local_memory_pipeline.cc revision 11639:2e8d4bd8108d
1/*
2 * Copyright (c) 2014-2015 Advanced Micro Devices, Inc.
3 * All rights reserved.
4 *
5 * For use for simulation and test purposes only
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright notice,
14 * this list of conditions and the following disclaimer in the documentation
15 * and/or other materials provided with the distribution.
16 *
17 * 3. Neither the name of the copyright holder nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Author: Sooraj Puthoor
34 */
35
36#include "gpu-compute/local_memory_pipeline.hh"
37
38#include "debug/GPUPort.hh"
39#include "gpu-compute/compute_unit.hh"
40#include "gpu-compute/gpu_dyn_inst.hh"
41#include "gpu-compute/shader.hh"
42#include "gpu-compute/vector_register_file.hh"
43#include "gpu-compute/wavefront.hh"
44
45LocalMemPipeline::LocalMemPipeline(const ComputeUnitParams* p) :
46    computeUnit(nullptr), lmQueueSize(p->local_mem_queue_size)
47{
48}
49
50void
51LocalMemPipeline::init(ComputeUnit *cu)
52{
53    computeUnit = cu;
54    _name = computeUnit->name() + ".LocalMemPipeline";
55}
56
57void
58LocalMemPipeline::exec()
59{
60    // apply any returned shared (LDS) memory operations
61    GPUDynInstPtr m = !lmReturnedRequests.empty() ?
62        lmReturnedRequests.front() : nullptr;
63
64    bool accessVrf = true;
65    if ((m) && (m->m_op==Enums::MO_LD || MO_A(m->m_op))) {
66        Wavefront *w = computeUnit->wfList[m->simdId][m->wfSlotId];
67
68        accessVrf =
69            w->computeUnit->vrf[m->simdId]->
70            vrfOperandAccessReady(m->seqNum(), w, m,
71                                  VrfAccessType::WRITE);
72    }
73
74    if (!lmReturnedRequests.empty() && m->latency.rdy() && accessVrf &&
75        computeUnit->locMemToVrfBus.rdy() && (computeUnit->shader->coissue_return
76                 || computeUnit->wfWait.at(m->pipeId).rdy())) {
77        if (m->v_type == VT_32 && m->m_type == Enums::M_U8)
78            doSmReturn<uint32_t, uint8_t>(m);
79        else if (m->v_type == VT_32 && m->m_type == Enums::M_U16)
80            doSmReturn<uint32_t, uint16_t>(m);
81        else if (m->v_type == VT_32 && m->m_type == Enums::M_U32)
82            doSmReturn<uint32_t, uint32_t>(m);
83        else if (m->v_type == VT_32 && m->m_type == Enums::M_S8)
84            doSmReturn<int32_t, int8_t>(m);
85        else if (m->v_type == VT_32 && m->m_type == Enums::M_S16)
86            doSmReturn<int32_t, int16_t>(m);
87        else if (m->v_type == VT_32 && m->m_type == Enums::M_S32)
88            doSmReturn<int32_t, int32_t>(m);
89        else if (m->v_type == VT_32 && m->m_type == Enums::M_F16)
90            doSmReturn<float, Float16>(m);
91        else if (m->v_type == VT_32 && m->m_type == Enums::M_F32)
92            doSmReturn<float, float>(m);
93        else if (m->v_type == VT_64 && m->m_type == Enums::M_U8)
94            doSmReturn<uint64_t, uint8_t>(m);
95        else if (m->v_type == VT_64 && m->m_type == Enums::M_U16)
96            doSmReturn<uint64_t, uint16_t>(m);
97        else if (m->v_type == VT_64 && m->m_type == Enums::M_U32)
98            doSmReturn<uint64_t, uint32_t>(m);
99        else if (m->v_type == VT_64 && m->m_type == Enums::M_U64)
100            doSmReturn<uint64_t, uint64_t>(m);
101        else if (m->v_type == VT_64 && m->m_type == Enums::M_S8)
102            doSmReturn<int64_t, int8_t>(m);
103        else if (m->v_type == VT_64 && m->m_type == Enums::M_S16)
104            doSmReturn<int64_t, int16_t>(m);
105        else if (m->v_type == VT_64 && m->m_type == Enums::M_S32)
106            doSmReturn<int64_t, int32_t>(m);
107        else if (m->v_type == VT_64 && m->m_type == Enums::M_S64)
108            doSmReturn<int64_t, int64_t>(m);
109        else if (m->v_type == VT_64 && m->m_type == Enums::M_F16)
110            doSmReturn<double, Float16>(m);
111        else if (m->v_type == VT_64 && m->m_type == Enums::M_F32)
112            doSmReturn<double, float>(m);
113        else if (m->v_type == VT_64 && m->m_type == Enums::M_F64)
114            doSmReturn<double, double>(m);
115    }
116
117    // If pipeline has executed a local memory instruction
118    // execute local memory packet and issue the packets
119    // to LDS
120    if (!lmIssuedRequests.empty() && lmReturnedRequests.size() < lmQueueSize) {
121
122        GPUDynInstPtr m = lmIssuedRequests.front();
123
124        bool returnVal = computeUnit->sendToLds(m);
125        if (!returnVal) {
126            DPRINTF(GPUPort, "packet was nack'd and put in retry queue");
127        }
128        lmIssuedRequests.pop();
129    }
130}
131
132template<typename c0, typename c1>
133void
134LocalMemPipeline::doSmReturn(GPUDynInstPtr m)
135{
136    lmReturnedRequests.pop();
137    Wavefront *w = computeUnit->wfList[m->simdId][m->wfSlotId];
138
139    // Return data to registers
140    if (m->m_op == Enums::MO_LD || MO_A(m->m_op)) {
141        std::vector<uint32_t> regVec;
142        for (int k = 0; k < m->n_reg; ++k) {
143            int dst = m->dst_reg+k;
144
145            if (m->n_reg > MAX_REGS_FOR_NON_VEC_MEM_INST)
146                dst = m->dst_reg_vec[k];
147            // virtual->physical VGPR mapping
148            int physVgpr = w->remap(dst,sizeof(c0),1);
149            // save the physical VGPR index
150            regVec.push_back(physVgpr);
151            c1 *p1 = &((c1 *)m->d_data)[k * w->computeUnit->wfSize()];
152
153            for (int i = 0; i < w->computeUnit->wfSize(); ++i) {
154                if (m->exec_mask[i]) {
155                    // write the value into the physical VGPR. This is a purely
156                    // functional operation. No timing is modeled.
157                    w->computeUnit->vrf[w->simdId]->write<c0>(physVgpr,
158                                                                *p1, i);
159                }
160                ++p1;
161            }
162        }
163
164        // Schedule the write operation of the load data on the VRF. This simply
165        // models the timing aspect of the VRF write operation. It does not
166        // modify the physical VGPR.
167        loadVrfBankConflictCycles +=
168            w->computeUnit->vrf[w->simdId]->exec(m->seqNum(), w,
169                                                 regVec, sizeof(c0), m->time);
170    }
171
172    // Decrement outstanding request count
173    computeUnit->shader->ScheduleAdd(&w->outstandingReqs, m->time, -1);
174
175    if (m->m_op == Enums::MO_ST || MO_A(m->m_op) || MO_ANR(m->m_op)
176        || MO_H(m->m_op)) {
177        computeUnit->shader->ScheduleAdd(&w->outstandingReqsWrLm,
178                                         m->time, -1);
179    }
180
181    if (m->m_op == Enums::MO_LD || MO_A(m->m_op) || MO_ANR(m->m_op)) {
182        computeUnit->shader->ScheduleAdd(&w->outstandingReqsRdLm,
183                                         m->time, -1);
184    }
185
186    // Mark write bus busy for appropriate amount of time
187    computeUnit->locMemToVrfBus.set(m->time);
188    if (computeUnit->shader->coissue_return == 0)
189        w->computeUnit->wfWait.at(m->pipeId).set(m->time);
190}
191
192void
193LocalMemPipeline::regStats()
194{
195    loadVrfBankConflictCycles
196        .name(name() + ".load_vrf_bank_conflict_cycles")
197        .desc("total number of cycles LDS data are delayed before updating "
198              "the VRF")
199        ;
200}
201