abstract_mem.cc revision 5315
1/*
2 * Copyright (c) 2001-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Ron Dreslinski
29 *          Ali Saidi
30 */
31
32#include <sys/types.h>
33#include <sys/mman.h>
34#include <errno.h>
35#include <fcntl.h>
36#include <unistd.h>
37#include <zlib.h>
38
39#include <iostream>
40#include <string>
41
42#include "arch/isa_traits.hh"
43#include "base/misc.hh"
44#include "config/full_system.hh"
45#include "mem/packet_access.hh"
46#include "mem/physical.hh"
47#include "sim/eventq.hh"
48#include "sim/host.hh"
49
50using namespace std;
51using namespace TheISA;
52
53PhysicalMemory::PhysicalMemory(const Params *p)
54    : MemObject(p), pmemAddr(NULL), lat(p->latency)
55{
56    if (params()->range.size() % TheISA::PageBytes != 0)
57        panic("Memory Size not divisible by page size\n");
58
59    int map_flags = MAP_ANON | MAP_PRIVATE;
60    pmemAddr = (uint8_t *)mmap(NULL, params()->range.size(),
61                               PROT_READ | PROT_WRITE, map_flags, -1, 0);
62
63    if (pmemAddr == (void *)MAP_FAILED) {
64        perror("mmap");
65        fatal("Could not mmap!\n");
66    }
67
68    //If requested, initialize all the memory to 0
69    if (p->zero)
70        memset(pmemAddr, 0, p->range.size());
71
72    pagePtr = 0;
73
74    cachedSize = params()->range.size();
75    cachedStart = params()->range.start;
76
77}
78
79void
80PhysicalMemory::init()
81{
82    if (ports.size() == 0) {
83        fatal("PhysicalMemory object %s is unconnected!", name());
84    }
85
86    for (PortIterator pi = ports.begin(); pi != ports.end(); ++pi) {
87        if (*pi)
88            (*pi)->sendStatusChange(Port::RangeChange);
89    }
90}
91
92PhysicalMemory::~PhysicalMemory()
93{
94    if (pmemAddr)
95        munmap((char*)pmemAddr, params()->range.size());
96    //Remove memPorts?
97}
98
99Addr
100PhysicalMemory::new_page()
101{
102    Addr return_addr = pagePtr << LogVMPageSize;
103    return_addr += start();
104
105    ++pagePtr;
106    return return_addr;
107}
108
109int
110PhysicalMemory::deviceBlockSize()
111{
112    //Can accept anysize request
113    return 0;
114}
115
116Tick
117PhysicalMemory::calculateLatency(PacketPtr pkt)
118{
119    return lat;
120}
121
122
123
124// Add load-locked to tracking list.  Should only be called if the
125// operation is a load and the LOCKED flag is set.
126void
127PhysicalMemory::trackLoadLocked(PacketPtr pkt)
128{
129    Request *req = pkt->req;
130    Addr paddr = LockedAddr::mask(req->getPaddr());
131
132    // first we check if we already have a locked addr for this
133    // xc.  Since each xc only gets one, we just update the
134    // existing record with the new address.
135    list<LockedAddr>::iterator i;
136
137    for (i = lockedAddrList.begin(); i != lockedAddrList.end(); ++i) {
138        if (i->matchesContext(req)) {
139            DPRINTF(LLSC, "Modifying lock record: cpu %d thread %d addr %#x\n",
140                    req->getCpuNum(), req->getThreadNum(), paddr);
141            i->addr = paddr;
142            return;
143        }
144    }
145
146    // no record for this xc: need to allocate a new one
147    DPRINTF(LLSC, "Adding lock record: cpu %d thread %d addr %#x\n",
148            req->getCpuNum(), req->getThreadNum(), paddr);
149    lockedAddrList.push_front(LockedAddr(req));
150}
151
152
153// Called on *writes* only... both regular stores and
154// store-conditional operations.  Check for conventional stores which
155// conflict with locked addresses, and for success/failure of store
156// conditionals.
157bool
158PhysicalMemory::checkLockedAddrList(PacketPtr pkt)
159{
160    Request *req = pkt->req;
161    Addr paddr = LockedAddr::mask(req->getPaddr());
162    bool isLocked = pkt->isLocked();
163
164    // Initialize return value.  Non-conditional stores always
165    // succeed.  Assume conditional stores will fail until proven
166    // otherwise.
167    bool success = !isLocked;
168
169    // Iterate over list.  Note that there could be multiple matching
170    // records, as more than one context could have done a load locked
171    // to this location.
172    list<LockedAddr>::iterator i = lockedAddrList.begin();
173
174    while (i != lockedAddrList.end()) {
175
176        if (i->addr == paddr) {
177            // we have a matching address
178
179            if (isLocked && i->matchesContext(req)) {
180                // it's a store conditional, and as far as the memory
181                // system can tell, the requesting context's lock is
182                // still valid.
183                DPRINTF(LLSC, "StCond success: cpu %d thread %d addr %#x\n",
184                        req->getCpuNum(), req->getThreadNum(), paddr);
185                success = true;
186            }
187
188            // Get rid of our record of this lock and advance to next
189            DPRINTF(LLSC, "Erasing lock record: cpu %d thread %d addr %#x\n",
190                    i->cpuNum, i->threadNum, paddr);
191            i = lockedAddrList.erase(i);
192        }
193        else {
194            // no match: advance to next record
195            ++i;
196        }
197    }
198
199    if (isLocked) {
200        req->setExtraData(success ? 1 : 0);
201    }
202
203    return success;
204}
205
206
207#if TRACING_ON
208
209#define CASE(A, T)                                                      \
210  case sizeof(T):                                                       \
211    DPRINTF(MemoryAccess, A " of size %i on address 0x%x data 0x%x\n",  \
212            pkt->getSize(), pkt->getAddr(), pkt->get<T>());             \
213  break
214
215
216#define TRACE_PACKET(A)                                                 \
217    do {                                                                \
218        switch (pkt->getSize()) {                                       \
219          CASE(A, uint64_t);                                            \
220          CASE(A, uint32_t);                                            \
221          CASE(A, uint16_t);                                            \
222          CASE(A, uint8_t);                                             \
223          default:                                                      \
224            DPRINTF(MemoryAccess, A " of size %i on address 0x%x\n",    \
225                    pkt->getSize(), pkt->getAddr());                    \
226        }                                                               \
227    } while (0)
228
229#else
230
231#define TRACE_PACKET(A)
232
233#endif
234
235Tick
236PhysicalMemory::doAtomicAccess(PacketPtr pkt)
237{
238    assert(pkt->getAddr() >= start() &&
239           pkt->getAddr() + pkt->getSize() <= start() + size());
240
241    if (pkt->memInhibitAsserted()) {
242        DPRINTF(MemoryAccess, "mem inhibited on 0x%x: not responding\n",
243                pkt->getAddr());
244        return 0;
245    }
246
247    uint8_t *hostAddr = pmemAddr + pkt->getAddr() - start();
248
249    if (pkt->cmd == MemCmd::SwapReq) {
250        IntReg overwrite_val;
251        bool overwrite_mem;
252        uint64_t condition_val64;
253        uint32_t condition_val32;
254
255        assert(sizeof(IntReg) >= pkt->getSize());
256
257        overwrite_mem = true;
258        // keep a copy of our possible write value, and copy what is at the
259        // memory address into the packet
260        std::memcpy(&overwrite_val, pkt->getPtr<uint8_t>(), pkt->getSize());
261        std::memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
262
263        if (pkt->req->isCondSwap()) {
264            if (pkt->getSize() == sizeof(uint64_t)) {
265                condition_val64 = pkt->req->getExtraData();
266                overwrite_mem = !std::memcmp(&condition_val64, hostAddr,
267                                             sizeof(uint64_t));
268            } else if (pkt->getSize() == sizeof(uint32_t)) {
269                condition_val32 = (uint32_t)pkt->req->getExtraData();
270                overwrite_mem = !std::memcmp(&condition_val32, hostAddr,
271                                             sizeof(uint32_t));
272            } else
273                panic("Invalid size for conditional read/write\n");
274        }
275
276        if (overwrite_mem)
277            std::memcpy(hostAddr, &overwrite_val, pkt->getSize());
278
279        TRACE_PACKET("Read/Write");
280    } else if (pkt->isRead()) {
281        assert(!pkt->isWrite());
282        if (pkt->isLocked()) {
283            trackLoadLocked(pkt);
284        }
285        memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
286        TRACE_PACKET("Read");
287    } else if (pkt->isWrite()) {
288        if (writeOK(pkt)) {
289            memcpy(hostAddr, pkt->getPtr<uint8_t>(), pkt->getSize());
290            TRACE_PACKET("Write");
291        }
292    } else if (pkt->isInvalidate()) {
293        //upgrade or invalidate
294        if (pkt->needsResponse()) {
295            pkt->makeAtomicResponse();
296        }
297    } else {
298        panic("unimplemented");
299    }
300
301    if (pkt->needsResponse()) {
302        pkt->makeAtomicResponse();
303    }
304    return calculateLatency(pkt);
305}
306
307
308void
309PhysicalMemory::doFunctionalAccess(PacketPtr pkt)
310{
311    assert(pkt->getAddr() >= start() &&
312           pkt->getAddr() + pkt->getSize() <= start() + size());
313
314
315    uint8_t *hostAddr = pmemAddr + pkt->getAddr() - start();
316
317    if (pkt->isRead()) {
318        memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
319        TRACE_PACKET("Read");
320        pkt->makeAtomicResponse();
321    } else if (pkt->isWrite()) {
322        memcpy(hostAddr, pkt->getPtr<uint8_t>(), pkt->getSize());
323        TRACE_PACKET("Write");
324        pkt->makeAtomicResponse();
325    } else if (pkt->isPrint()) {
326        Packet::PrintReqState *prs =
327            dynamic_cast<Packet::PrintReqState*>(pkt->senderState);
328        // Need to call printLabels() explicitly since we're not going
329        // through printObj().
330        prs->printLabels();
331        // Right now we just print the single byte at the specified address.
332        ccprintf(prs->os, "%s%#x\n", prs->curPrefix(), *hostAddr);
333    } else {
334        panic("PhysicalMemory: unimplemented functional command %s",
335              pkt->cmdString());
336    }
337}
338
339
340Port *
341PhysicalMemory::getPort(const std::string &if_name, int idx)
342{
343    // Accept request for "functional" port for backwards compatibility
344    // with places where this function is called from C++.  I'd prefer
345    // to move all these into Python someday.
346    if (if_name == "functional") {
347        return new MemoryPort(csprintf("%s-functional", name()), this);
348    }
349
350    if (if_name != "port") {
351        panic("PhysicalMemory::getPort: unknown port %s requested", if_name);
352    }
353
354    if (idx >= ports.size()) {
355        ports.resize(idx+1);
356    }
357
358    if (ports[idx] != NULL) {
359        panic("PhysicalMemory::getPort: port %d already assigned", idx);
360    }
361
362    MemoryPort *port =
363        new MemoryPort(csprintf("%s-port%d", name(), idx), this);
364
365    ports[idx] = port;
366    return port;
367}
368
369
370void
371PhysicalMemory::recvStatusChange(Port::Status status)
372{
373}
374
375PhysicalMemory::MemoryPort::MemoryPort(const std::string &_name,
376                                       PhysicalMemory *_memory)
377    : SimpleTimingPort(_name), memory(_memory)
378{ }
379
380void
381PhysicalMemory::MemoryPort::recvStatusChange(Port::Status status)
382{
383    memory->recvStatusChange(status);
384}
385
386void
387PhysicalMemory::MemoryPort::getDeviceAddressRanges(AddrRangeList &resp,
388                                                   bool &snoop)
389{
390    memory->getAddressRanges(resp, snoop);
391}
392
393void
394PhysicalMemory::getAddressRanges(AddrRangeList &resp, bool &snoop)
395{
396    snoop = false;
397    resp.clear();
398    resp.push_back(RangeSize(start(), params()->range.size()));
399}
400
401int
402PhysicalMemory::MemoryPort::deviceBlockSize()
403{
404    return memory->deviceBlockSize();
405}
406
407Tick
408PhysicalMemory::MemoryPort::recvAtomic(PacketPtr pkt)
409{
410    return memory->doAtomicAccess(pkt);
411}
412
413void
414PhysicalMemory::MemoryPort::recvFunctional(PacketPtr pkt)
415{
416    pkt->pushLabel(memory->name());
417
418    if (!checkFunctional(pkt)) {
419        // Default implementation of SimpleTimingPort::recvFunctional()
420        // calls recvAtomic() and throws away the latency; we can save a
421        // little here by just not calculating the latency.
422        memory->doFunctionalAccess(pkt);
423    }
424
425    pkt->popLabel();
426}
427
428unsigned int
429PhysicalMemory::drain(Event *de)
430{
431    int count = 0;
432    for (PortIterator pi = ports.begin(); pi != ports.end(); ++pi) {
433        count += (*pi)->drain(de);
434    }
435
436    if (count)
437        changeState(Draining);
438    else
439        changeState(Drained);
440    return count;
441}
442
443void
444PhysicalMemory::serialize(ostream &os)
445{
446    gzFile compressedMem;
447    string filename = name() + ".physmem";
448
449    SERIALIZE_SCALAR(filename);
450
451    // write memory file
452    string thefile = Checkpoint::dir() + "/" + filename.c_str();
453    int fd = creat(thefile.c_str(), 0664);
454    if (fd < 0) {
455        perror("creat");
456        fatal("Can't open physical memory checkpoint file '%s'\n", filename);
457    }
458
459    compressedMem = gzdopen(fd, "wb");
460    if (compressedMem == NULL)
461        fatal("Insufficient memory to allocate compression state for %s\n",
462                filename);
463
464    if (gzwrite(compressedMem, pmemAddr, params()->range.size()) !=
465        params()->range.size()) {
466        fatal("Write failed on physical memory checkpoint file '%s'\n",
467              filename);
468    }
469
470    if (gzclose(compressedMem))
471        fatal("Close failed on physical memory checkpoint file '%s'\n",
472              filename);
473}
474
475void
476PhysicalMemory::unserialize(Checkpoint *cp, const string &section)
477{
478    gzFile compressedMem;
479    long *tempPage;
480    long *pmem_current;
481    uint64_t curSize;
482    uint32_t bytesRead;
483    const int chunkSize = 16384;
484
485
486    string filename;
487
488    UNSERIALIZE_SCALAR(filename);
489
490    filename = cp->cptDir + "/" + filename;
491
492    // mmap memoryfile
493    int fd = open(filename.c_str(), O_RDONLY);
494    if (fd < 0) {
495        perror("open");
496        fatal("Can't open physical memory checkpoint file '%s'", filename);
497    }
498
499    compressedMem = gzdopen(fd, "rb");
500    if (compressedMem == NULL)
501        fatal("Insufficient memory to allocate compression state for %s\n",
502                filename);
503
504    // unmap file that was mmaped in the constructor
505    // This is done here to make sure that gzip and open don't muck with our
506    // nice large space of memory before we reallocate it
507    munmap((char*)pmemAddr, params()->range.size());
508
509    pmemAddr = (uint8_t *)mmap(NULL, params()->range.size(),
510        PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
511
512    if (pmemAddr == (void *)MAP_FAILED) {
513        perror("mmap");
514        fatal("Could not mmap physical memory!\n");
515    }
516
517    curSize = 0;
518    tempPage = (long*)malloc(chunkSize);
519    if (tempPage == NULL)
520        fatal("Unable to malloc memory to read file %s\n", filename);
521
522    /* Only copy bytes that are non-zero, so we don't give the VM system hell */
523    while (curSize < params()->range.size()) {
524        bytesRead = gzread(compressedMem, tempPage, chunkSize);
525        if (bytesRead != chunkSize &&
526            bytesRead != params()->range.size() - curSize)
527            fatal("Read failed on physical memory checkpoint file '%s'"
528                  " got %d bytes, expected %d or %d bytes\n",
529                  filename, bytesRead, chunkSize,
530                  params()->range.size() - curSize);
531
532        assert(bytesRead % sizeof(long) == 0);
533
534        for (int x = 0; x < bytesRead/sizeof(long); x++)
535        {
536             if (*(tempPage+x) != 0) {
537                 pmem_current = (long*)(pmemAddr + curSize + x * sizeof(long));
538                 *pmem_current = *(tempPage+x);
539             }
540        }
541        curSize += bytesRead;
542    }
543
544    free(tempPage);
545
546    if (gzclose(compressedMem))
547        fatal("Close failed on physical memory checkpoint file '%s'\n",
548              filename);
549
550}
551
552PhysicalMemory *
553PhysicalMemoryParams::create()
554{
555    return new PhysicalMemory(this);
556}
557