wavefront.hh revision 11641
1/*
2 * Copyright (c) 2011-2015 Advanced Micro Devices, Inc.
3 * All rights reserved.
4 *
5 * For use for simulation and test purposes only
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright notice,
14 * this list of conditions and the following disclaimer in the documentation
15 * and/or other materials provided with the distribution.
16 *
17 * 3. Neither the name of the copyright holder nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Author: Lisa Hsu
34 */
35
36#ifndef __WAVEFRONT_HH__
37#define __WAVEFRONT_HH__
38
39#include <cassert>
40#include <deque>
41#include <memory>
42#include <stack>
43#include <vector>
44
45#include "base/misc.hh"
46#include "base/types.hh"
47#include "gpu-compute/condition_register_state.hh"
48#include "gpu-compute/lds_state.hh"
49#include "gpu-compute/misc.hh"
50#include "params/Wavefront.hh"
51#include "sim/sim_object.hh"
52
53static const int MAX_NUM_INSTS_PER_WF = 12;
54
55/**
56 * A reconvergence stack entry conveys the necessary state to implement
57 * control flow divergence.
58 */
59struct ReconvergenceStackEntry {
60    /**
61     * PC of current instruction.
62     */
63    uint32_t pc;
64    /**
65     * PC of the immediate post-dominator instruction, i.e., the value of
66     * @a pc for the first instruction that will be executed by the wavefront
67     * when a reconvergence point is reached.
68     */
69    uint32_t rpc;
70    /**
71     * Execution mask.
72     */
73    VectorMask execMask;
74};
75
76/*
77 * Arguments for the hsail opcode call, are user defined and variable length.
78 * The hardware/finalizer can support arguments in hardware or use memory to
79 * pass arguments. For now, let's assume that an unlimited number of arguments
80 * are supported in hardware (the compiler inlines functions whenver it can
81 * anyways, so unless someone is interested in the implications of linking/
82 * library functions, I think this is a reasonable assumption given the typical
83 * size of an OpenCL kernel).
84 *
85 * Note that call args are different than kernel arguments:
86 *   * All work-items in a kernel refer the same set of kernel arguments
87 *   * Each work-item has it's on set of call args. So a call argument at
88 *     address 0x4 is different for work-item 0 and work-item 1.
89 *
90 * Ok, the table below shows an example of how we organize the call arguments in
91 * the CallArgMem class.
92 *
93 * int foo(int arg1, double arg2)
94 *  ___________________________________________________
95 * | 0: return.0 | 4: return.1 | ... | 252: return.63  |
96 * |---------------------------------------------------|
97 * | 256: arg1.0 | 260: arg1.1 | ... | 508: arg1.63    |
98 * |---------------------------------------------------|
99 * | 512: arg2.0 | 520: arg2.1 | ... | 1016: arg2.63   |
100 *  ___________________________________________________
101 */
102class CallArgMem
103{
104  public:
105    // pointer to buffer for storing function arguments
106    uint8_t *mem;
107    int wfSize;
108    // size of function args
109    int funcArgsSizePerItem;
110
111    template<typename CType>
112    int
113    getLaneOffset(int lane, int addr)
114    {
115        return addr * wfSize + sizeof(CType) * lane;
116    }
117
118    CallArgMem(int func_args_size_per_item, int wf_size)
119        : wfSize(wf_size), funcArgsSizePerItem(func_args_size_per_item)
120    {
121        mem = (uint8_t*)malloc(funcArgsSizePerItem * wfSize);
122    }
123
124    ~CallArgMem()
125    {
126        free(mem);
127    }
128
129    template<typename CType>
130    uint8_t*
131    getLaneAddr(int lane, int addr)
132    {
133        return mem + getLaneOffset<CType>(lane, addr);
134    }
135
136    template<typename CType>
137    void
138    setLaneAddr(int lane, int addr, CType val)
139    {
140        *((CType*)(mem + getLaneOffset<CType>(lane, addr))) = val;
141    }
142};
143
144class Wavefront : public SimObject
145{
146  public:
147    enum itype_e {I_ALU,I_GLOBAL,I_SHARED,I_FLAT,I_PRIVATE};
148    enum status_e {S_STOPPED,S_RETURNING,S_RUNNING};
149
150    // Base pointer for array of instruction pointers
151    uint64_t basePtr;
152
153    uint32_t oldBarrierCnt;
154    uint32_t barrierCnt;
155    uint32_t barrierId;
156    uint32_t barrierSlots;
157    status_e status;
158    // HW slot id where the WF is mapped to inside a SIMD unit
159    int wfSlotId;
160    int kernId;
161    // SIMD unit where the WV has been scheduled
162    int simdId;
163    // pointer to parent CU
164    ComputeUnit *computeUnit;
165
166    std::deque<GPUDynInstPtr> instructionBuffer;
167
168    bool pendingFetch;
169    bool dropFetch;
170
171    // Condition Register State (for HSAIL simulations only)
172    class ConditionRegisterState *condRegState;
173    // number of single precision VGPRs required by WF
174    uint32_t maxSpVgprs;
175    // number of double precision VGPRs required by WF
176    uint32_t maxDpVgprs;
177    // map virtual to physical vector register
178    uint32_t remap(uint32_t vgprIndex, uint32_t size, uint8_t mode=0);
179    void resizeRegFiles(int num_cregs, int num_sregs, int num_dregs);
180    bool isGmInstruction(GPUDynInstPtr ii);
181    bool isLmInstruction(GPUDynInstPtr ii);
182    bool isOldestInstGMem();
183    bool isOldestInstLMem();
184    bool isOldestInstPrivMem();
185    bool isOldestInstFlatMem();
186    bool isOldestInstALU();
187    bool isOldestInstBarrier();
188    // used for passing spill address to DDInstGPU
189    std::vector<Addr> lastAddr;
190    std::vector<uint32_t> workItemId[3];
191    std::vector<uint32_t> workItemFlatId;
192    uint32_t workGroupId[3];
193    uint32_t workGroupSz[3];
194    uint32_t gridSz[3];
195    uint32_t wgId;
196    uint32_t wgSz;
197    uint32_t dynWaveId;
198    uint32_t maxDynWaveId;
199    uint32_t dispatchId;
200    // outstanding global+local memory requests
201    uint32_t outstandingReqs;
202    // memory requests between scoreboard
203    // and execute stage not yet executed
204    uint32_t memReqsInPipe;
205    // outstanding global memory write requests
206    uint32_t outstandingReqsWrGm;
207    // outstanding local memory write requests
208    uint32_t outstandingReqsWrLm;
209    // outstanding global memory read requests
210    uint32_t outstandingReqsRdGm;
211    // outstanding local memory read requests
212    uint32_t outstandingReqsRdLm;
213    uint32_t rdLmReqsInPipe;
214    uint32_t rdGmReqsInPipe;
215    uint32_t wrLmReqsInPipe;
216    uint32_t wrGmReqsInPipe;
217
218    int memTraceBusy;
219    uint64_t lastTrace;
220    // number of vector registers reserved by WF
221    int reservedVectorRegs;
222    // Index into the Vector Register File's namespace where the WF's registers
223    // will live while the WF is executed
224    uint32_t startVgprIndex;
225
226    // Old value of destination gpr (for trace)
227    std::vector<uint32_t> oldVgpr;
228    // Id of destination gpr (for trace)
229    uint32_t oldVgprId;
230    // Tick count of last old_vgpr copy
231    uint64_t oldVgprTcnt;
232
233    // Old value of destination gpr (for trace)
234    std::vector<uint64_t> oldDgpr;
235    // Id of destination gpr (for trace)
236    uint32_t oldDgprId;
237    // Tick count of last old_vgpr copy
238    uint64_t oldDgprTcnt;
239
240    // Execution mask at wavefront start
241    VectorMask initMask;
242
243    // number of barriers this WF has joined
244    std::vector<int> barCnt;
245    int maxBarCnt;
246    // Flag to stall a wave on barrier
247    bool stalledAtBarrier;
248
249    // a pointer to the fraction of the LDS allocated
250    // to this workgroup (thus this wavefront)
251    LdsChunk *ldsChunk;
252
253    // A pointer to the spill area
254    Addr spillBase;
255    // The size of the spill area
256    uint32_t spillSizePerItem;
257    // The vector width of the spill area
258    uint32_t spillWidth;
259
260    // A pointer to the private memory area
261    Addr privBase;
262    // The size of the private memory area
263    uint32_t privSizePerItem;
264
265    // A pointer ot the read-only memory area
266    Addr roBase;
267    // size of the read-only memory area
268    uint32_t roSize;
269
270    // pointer to buffer for storing kernel arguments
271    uint8_t *kernelArgs;
272    // unique WF id over all WFs executed across all CUs
273    uint64_t wfDynId;
274
275    // number of times instruction issue for this wavefront is blocked
276    // due to VRF port availability
277    Stats::Scalar numTimesBlockedDueVrfPortAvail;
278    // number of times an instruction of a WF is blocked from being issued
279    // due to WAR and WAW dependencies
280    Stats::Scalar numTimesBlockedDueWAXDependencies;
281    // number of times an instruction of a WF is blocked from being issued
282    // due to WAR and WAW dependencies
283    Stats::Scalar numTimesBlockedDueRAWDependencies;
284    // distribution of executed instructions based on their register
285    // operands; this is used to highlight the load on the VRF
286    Stats::Distribution srcRegOpDist;
287    Stats::Distribution dstRegOpDist;
288
289    // Functions to operate on call argument memory
290    // argument memory for hsail call instruction
291    CallArgMem *callArgMem;
292    void
293    initCallArgMem(int func_args_size_per_item, int wf_size)
294    {
295        callArgMem = new CallArgMem(func_args_size_per_item, wf_size);
296    }
297
298    template<typename CType>
299    CType
300    readCallArgMem(int lane, int addr)
301    {
302        return *((CType*)(callArgMem->getLaneAddr<CType>(lane, addr)));
303    }
304
305    template<typename CType>
306    void
307    writeCallArgMem(int lane, int addr, CType val)
308    {
309        callArgMem->setLaneAddr<CType>(lane, addr, val);
310    }
311
312    typedef WavefrontParams Params;
313    Wavefront(const Params *p);
314    ~Wavefront();
315    virtual void init();
316
317    void
318    setParent(ComputeUnit *cu)
319    {
320        computeUnit = cu;
321    }
322
323    void start(uint64_t _wfDynId, uint64_t _base_ptr);
324    void exec();
325    void updateResources();
326    int ready(itype_e type);
327    bool instructionBufferHasBranch();
328    void regStats();
329    VectorMask getPred() { return execMask() & initMask; }
330
331    bool waitingAtBarrier(int lane);
332
333    void pushToReconvergenceStack(uint32_t pc, uint32_t rpc,
334                                  const VectorMask& exec_mask);
335
336    void popFromReconvergenceStack();
337
338    uint32_t pc() const;
339
340    uint32_t rpc() const;
341
342    VectorMask execMask() const;
343
344    bool execMask(int lane) const;
345
346    void pc(uint32_t new_pc);
347
348    void discardFetch();
349
350    /**
351     * Returns the size of the static hardware context of a particular wavefront
352     * This should be updated everytime the context is changed
353     */
354    uint32_t getStaticContextSize() const;
355
356  private:
357    /**
358     * Stack containing Control Flow Graph nodes (i.e., kernel instructions)
359     * to be visited by the wavefront, and the associated execution masks. The
360     * reconvergence stack grows every time the wavefront reaches a divergence
361     * point (branch instruction), and shrinks every time the wavefront
362     * reaches a reconvergence point (immediate post-dominator instruction).
363     */
364    std::deque<std::unique_ptr<ReconvergenceStackEntry>> reconvergenceStack;
365};
366
367#endif // __WAVEFRONT_HH__
368