system->getMasterName(i));
1937    }
1938
1939    // MSHR miss latency statistics
1940    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1941        MemCmd cmd(access_idx);
1942        const string &cstr = cmd.toString();
1943
1944        mshr_miss_latency[access_idx]
1945            .init(system->maxMasters())
1946            .name(name() + "." + cstr + "_mshr_miss_latency")
1947            .desc("number of " + cstr + " MSHR miss cycles")
1948            .flags(total | nozero | nonan)
1949            ;
1950        for (int i = 0; i < system->maxMasters(); i++) {
1951            mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
1952        }
1953    }
1954
1955    demandMshrMissLatency
1956        .name(name() + ".demand_mshr_miss_latency")
1957        .desc("number of demand (read+write) MSHR miss cycles")
1958        .flags(total | nozero | nonan)
1959        ;
1960    demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
1961    for (int i = 0; i < system->maxMasters(); i++) {
1962        demandMshrMissLatency.subname(i, system->getMasterName(i));
1963    }
1964
1965    overallMshrMissLatency
1966        .name(name() + ".overall_mshr_miss_latency")
1967        .desc("number of overall MSHR miss cycles")
1968        .flags(total | nozero | nonan)
1969        ;
1970    overallMshrMissLatency =
1971        demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
1972    for (int i = 0; i < system->maxMasters(); i++) {
1973        overallMshrMissLatency.subname(i, system->getMasterName(i));
1974    }
1975
1976    // MSHR uncacheable statistics
1977    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1978        MemCmd cmd(access_idx);
1979        const string &cstr = cmd.toString();
1980
1981        mshr_uncacheable[access_idx]
1982            .init(system->maxMasters())
1983            .name(name() + "." + cstr + "_mshr_uncacheable")
1984            .desc("number of " + cstr + " MSHR uncacheable")
1985            .flags(total | nozero | nonan)
1986            ;
1987        for (int i = 0; i < system->maxMasters(); i++) {
1988            mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
1989        }
1990    }
1991
1992    overallMshrUncacheable
1993        .name(name() + ".overall_mshr_uncacheable_misses")
1994        .desc("number of overall MSHR uncacheable misses")
1995        .flags(total | nozero | nonan)
1996        ;
1997    overallMshrUncacheable =
1998        SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
1999    for (int i = 0; i < system->maxMasters(); i++) {
2000        overallMshrUncacheable.subname(i, system->getMasterName(i));
2001    }
2002
2003    // MSHR miss latency statistics
2004    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2005        MemCmd cmd(access_idx);
2006        const string &cstr = cmd.toString();
2007
2008        mshr_uncacheable_lat[access_idx]
2009            .init(system->maxMasters())
2010            .name(name() + "." + cstr + "_mshr_uncacheable_latency")
2011            .desc("number of " + cstr + " MSHR uncacheable cycles")
2012            .flags(total | nozero | nonan)
2013            ;
2014        for (int i = 0; i < system->maxMasters(); i++) {
2015            mshr_uncacheable_lat[access_idx].subname(
2016                i, system->getMasterName(i));
2017        }
2018    }
2019
2020    overallMshrUncacheableLatency
2021        .name(name() + ".overall_mshr_uncacheable_latency")
2022        .desc("number of overall MSHR uncacheable cycles")
2023        .flags(total | nozero | nonan)
2024        ;
2025    overallMshrUncacheableLatency =
2026        SUM_DEMAND(mshr_uncacheable_lat) +
2027        SUM_NON_DEMAND(mshr_uncacheable_lat);
2028    for (int i = 0; i < system->maxMasters(); i++) {
2029        overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
2030    }
2031
2032#if 0
2033    // MSHR access formulas
2034    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2035        MemCmd cmd(access_idx);
2036        const string &cstr = cmd.toString();
2037
2038        mshrAccesses[access_idx]
2039            .name(name() + "." + cstr + "_mshr_accesses")
2040            .desc("number of " + cstr + " mshr accesses(hits+misses)")
2041            .flags(total | nozero | nonan)
2042            ;
2043        mshrAccesses[access_idx] =
2044            mshr_hits[access_idx] + mshr_misses[access_idx]
2045            + mshr_uncacheable[access_idx];
2046    }
2047
2048    demandMshrAccesses
2049        .name(name() + ".demand_mshr_accesses")
2050        .desc("number of demand (read+write) mshr accesses")
2051        .flags(total | nozero | nonan)
2052        ;
2053    demandMshrAccesses = demandMshrHits + demandMshrMisses;
2054
2055    overallMshrAccesses
2056        .name(name() + ".overall_mshr_accesses")
2057        .desc("number of overall (read+write) mshr accesses")
2058        .flags(total | nozero | nonan)
2059        ;
2060    overallMshrAccesses = overallMshrHits + overallMshrMisses
2061        + overallMshrUncacheable;
2062#endif
2063
2064    // MSHR miss rate formulas
2065    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2066        MemCmd cmd(access_idx);
2067        const string &cstr = cmd.toString();
2068
2069        mshrMissRate[access_idx]
2070            .name(name() + "." + cstr + "_mshr_miss_rate")
2071            .desc("mshr miss rate for " + cstr + " accesses")
2072            .flags(total | nozero | nonan)
2073            ;
2074        mshrMissRate[access_idx] =
2075            mshr_misses[access_idx] / accesses[access_idx];
2076
2077        for (int i = 0; i < system->maxMasters(); i++) {
2078            mshrMissRate[access_idx].subname(i, system->getMasterName(i));
2079        }
2080    }
2081
2082    demandMshrMissRate
2083        .name(name() + ".demand_mshr_miss_rate")
2084        .desc("mshr miss rate for demand accesses")
2085        .flags(total | nozero | nonan)
2086        ;
2087    demandMshrMissRate = demandMshrMisses / demandAccesses;
2088    for (int i = 0; i < system->maxMasters(); i++) {
2089        demandMshrMissRate.subname(i, system->getMasterName(i));
2090    }
2091
2092    overallMshrMissRate
2093        .name(name() + ".overall_mshr_miss_rate")
2094        .desc("mshr miss rate for overall accesses")
2095        .flags(total | nozero | nonan)
2096        ;
2097    overallMshrMissRate = overallMshrMisses / overallAccesses;
2098    for (int i = 0; i < system->maxMasters(); i++) {
2099        overallMshrMissRate.subname(i, system->getMasterName(i));
2100    }
2101
2102    // mshrMiss latency formulas
2103    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2104        MemCmd cmd(access_idx);
2105        const string &cstr = cmd.toString();
2106
2107        avgMshrMissLatency[access_idx]
2108            .name(name() + "." + cstr + "_avg_mshr_miss_latency")
2109            .desc("average " + cstr + " mshr miss latency")
2110            .flags(total | nozero | nonan)
2111            ;
2112        avgMshrMissLatency[access_idx] =
2113            mshr_miss_latency[access_idx] / mshr_misses[access_idx];
2114
2115        for (int i = 0; i < system->maxMasters(); i++) {
2116            avgMshrMissLatency[access_idx].subname(
2117                i, system->getMasterName(i));
2118        }
2119    }
2120
2121    demandAvgMshrMissLatency
2122        .name(name() + ".demand_avg_mshr_miss_latency")
2123        .desc("average overall mshr miss latency")
2124        .flags(total | nozero | nonan)
2125        ;
2126    demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
2127    for (int i = 0; i < system->maxMasters(); i++) {
2128        demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
2129    }
2130
2131    overallAvgMshrMissLatency
2132        .name(name() + ".overall_avg_mshr_miss_latency")
2133        .desc("average overall mshr miss latency")
2134        .flags(total | nozero | nonan)
2135        ;
2136    overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
2137    for (int i = 0; i < system->maxMasters(); i++) {
2138        overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
2139    }
2140
2141    // mshrUncacheable latency formulas
2142    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2143        MemCmd cmd(access_idx);
2144        const string &cstr = cmd.toString();
2145
2146        avgMshrUncacheableLatency[access_idx]
2147            .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
2148            .desc("average " + cstr + " mshr uncacheable latency")
2149            .flags(total | nozero | nonan)
2150            ;
2151        avgMshrUncacheableLatency[access_idx] =
2152            mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
2153
2154        for (int i = 0; i < system->maxMasters(); i++) {
2155            avgMshrUncacheableLatency[access_idx].subname(
2156                i, system->getMasterName(i));
2157        }
2158    }
2159
2160    overallAvgMshrUncacheableLatency
2161        .name(name() + ".overall_avg_mshr_uncacheable_latency")
2162        .desc("average overall mshr uncacheable latency")
2163        .flags(total | nozero | nonan)
2164        ;
2165    overallAvgMshrUncacheableLatency =
2166        overallMshrUncacheableLatency / overallMshrUncacheable;
2167    for (int i = 0; i < system->maxMasters(); i++) {
2168        overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2169    }
2170
2171    replacements
2172        .name(name() + ".replacements")
2173        .desc("number of replacements")
2174        ;
2175}
2176
2177///////////////
2178//
2179// CpuSidePort
2180//
2181///////////////
2182bool
2183BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2184{
2185    // Snoops shouldn't happen when bypassing caches
2186    assert(!cache->system->bypassCaches());
2187
2188    assert(pkt->isResponse());
2189
2190    // Express snoop responses from master to slave, e.g., from L1 to L2
2191    cache->recvTimingSnoopResp(pkt);
2192    return true;
2193}
2194
2195
2196bool
2197BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
2198{
2199    if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
2200        // always let express snoop packets through even if blocked
2201        return true;
2202    } else if (blocked || mustSendRetry) {
2203        // either already committed to send a retry, or blocked
2204        mustSendRetry = true;
2205        return false;
2206    }
2207    mustSendRetry = false;
2208    return true;
2209}
2210
2211bool
2212BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2213{
2214    assert(pkt->isRequest());
2215
2216    if (cache->system->bypassCaches()) {
2217        // Just forward the packet if caches are disabled.
2218        // @todo This should really enqueue the packet rather
2219        bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
2220        assert(success);
2221        return true;
2222    } else if (tryTiming(pkt)) {
2223        cache->recvTimingReq(pkt);
2224        return true;
2225    }
2226    return false;
2227}
2228
2229Tick
2230BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
2231{
2232    if (cache->system->bypassCaches()) {
2233        // Forward the request if the system is in cache bypass mode.
2234        return cache->memSidePort.sendAtomic(pkt);
2235    } else {
2236        return cache->recvAtomic(pkt);
2237    }
2238}
2239
2240void
2241BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
2242{
2243    if (cache->system->bypassCaches()) {
2244        // The cache should be flushed if we are in cache bypass mode,
2245        // so we don't need to check if we need to update anything.
2246        cache->memSidePort.sendFunctional(pkt);
2247        return;
2248    }
2249
2250    // functional request
2251    cache->functionalAccess(pkt, true);
2252}
2253
2254AddrRangeList
2255BaseCache::CpuSidePort::getAddrRanges() const
2256{
2257    return cache->getAddrRanges();
2258}
2259
2260
2261BaseCache::
2262CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
2263                         const std::string &_label)
2264    : CacheSlavePort(_name, _cache, _label), cache(_cache)
2265{
2266}
2267
2268///////////////
2269//
2270// MemSidePort
2271//
2272///////////////
2273bool
2274BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
2275{
2276    cache->recvTimingResp(pkt);
2277    return true;
2278}
2279
2280// Express snooping requests to memside port
2281void
2282BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2283{
2284    // Snoops shouldn't happen when bypassing caches
2285    assert(!cache->system->bypassCaches());
2286
2287    // handle snooping requests
2288    cache->recvTimingSnoopReq(pkt);
2289}
2290
2291Tick
2292BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2293{
2294    // Snoops shouldn't happen when bypassing caches
2295    assert(!cache->system->bypassCaches());
2296
2297    return cache->recvAtomicSnoop(pkt);
2298}
2299
2300void
2301BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2302{
2303    // Snoops shouldn't happen when bypassing caches
2304    assert(!cache->system->bypassCaches());
2305
2306    // functional snoop (note that in contrast to atomic we don't have
2307    // a specific functionalSnoop method, as they have the same
2308    // behaviour regardless)
2309    cache->functionalAccess(pkt, false);
2310}
2311
2312void
2313BaseCache::CacheReqPacketQueue::sendDeferredPacket()
2314{
2315    // sanity check
2316    assert(!waitingOnRetry);
2317
2318    // there should never be any deferred request packets in the
2319    // queue, instead we resly on the cache to provide the packets
2320    // from the MSHR queue or write queue
2321    assert(deferredPacketReadyTime() == MaxTick);
2322
2323    // check for request packets (requests & writebacks)
2324    QueueEntry* entry = cache.getNextQueueEntry();
2325
2326    if (!entry) {
2327        // can happen if e.g. we attempt a writeback and fail, but
2328        // before the retry, the writeback is eliminated because
2329        // we snoop another cache's ReadEx.
2330    } else {
2331        // let our snoop responses go first if there are responses to
2332        // the same addresses
2333        if (checkConflictingSnoop(entry->blkAddr)) {
2334            return;
2335        }
2336        waitingOnRetry = entry->sendPacket(cache);
2337    }
2338
2339    // if we succeeded and are not waiting for a retry, schedule the
2340    // next send considering when the next queue is ready, note that
2341    // snoop responses have their own packet queue and thus schedule
2342    // their own events
2343    if (!waitingOnRetry) {
2344        schedSendEvent(cache.nextQueueReadyTime());
2345    }
2346}
2347
2348BaseCache::MemSidePort::MemSidePort(const std::string &_name,
2349                                    BaseCache *_cache,
2350                                    const std::string &_label)
2351    : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2352      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2353      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2354{
2355}
2356