gpu_tlb.cc revision 12717:2e2c211644d2
1/*
2 * Copyright (c) 2011-2015 Advanced Micro Devices, Inc.
3 * All rights reserved.
4 *
5 * For use for simulation and test purposes only
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright notice,
14 * this list of conditions and the following disclaimer in the documentation
15 * and/or other materials provided with the distribution.
16 *
17 * 3. Neither the name of the copyright holder nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Author: Lisa Hsu
34 */
35
36#include "gpu-compute/gpu_tlb.hh"
37
38#include <cmath>
39#include <cstring>
40
41#include "arch/x86/faults.hh"
42#include "arch/x86/insts/microldstop.hh"
43#include "arch/x86/pagetable.hh"
44#include "arch/x86/pagetable_walker.hh"
45#include "arch/x86/regs/misc.hh"
46#include "arch/x86/x86_traits.hh"
47#include "base/bitfield.hh"
48#include "base/output.hh"
49#include "base/trace.hh"
50#include "cpu/base.hh"
51#include "cpu/thread_context.hh"
52#include "debug/GPUPrefetch.hh"
53#include "debug/GPUTLB.hh"
54#include "mem/packet_access.hh"
55#include "mem/page_table.hh"
56#include "mem/request.hh"
57#include "sim/process.hh"
58
59namespace X86ISA
60{
61
62    GpuTLB::GpuTLB(const Params *p)
63        : MemObject(p), configAddress(0), size(p->size),
64          cleanupEvent([this]{ cleanup(); }, name(), false,
65                       Event::Maximum_Pri),
66          exitEvent([this]{ exitCallback(); }, name())
67    {
68        assoc = p->assoc;
69        assert(assoc <= size);
70        numSets = size/assoc;
71        allocationPolicy = p->allocationPolicy;
72        hasMemSidePort = false;
73        accessDistance = p->accessDistance;
74        clock = p->clk_domain->clockPeriod();
75
76        tlb.assign(size, TlbEntry());
77
78        freeList.resize(numSets);
79        entryList.resize(numSets);
80
81        for (int set = 0; set < numSets; ++set) {
82            for (int way = 0; way < assoc; ++way) {
83                int x = set * assoc + way;
84                freeList[set].push_back(&tlb.at(x));
85            }
86        }
87
88        FA = (size == assoc);
89
90        /**
91         * @warning: the set-associative version assumes you have a
92         * fixed page size of 4KB.
93         * If the page size is greather than 4KB (as defined in the
94         * TheISA::PageBytes), then there are various issues w/ the current
95         * implementation (you'd have the same 8KB page being replicated in
96         * different sets etc)
97         */
98        setMask = numSets - 1;
99
100    #if 0
101        // GpuTLB doesn't yet support full system
102        walker = p->walker;
103        walker->setTLB(this);
104    #endif
105
106        maxCoalescedReqs = p->maxOutstandingReqs;
107
108        // Do not allow maxCoalescedReqs to be more than the TLB associativity
109        if (maxCoalescedReqs > assoc) {
110            maxCoalescedReqs = assoc;
111            cprintf("Forcing maxCoalescedReqs to %d (TLB assoc.) \n", assoc);
112        }
113
114        outstandingReqs = 0;
115        hitLatency = p->hitLatency;
116        missLatency1 = p->missLatency1;
117        missLatency2 = p->missLatency2;
118
119        // create the slave ports based on the number of connected ports
120        for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
121            cpuSidePort.push_back(new CpuSidePort(csprintf("%s-port%d",
122                                  name(), i), this, i));
123        }
124
125        // create the master ports based on the number of connected ports
126        for (size_t i = 0; i < p->port_master_connection_count; ++i) {
127            memSidePort.push_back(new MemSidePort(csprintf("%s-port%d",
128                                  name(), i), this, i));
129        }
130    }
131
132    // fixme: this is never called?
133    GpuTLB::~GpuTLB()
134    {
135        // make sure all the hash-maps are empty
136        assert(translationReturnEvent.empty());
137    }
138
139    BaseSlavePort&
140    GpuTLB::getSlavePort(const std::string &if_name, PortID idx)
141    {
142        if (if_name == "slave") {
143            if (idx >= static_cast<PortID>(cpuSidePort.size())) {
144                panic("TLBCoalescer::getSlavePort: unknown index %d\n", idx);
145            }
146
147            return *cpuSidePort[idx];
148        } else {
149            panic("TLBCoalescer::getSlavePort: unknown port %s\n", if_name);
150        }
151    }
152
153    BaseMasterPort&
154    GpuTLB::getMasterPort(const std::string &if_name, PortID idx)
155    {
156        if (if_name == "master") {
157            if (idx >= static_cast<PortID>(memSidePort.size())) {
158                panic("TLBCoalescer::getMasterPort: unknown index %d\n", idx);
159            }
160
161            hasMemSidePort = true;
162
163            return *memSidePort[idx];
164        } else {
165            panic("TLBCoalescer::getMasterPort: unknown port %s\n", if_name);
166        }
167    }
168
169    TlbEntry*
170    GpuTLB::insert(Addr vpn, TlbEntry &entry)
171    {
172        TlbEntry *newEntry = nullptr;
173
174        /**
175         * vpn holds the virtual page address
176         * The least significant bits are simply masked
177         */
178        int set = (vpn >> TheISA::PageShift) & setMask;
179
180        if (!freeList[set].empty()) {
181            newEntry = freeList[set].front();
182            freeList[set].pop_front();
183        } else {
184            newEntry = entryList[set].back();
185            entryList[set].pop_back();
186        }
187
188        *newEntry = entry;
189        newEntry->vaddr = vpn;
190        entryList[set].push_front(newEntry);
191
192        return newEntry;
193    }
194
195    GpuTLB::EntryList::iterator
196    GpuTLB::lookupIt(Addr va, bool update_lru)
197    {
198        int set = (va >> TheISA::PageShift) & setMask;
199
200        if (FA) {
201            assert(!set);
202        }
203
204        auto entry = entryList[set].begin();
205        for (; entry != entryList[set].end(); ++entry) {
206            int page_size = (*entry)->size();
207
208            if ((*entry)->vaddr <= va && (*entry)->vaddr + page_size > va) {
209                DPRINTF(GPUTLB, "Matched vaddr %#x to entry starting at %#x "
210                        "with size %#x.\n", va, (*entry)->vaddr, page_size);
211
212                if (update_lru) {
213                    entryList[set].push_front(*entry);
214                    entryList[set].erase(entry);
215                    entry = entryList[set].begin();
216                }
217
218                break;
219            }
220        }
221
222        return entry;
223    }
224
225    TlbEntry*
226    GpuTLB::lookup(Addr va, bool update_lru)
227    {
228        int set = (va >> TheISA::PageShift) & setMask;
229
230        auto entry = lookupIt(va, update_lru);
231
232        if (entry == entryList[set].end())
233            return nullptr;
234        else
235            return *entry;
236    }
237
238    void
239    GpuTLB::invalidateAll()
240    {
241        DPRINTF(GPUTLB, "Invalidating all entries.\n");
242
243        for (int i = 0; i < numSets; ++i) {
244            while (!entryList[i].empty()) {
245                TlbEntry *entry = entryList[i].front();
246                entryList[i].pop_front();
247                freeList[i].push_back(entry);
248            }
249        }
250    }
251
252    void
253    GpuTLB::setConfigAddress(uint32_t addr)
254    {
255        configAddress = addr;
256    }
257
258    void
259    GpuTLB::invalidateNonGlobal()
260    {
261        DPRINTF(GPUTLB, "Invalidating all non global entries.\n");
262
263        for (int i = 0; i < numSets; ++i) {
264            for (auto entryIt = entryList[i].begin();
265                 entryIt != entryList[i].end();) {
266                if (!(*entryIt)->global) {
267                    freeList[i].push_back(*entryIt);
268                    entryList[i].erase(entryIt++);
269                } else {
270                    ++entryIt;
271                }
272            }
273        }
274    }
275
276    void
277    GpuTLB::demapPage(Addr va, uint64_t asn)
278    {
279
280        int set = (va >> TheISA::PageShift) & setMask;
281        auto entry = lookupIt(va, false);
282
283        if (entry != entryList[set].end()) {
284            freeList[set].push_back(*entry);
285            entryList[set].erase(entry);
286        }
287    }
288
289    Fault
290    GpuTLB::translateInt(RequestPtr req, ThreadContext *tc)
291    {
292        DPRINTF(GPUTLB, "Addresses references internal memory.\n");
293        Addr vaddr = req->getVaddr();
294        Addr prefix = (vaddr >> 3) & IntAddrPrefixMask;
295
296        if (prefix == IntAddrPrefixCPUID) {
297            panic("CPUID memory space not yet implemented!\n");
298        } else if (prefix == IntAddrPrefixMSR) {
299            vaddr = vaddr >> 3;
300            req->setFlags(Request::MMAPPED_IPR);
301            Addr regNum = 0;
302
303            switch (vaddr & ~IntAddrPrefixMask) {
304              case 0x10:
305                regNum = MISCREG_TSC;
306                break;
307              case 0x1B:
308                regNum = MISCREG_APIC_BASE;
309                break;
310              case 0xFE:
311                regNum = MISCREG_MTRRCAP;
312                break;
313              case 0x174:
314                regNum = MISCREG_SYSENTER_CS;
315                break;
316              case 0x175:
317                regNum = MISCREG_SYSENTER_ESP;
318                break;
319              case 0x176:
320                regNum = MISCREG_SYSENTER_EIP;
321                break;
322              case 0x179:
323                regNum = MISCREG_MCG_CAP;
324                break;
325              case 0x17A:
326                regNum = MISCREG_MCG_STATUS;
327                break;
328              case 0x17B:
329                regNum = MISCREG_MCG_CTL;
330                break;
331              case 0x1D9:
332                regNum = MISCREG_DEBUG_CTL_MSR;
333                break;
334              case 0x1DB:
335                regNum = MISCREG_LAST_BRANCH_FROM_IP;
336                break;
337              case 0x1DC:
338                regNum = MISCREG_LAST_BRANCH_TO_IP;
339                break;
340              case 0x1DD:
341                regNum = MISCREG_LAST_EXCEPTION_FROM_IP;
342                break;
343              case 0x1DE:
344                regNum = MISCREG_LAST_EXCEPTION_TO_IP;
345                break;
346              case 0x200:
347                regNum = MISCREG_MTRR_PHYS_BASE_0;
348                break;
349              case 0x201:
350                regNum = MISCREG_MTRR_PHYS_MASK_0;
351                break;
352              case 0x202:
353                regNum = MISCREG_MTRR_PHYS_BASE_1;
354                break;
355              case 0x203:
356                regNum = MISCREG_MTRR_PHYS_MASK_1;
357                break;
358              case 0x204:
359                regNum = MISCREG_MTRR_PHYS_BASE_2;
360                break;
361              case 0x205:
362                regNum = MISCREG_MTRR_PHYS_MASK_2;
363                break;
364              case 0x206:
365                regNum = MISCREG_MTRR_PHYS_BASE_3;
366                break;
367              case 0x207:
368                regNum = MISCREG_MTRR_PHYS_MASK_3;
369                break;
370              case 0x208:
371                regNum = MISCREG_MTRR_PHYS_BASE_4;
372                break;
373              case 0x209:
374                regNum = MISCREG_MTRR_PHYS_MASK_4;
375                break;
376              case 0x20A:
377                regNum = MISCREG_MTRR_PHYS_BASE_5;
378                break;
379              case 0x20B:
380                regNum = MISCREG_MTRR_PHYS_MASK_5;
381                break;
382              case 0x20C:
383                regNum = MISCREG_MTRR_PHYS_BASE_6;
384                break;
385              case 0x20D:
386                regNum = MISCREG_MTRR_PHYS_MASK_6;
387                break;
388              case 0x20E:
389                regNum = MISCREG_MTRR_PHYS_BASE_7;
390                break;
391              case 0x20F:
392                regNum = MISCREG_MTRR_PHYS_MASK_7;
393                break;
394              case 0x250:
395                regNum = MISCREG_MTRR_FIX_64K_00000;
396                break;
397              case 0x258:
398                regNum = MISCREG_MTRR_FIX_16K_80000;
399                break;
400              case 0x259:
401                regNum = MISCREG_MTRR_FIX_16K_A0000;
402                break;
403              case 0x268:
404                regNum = MISCREG_MTRR_FIX_4K_C0000;
405                break;
406              case 0x269:
407                regNum = MISCREG_MTRR_FIX_4K_C8000;
408                break;
409              case 0x26A:
410                regNum = MISCREG_MTRR_FIX_4K_D0000;
411                break;
412              case 0x26B:
413                regNum = MISCREG_MTRR_FIX_4K_D8000;
414                break;
415              case 0x26C:
416                regNum = MISCREG_MTRR_FIX_4K_E0000;
417                break;
418              case 0x26D:
419                regNum = MISCREG_MTRR_FIX_4K_E8000;
420                break;
421              case 0x26E:
422                regNum = MISCREG_MTRR_FIX_4K_F0000;
423                break;
424              case 0x26F:
425                regNum = MISCREG_MTRR_FIX_4K_F8000;
426                break;
427              case 0x277:
428                regNum = MISCREG_PAT;
429                break;
430              case 0x2FF:
431                regNum = MISCREG_DEF_TYPE;
432                break;
433              case 0x400:
434                regNum = MISCREG_MC0_CTL;
435                break;
436              case 0x404:
437                regNum = MISCREG_MC1_CTL;
438                break;
439              case 0x408:
440                regNum = MISCREG_MC2_CTL;
441                break;
442              case 0x40C:
443                regNum = MISCREG_MC3_CTL;
444                break;
445              case 0x410:
446                regNum = MISCREG_MC4_CTL;
447                break;
448              case 0x414:
449                regNum = MISCREG_MC5_CTL;
450                break;
451              case 0x418:
452                regNum = MISCREG_MC6_CTL;
453                break;
454              case 0x41C:
455                regNum = MISCREG_MC7_CTL;
456                break;
457              case 0x401:
458                regNum = MISCREG_MC0_STATUS;
459                break;
460              case 0x405:
461                regNum = MISCREG_MC1_STATUS;
462                break;
463              case 0x409:
464                regNum = MISCREG_MC2_STATUS;
465                break;
466              case 0x40D:
467                regNum = MISCREG_MC3_STATUS;
468                break;
469              case 0x411:
470                regNum = MISCREG_MC4_STATUS;
471                break;
472              case 0x415:
473                regNum = MISCREG_MC5_STATUS;
474                break;
475              case 0x419:
476                regNum = MISCREG_MC6_STATUS;
477                break;
478              case 0x41D:
479                regNum = MISCREG_MC7_STATUS;
480                break;
481              case 0x402:
482                regNum = MISCREG_MC0_ADDR;
483                break;
484              case 0x406:
485                regNum = MISCREG_MC1_ADDR;
486                break;
487              case 0x40A:
488                regNum = MISCREG_MC2_ADDR;
489                break;
490              case 0x40E:
491                regNum = MISCREG_MC3_ADDR;
492                break;
493              case 0x412:
494                regNum = MISCREG_MC4_ADDR;
495                break;
496              case 0x416:
497                regNum = MISCREG_MC5_ADDR;
498                break;
499              case 0x41A:
500                regNum = MISCREG_MC6_ADDR;
501                break;
502              case 0x41E:
503                regNum = MISCREG_MC7_ADDR;
504                break;
505              case 0x403:
506                regNum = MISCREG_MC0_MISC;
507                break;
508              case 0x407:
509                regNum = MISCREG_MC1_MISC;
510                break;
511              case 0x40B:
512                regNum = MISCREG_MC2_MISC;
513                break;
514              case 0x40F:
515                regNum = MISCREG_MC3_MISC;
516                break;
517              case 0x413:
518                regNum = MISCREG_MC4_MISC;
519                break;
520              case 0x417:
521                regNum = MISCREG_MC5_MISC;
522                break;
523              case 0x41B:
524                regNum = MISCREG_MC6_MISC;
525                break;
526              case 0x41F:
527                regNum = MISCREG_MC7_MISC;
528                break;
529              case 0xC0000080:
530                regNum = MISCREG_EFER;
531                break;
532              case 0xC0000081:
533                regNum = MISCREG_STAR;
534                break;
535              case 0xC0000082:
536                regNum = MISCREG_LSTAR;
537                break;
538              case 0xC0000083:
539                regNum = MISCREG_CSTAR;
540                break;
541              case 0xC0000084:
542                regNum = MISCREG_SF_MASK;
543                break;
544              case 0xC0000100:
545                regNum = MISCREG_FS_BASE;
546                break;
547              case 0xC0000101:
548                regNum = MISCREG_GS_BASE;
549                break;
550              case 0xC0000102:
551                regNum = MISCREG_KERNEL_GS_BASE;
552                break;
553              case 0xC0000103:
554                regNum = MISCREG_TSC_AUX;
555                break;
556              case 0xC0010000:
557                regNum = MISCREG_PERF_EVT_SEL0;
558                break;
559              case 0xC0010001:
560                regNum = MISCREG_PERF_EVT_SEL1;
561                break;
562              case 0xC0010002:
563                regNum = MISCREG_PERF_EVT_SEL2;
564                break;
565              case 0xC0010003:
566                regNum = MISCREG_PERF_EVT_SEL3;
567                break;
568              case 0xC0010004:
569                regNum = MISCREG_PERF_EVT_CTR0;
570                break;
571              case 0xC0010005:
572                regNum = MISCREG_PERF_EVT_CTR1;
573                break;
574              case 0xC0010006:
575                regNum = MISCREG_PERF_EVT_CTR2;
576                break;
577              case 0xC0010007:
578                regNum = MISCREG_PERF_EVT_CTR3;
579                break;
580              case 0xC0010010:
581                regNum = MISCREG_SYSCFG;
582                break;
583              case 0xC0010016:
584                regNum = MISCREG_IORR_BASE0;
585                break;
586              case 0xC0010017:
587                regNum = MISCREG_IORR_BASE1;
588                break;
589              case 0xC0010018:
590                regNum = MISCREG_IORR_MASK0;
591                break;
592              case 0xC0010019:
593                regNum = MISCREG_IORR_MASK1;
594                break;
595              case 0xC001001A:
596                regNum = MISCREG_TOP_MEM;
597                break;
598              case 0xC001001D:
599                regNum = MISCREG_TOP_MEM2;
600                break;
601              case 0xC0010114:
602                regNum = MISCREG_VM_CR;
603                break;
604              case 0xC0010115:
605                regNum = MISCREG_IGNNE;
606                break;
607              case 0xC0010116:
608                regNum = MISCREG_SMM_CTL;
609                break;
610              case 0xC0010117:
611                regNum = MISCREG_VM_HSAVE_PA;
612                break;
613              default:
614                return std::make_shared<GeneralProtection>(0);
615            }
616            //The index is multiplied by the size of a MiscReg so that
617            //any memory dependence calculations will not see these as
618            //overlapping.
619            req->setPaddr(regNum * sizeof(MiscReg));
620            return NoFault;
621        } else if (prefix == IntAddrPrefixIO) {
622            // TODO If CPL > IOPL or in virtual mode, check the I/O permission
623            // bitmap in the TSS.
624
625            Addr IOPort = vaddr & ~IntAddrPrefixMask;
626            // Make sure the address fits in the expected 16 bit IO address
627            // space.
628            assert(!(IOPort & ~0xFFFF));
629
630            if (IOPort == 0xCF8 && req->getSize() == 4) {
631                req->setFlags(Request::MMAPPED_IPR);
632                req->setPaddr(MISCREG_PCI_CONFIG_ADDRESS * sizeof(MiscReg));
633            } else if ((IOPort & ~mask(2)) == 0xCFC) {
634                req->setFlags(Request::UNCACHEABLE);
635
636                Addr configAddress =
637                    tc->readMiscRegNoEffect(MISCREG_PCI_CONFIG_ADDRESS);
638
639                if (bits(configAddress, 31, 31)) {
640                    req->setPaddr(PhysAddrPrefixPciConfig |
641                                  mbits(configAddress, 30, 2) |
642                                  (IOPort & mask(2)));
643                } else {
644                    req->setPaddr(PhysAddrPrefixIO | IOPort);
645                }
646            } else {
647                req->setFlags(Request::UNCACHEABLE);
648                req->setPaddr(PhysAddrPrefixIO | IOPort);
649            }
650            return NoFault;
651        } else {
652            panic("Access to unrecognized internal address space %#x.\n",
653                  prefix);
654        }
655    }
656
657    /**
658     * TLB_lookup will only perform a TLB lookup returning true on a TLB hit
659     * and false on a TLB miss.
660     * Many of the checks about different modes have been converted to
661     * assertions, since these parts of the code are not really used.
662     * On a hit it will update the LRU stack.
663     */
664    bool
665    GpuTLB::tlbLookup(RequestPtr req, ThreadContext *tc, bool update_stats)
666    {
667        bool tlb_hit = false;
668    #ifndef NDEBUG
669        uint32_t flags = req->getFlags();
670        int seg = flags & SegmentFlagMask;
671    #endif
672
673        assert(seg != SEGMENT_REG_MS);
674        Addr vaddr = req->getVaddr();
675        DPRINTF(GPUTLB, "TLB Lookup for vaddr %#x.\n", vaddr);
676        HandyM5Reg m5Reg = tc->readMiscRegNoEffect(MISCREG_M5_REG);
677
678        if (m5Reg.prot) {
679            DPRINTF(GPUTLB, "In protected mode.\n");
680            // make sure we are in 64-bit mode
681            assert(m5Reg.mode == LongMode);
682
683            // If paging is enabled, do the translation.
684            if (m5Reg.paging) {
685                DPRINTF(GPUTLB, "Paging enabled.\n");
686                //update LRU stack on a hit
687                TlbEntry *entry = lookup(vaddr, true);
688
689                if (entry)
690                    tlb_hit = true;
691
692                if (!update_stats) {
693                    // functional tlb access for memory initialization
694                    // i.e., memory seeding or instr. seeding -> don't update
695                    // TLB and stats
696                    return tlb_hit;
697                }
698
699                localNumTLBAccesses++;
700
701                if (!entry) {
702                    localNumTLBMisses++;
703                } else {
704                    localNumTLBHits++;
705                }
706            }
707        }
708
709        return tlb_hit;
710    }
711
712    Fault
713    GpuTLB::translate(RequestPtr req, ThreadContext *tc,
714                      Translation *translation, Mode mode,
715                      bool &delayedResponse, bool timing, int &latency)
716    {
717        uint32_t flags = req->getFlags();
718        int seg = flags & SegmentFlagMask;
719        bool storeCheck = flags & (StoreCheck << FlagShift);
720
721        // If this is true, we're dealing with a request
722        // to a non-memory address space.
723        if (seg == SEGMENT_REG_MS) {
724            return translateInt(req, tc);
725        }
726
727        delayedResponse = false;
728        Addr vaddr = req->getVaddr();
729        DPRINTF(GPUTLB, "Translating vaddr %#x.\n", vaddr);
730
731        HandyM5Reg m5Reg = tc->readMiscRegNoEffect(MISCREG_M5_REG);
732
733        // If protected mode has been enabled...
734        if (m5Reg.prot) {
735            DPRINTF(GPUTLB, "In protected mode.\n");
736            // If we're not in 64-bit mode, do protection/limit checks
737            if (m5Reg.mode != LongMode) {
738                DPRINTF(GPUTLB, "Not in long mode. Checking segment "
739                        "protection.\n");
740
741                // Check for a null segment selector.
742                if (!(seg == SEGMENT_REG_TSG || seg == SYS_SEGMENT_REG_IDTR ||
743                    seg == SEGMENT_REG_HS || seg == SEGMENT_REG_LS)
744                    && !tc->readMiscRegNoEffect(MISCREG_SEG_SEL(seg))) {
745                    return std::make_shared<GeneralProtection>(0);
746                }
747
748                bool expandDown = false;
749                SegAttr attr = tc->readMiscRegNoEffect(MISCREG_SEG_ATTR(seg));
750
751                if (seg >= SEGMENT_REG_ES && seg <= SEGMENT_REG_HS) {
752                    if (!attr.writable && (mode == BaseTLB::Write ||
753                        storeCheck))
754                        return std::make_shared<GeneralProtection>(0);
755
756                    if (!attr.readable && mode == BaseTLB::Read)
757                        return std::make_shared<GeneralProtection>(0);
758
759                    expandDown = attr.expandDown;
760
761                }
762
763                Addr base = tc->readMiscRegNoEffect(MISCREG_SEG_BASE(seg));
764                Addr limit = tc->readMiscRegNoEffect(MISCREG_SEG_LIMIT(seg));
765                // This assumes we're not in 64 bit mode. If we were, the
766                // default address size is 64 bits, overridable to 32.
767                int size = 32;
768                bool sizeOverride = (flags & (AddrSizeFlagBit << FlagShift));
769                SegAttr csAttr = tc->readMiscRegNoEffect(MISCREG_CS_ATTR);
770
771                if ((csAttr.defaultSize && sizeOverride) ||
772                    (!csAttr.defaultSize && !sizeOverride)) {
773                    size = 16;
774                }
775
776                Addr offset = bits(vaddr - base, size - 1, 0);
777                Addr endOffset = offset + req->getSize() - 1;
778
779                if (expandDown) {
780                    DPRINTF(GPUTLB, "Checking an expand down segment.\n");
781                    warn_once("Expand down segments are untested.\n");
782
783                    if (offset <= limit || endOffset <= limit)
784                        return std::make_shared<GeneralProtection>(0);
785                } else {
786                    if (offset > limit || endOffset > limit)
787                        return std::make_shared<GeneralProtection>(0);
788                }
789            }
790
791            // If paging is enabled, do the translation.
792            if (m5Reg.paging) {
793                DPRINTF(GPUTLB, "Paging enabled.\n");
794                // The vaddr already has the segment base applied.
795                TlbEntry *entry = lookup(vaddr);
796                localNumTLBAccesses++;
797
798                if (!entry) {
799                    localNumTLBMisses++;
800                    if (timing) {
801                        latency = missLatency1;
802                    }
803
804                    if (FullSystem) {
805                        fatal("GpuTLB doesn't support full-system mode\n");
806                    } else {
807                        DPRINTF(GPUTLB, "Handling a TLB miss for address %#x "
808                                "at pc %#x.\n", vaddr, tc->instAddr());
809
810                        Process *p = tc->getProcessPtr();
811                        const EmulationPageTable::Entry *pte =
812                            p->pTable->lookup(vaddr);
813
814                        if (!pte && mode != BaseTLB::Execute) {
815                            // penalize a "page fault" more
816                            if (timing)
817                                latency += missLatency2;
818
819                            if (p->fixupStackFault(vaddr))
820                                pte = p->pTable->lookup(vaddr);
821                        }
822
823                        if (!pte) {
824                            return std::make_shared<PageFault>(vaddr, true,
825                                                               mode, true,
826                                                               false);
827                        } else {
828                            Addr alignedVaddr = p->pTable->pageAlign(vaddr);
829
830                            DPRINTF(GPUTLB, "Mapping %#x to %#x\n",
831                                    alignedVaddr, pte->paddr);
832
833                            TlbEntry gpuEntry(p->pid(), alignedVaddr,
834                                              pte->paddr, false, false);
835                            entry = insert(alignedVaddr, gpuEntry);
836                        }
837
838                        DPRINTF(GPUTLB, "Miss was serviced.\n");
839                    }
840                } else {
841                    localNumTLBHits++;
842
843                    if (timing) {
844                        latency = hitLatency;
845                    }
846                }
847
848                // Do paging protection checks.
849                bool inUser = (m5Reg.cpl == 3 &&
850                               !(flags & (CPL0FlagBit << FlagShift)));
851
852                CR0 cr0 = tc->readMiscRegNoEffect(MISCREG_CR0);
853                bool badWrite = (!entry->writable && (inUser || cr0.wp));
854
855                if ((inUser && !entry->user) || (mode == BaseTLB::Write &&
856                     badWrite)) {
857                    // The page must have been present to get into the TLB in
858                    // the first place. We'll assume the reserved bits are
859                    // fine even though we're not checking them.
860                    return std::make_shared<PageFault>(vaddr, true, mode,
861                                                       inUser, false);
862                }
863
864                if (storeCheck && badWrite) {
865                    // This would fault if this were a write, so return a page
866                    // fault that reflects that happening.
867                    return std::make_shared<PageFault>(vaddr, true,
868                                                       BaseTLB::Write,
869                                                       inUser, false);
870                }
871
872
873                DPRINTF(GPUTLB, "Entry found with paddr %#x, doing protection "
874                        "checks.\n", entry->paddr);
875
876                int page_size = entry->size();
877                Addr paddr = entry->paddr | (vaddr & (page_size - 1));
878                DPRINTF(GPUTLB, "Translated %#x -> %#x.\n", vaddr, paddr);
879                req->setPaddr(paddr);
880
881                if (entry->uncacheable)
882                    req->setFlags(Request::UNCACHEABLE);
883            } else {
884                //Use the address which already has segmentation applied.
885                DPRINTF(GPUTLB, "Paging disabled.\n");
886                DPRINTF(GPUTLB, "Translated %#x -> %#x.\n", vaddr, vaddr);
887                req->setPaddr(vaddr);
888            }
889        } else {
890            // Real mode
891            DPRINTF(GPUTLB, "In real mode.\n");
892            DPRINTF(GPUTLB, "Translated %#x -> %#x.\n", vaddr, vaddr);
893            req->setPaddr(vaddr);
894        }
895
896        // Check for an access to the local APIC
897        if (FullSystem) {
898            LocalApicBase localApicBase =
899                tc->readMiscRegNoEffect(MISCREG_APIC_BASE);
900
901            Addr baseAddr = localApicBase.base * PageBytes;
902            Addr paddr = req->getPaddr();
903
904            if (baseAddr <= paddr && baseAddr + PageBytes > paddr) {
905                // Force the access to be uncacheable.
906                req->setFlags(Request::UNCACHEABLE);
907                req->setPaddr(x86LocalAPICAddress(tc->contextId(),
908                                                  paddr - baseAddr));
909            }
910        }
911
912        return NoFault;
913    };
914
915    Fault
916    GpuTLB::translateAtomic(RequestPtr req, ThreadContext *tc, Mode mode,
917                            int &latency)
918    {
919        bool delayedResponse;
920
921        return GpuTLB::translate(req, tc, nullptr, mode, delayedResponse, false,
922                                 latency);
923    }
924
925    void
926    GpuTLB::translateTiming(RequestPtr req, ThreadContext *tc,
927            Translation *translation, Mode mode, int &latency)
928    {
929        bool delayedResponse;
930        assert(translation);
931
932        Fault fault = GpuTLB::translate(req, tc, translation, mode,
933                                        delayedResponse, true, latency);
934
935        if (!delayedResponse)
936            translation->finish(fault, req, tc, mode);
937    }
938
939    Walker*
940    GpuTLB::getWalker()
941    {
942        return walker;
943    }
944
945
946    void
947    GpuTLB::serialize(CheckpointOut &cp) const
948    {
949    }
950
951    void
952    GpuTLB::unserialize(CheckpointIn &cp)
953    {
954    }
955
956    void
957    GpuTLB::regStats()
958    {
959        MemObject::regStats();
960
961        localNumTLBAccesses
962            .name(name() + ".local_TLB_accesses")
963            .desc("Number of TLB accesses")
964            ;
965
966        localNumTLBHits
967            .name(name() + ".local_TLB_hits")
968            .desc("Number of TLB hits")
969            ;
970
971        localNumTLBMisses
972            .name(name() + ".local_TLB_misses")
973            .desc("Number of TLB misses")
974            ;
975
976        localTLBMissRate
977            .name(name() + ".local_TLB_miss_rate")
978            .desc("TLB miss rate")
979            ;
980
981        accessCycles
982            .name(name() + ".access_cycles")
983            .desc("Cycles spent accessing this TLB level")
984            ;
985
986        pageTableCycles
987            .name(name() + ".page_table_cycles")
988            .desc("Cycles spent accessing the page table")
989            ;
990
991        localTLBMissRate = 100 * localNumTLBMisses / localNumTLBAccesses;
992
993        numUniquePages
994            .name(name() + ".unique_pages")
995            .desc("Number of unique pages touched")
996            ;
997
998        localCycles
999            .name(name() + ".local_cycles")
1000            .desc("Number of cycles spent in queue for all incoming reqs")
1001            ;
1002
1003        localLatency
1004            .name(name() + ".local_latency")
1005            .desc("Avg. latency over incoming coalesced reqs")
1006            ;
1007
1008        localLatency = localCycles / localNumTLBAccesses;
1009
1010        globalNumTLBAccesses
1011            .name(name() + ".global_TLB_accesses")
1012            .desc("Number of TLB accesses")
1013            ;
1014
1015        globalNumTLBHits
1016            .name(name() + ".global_TLB_hits")
1017            .desc("Number of TLB hits")
1018            ;
1019
1020        globalNumTLBMisses
1021            .name(name() + ".global_TLB_misses")
1022            .desc("Number of TLB misses")
1023            ;
1024
1025        globalTLBMissRate
1026            .name(name() + ".global_TLB_miss_rate")
1027            .desc("TLB miss rate")
1028            ;
1029
1030        globalTLBMissRate = 100 * globalNumTLBMisses / globalNumTLBAccesses;
1031
1032        avgReuseDistance
1033            .name(name() + ".avg_reuse_distance")
1034            .desc("avg. reuse distance over all pages (in ticks)")
1035            ;
1036
1037    }
1038
1039    /**
1040     * Do the TLB lookup for this coalesced request and schedule
1041     * another event <TLB access latency> cycles later.
1042     */
1043
1044    void
1045    GpuTLB::issueTLBLookup(PacketPtr pkt)
1046    {
1047        assert(pkt);
1048        assert(pkt->senderState);
1049
1050        Addr virt_page_addr = roundDown(pkt->req->getVaddr(),
1051                                        TheISA::PageBytes);
1052
1053        TranslationState *sender_state =
1054                safe_cast<TranslationState*>(pkt->senderState);
1055
1056        bool update_stats = !sender_state->prefetch;
1057        ThreadContext * tmp_tc = sender_state->tc;
1058
1059        DPRINTF(GPUTLB, "Translation req. for virt. page addr %#x\n",
1060                virt_page_addr);
1061
1062        int req_cnt = sender_state->reqCnt.back();
1063
1064        if (update_stats) {
1065            accessCycles -= (curTick() * req_cnt);
1066            localCycles -= curTick();
1067            updatePageFootprint(virt_page_addr);
1068            globalNumTLBAccesses += req_cnt;
1069        }
1070
1071        tlbOutcome lookup_outcome = TLB_MISS;
1072        RequestPtr tmp_req = pkt->req;
1073
1074        // Access the TLB and figure out if it's a hit or a miss.
1075        bool success = tlbLookup(tmp_req, tmp_tc, update_stats);
1076
1077        if (success) {
1078            lookup_outcome = TLB_HIT;
1079            // Put the entry in SenderState
1080            TlbEntry *entry = lookup(tmp_req->getVaddr(), false);
1081            assert(entry);
1082
1083            auto p = sender_state->tc->getProcessPtr();
1084            sender_state->tlbEntry =
1085                new TlbEntry(p->pid(), entry->vaddr, entry->paddr,
1086                             false, false);
1087
1088            if (update_stats) {
1089                // the reqCnt has an entry per level, so its size tells us
1090                // which level we are in
1091                sender_state->hitLevel = sender_state->reqCnt.size();
1092                globalNumTLBHits += req_cnt;
1093            }
1094        } else {
1095            if (update_stats)
1096                globalNumTLBMisses += req_cnt;
1097        }
1098
1099        /*
1100         * We now know the TLB lookup outcome (if it's a hit or a miss), as well
1101         * as the TLB access latency.
1102         *
1103         * We create and schedule a new TLBEvent which will help us take the
1104         * appropriate actions (e.g., update TLB on a hit, send request to lower
1105         * level TLB on a miss, or start a page walk if this was the last-level
1106         * TLB)
1107         */
1108        TLBEvent *tlb_event =
1109            new TLBEvent(this, virt_page_addr, lookup_outcome, pkt);
1110
1111        if (translationReturnEvent.count(virt_page_addr)) {
1112            panic("Virtual Page Address %#x already has a return event\n",
1113                  virt_page_addr);
1114        }
1115
1116        translationReturnEvent[virt_page_addr] = tlb_event;
1117        assert(tlb_event);
1118
1119        DPRINTF(GPUTLB, "schedule translationReturnEvent @ curTick %d\n",
1120                curTick() + this->ticks(hitLatency));
1121
1122        schedule(tlb_event, curTick() + this->ticks(hitLatency));
1123    }
1124
1125    GpuTLB::TLBEvent::TLBEvent(GpuTLB* _tlb, Addr _addr, tlbOutcome tlb_outcome,
1126                               PacketPtr _pkt)
1127        : Event(CPU_Tick_Pri), tlb(_tlb), virtPageAddr(_addr),
1128        outcome(tlb_outcome), pkt(_pkt)
1129    {
1130    }
1131
1132    /**
1133     * Do Paging protection checks. If we encounter a page fault, then
1134     * an assertion is fired.
1135     */
1136    void
1137    GpuTLB::pagingProtectionChecks(ThreadContext *tc, PacketPtr pkt,
1138            TlbEntry * tlb_entry, Mode mode)
1139    {
1140        HandyM5Reg m5Reg = tc->readMiscRegNoEffect(MISCREG_M5_REG);
1141        uint32_t flags = pkt->req->getFlags();
1142        bool storeCheck = flags & (StoreCheck << FlagShift);
1143
1144        // Do paging protection checks.
1145        bool inUser = (m5Reg.cpl == 3 && !(flags & (CPL0FlagBit << FlagShift)));
1146        CR0 cr0 = tc->readMiscRegNoEffect(MISCREG_CR0);
1147
1148        bool badWrite = (!tlb_entry->writable && (inUser || cr0.wp));
1149
1150        if ((inUser && !tlb_entry->user) ||
1151            (mode == BaseTLB::Write && badWrite)) {
1152           // The page must have been present to get into the TLB in
1153           // the first place. We'll assume the reserved bits are
1154           // fine even though we're not checking them.
1155           assert(false);
1156        }
1157
1158        if (storeCheck && badWrite) {
1159           // This would fault if this were a write, so return a page
1160           // fault that reflects that happening.
1161           assert(false);
1162        }
1163    }
1164
1165    /**
1166     * handleTranslationReturn is called on a TLB hit,
1167     * when a TLB miss returns or when a page fault returns.
1168     * The latter calls handelHit with TLB miss as tlbOutcome.
1169     */
1170    void
1171    GpuTLB::handleTranslationReturn(Addr virt_page_addr, tlbOutcome tlb_outcome,
1172            PacketPtr pkt)
1173    {
1174
1175        assert(pkt);
1176        Addr vaddr = pkt->req->getVaddr();
1177
1178        TranslationState *sender_state =
1179            safe_cast<TranslationState*>(pkt->senderState);
1180
1181        ThreadContext *tc = sender_state->tc;
1182        Mode mode = sender_state->tlbMode;
1183
1184        TlbEntry *local_entry, *new_entry;
1185
1186        if (tlb_outcome == TLB_HIT) {
1187            DPRINTF(GPUTLB, "Translation Done - TLB Hit for addr %#x\n", vaddr);
1188            local_entry = sender_state->tlbEntry;
1189        } else {
1190            DPRINTF(GPUTLB, "Translation Done - TLB Miss for addr %#x\n",
1191                    vaddr);
1192
1193            // We are returning either from a page walk or from a hit at a lower
1194            // TLB level. The senderState should be "carrying" a pointer to the
1195            // correct TLBEntry.
1196            new_entry = sender_state->tlbEntry;
1197            assert(new_entry);
1198            local_entry = new_entry;
1199
1200            if (allocationPolicy) {
1201                DPRINTF(GPUTLB, "allocating entry w/ addr %#x\n",
1202                        virt_page_addr);
1203
1204                local_entry = insert(virt_page_addr, *new_entry);
1205            }
1206
1207            assert(local_entry);
1208        }
1209
1210        /**
1211         * At this point the packet carries an up-to-date tlbEntry pointer
1212         * in its senderState.
1213         * Next step is to do the paging protection checks.
1214         */
1215        DPRINTF(GPUTLB, "Entry found with vaddr %#x,  doing protection checks "
1216                "while paddr was %#x.\n", local_entry->vaddr,
1217                local_entry->paddr);
1218
1219        pagingProtectionChecks(tc, pkt, local_entry, mode);
1220        int page_size = local_entry->size();
1221        Addr paddr = local_entry->paddr | (vaddr & (page_size - 1));
1222        DPRINTF(GPUTLB, "Translated %#x -> %#x.\n", vaddr, paddr);
1223
1224        // Since this packet will be sent through the cpu side slave port,
1225        // it must be converted to a response pkt if it is not one already
1226        if (pkt->isRequest()) {
1227            pkt->makeTimingResponse();
1228        }
1229
1230        pkt->req->setPaddr(paddr);
1231
1232        if (local_entry->uncacheable) {
1233             pkt->req->setFlags(Request::UNCACHEABLE);
1234        }
1235
1236        //send packet back to coalescer
1237        cpuSidePort[0]->sendTimingResp(pkt);
1238        //schedule cleanup event
1239        cleanupQueue.push(virt_page_addr);
1240
1241        // schedule this only once per cycle.
1242        // The check is required because we might have multiple translations
1243        // returning the same cycle
1244        // this is a maximum priority event and must be on the same cycle
1245        // as the cleanup event in TLBCoalescer to avoid a race with
1246        // IssueProbeEvent caused by TLBCoalescer::MemSidePort::recvReqRetry
1247        if (!cleanupEvent.scheduled())
1248            schedule(cleanupEvent, curTick());
1249    }
1250
1251    /**
1252     * Here we take the appropriate actions based on the result of the
1253     * TLB lookup.
1254     */
1255    void
1256    GpuTLB::translationReturn(Addr virtPageAddr, tlbOutcome outcome,
1257                              PacketPtr pkt)
1258    {
1259        DPRINTF(GPUTLB, "Triggered TLBEvent for addr %#x\n", virtPageAddr);
1260
1261        assert(translationReturnEvent[virtPageAddr]);
1262        assert(pkt);
1263
1264        TranslationState *tmp_sender_state =
1265            safe_cast<TranslationState*>(pkt->senderState);
1266
1267        int req_cnt = tmp_sender_state->reqCnt.back();
1268        bool update_stats = !tmp_sender_state->prefetch;
1269
1270
1271        if (outcome == TLB_HIT) {
1272            handleTranslationReturn(virtPageAddr, TLB_HIT, pkt);
1273
1274            if (update_stats) {
1275                accessCycles += (req_cnt * curTick());
1276                localCycles += curTick();
1277            }
1278
1279        } else if (outcome == TLB_MISS) {
1280
1281            DPRINTF(GPUTLB, "This is a TLB miss\n");
1282            if (update_stats) {
1283                accessCycles += (req_cnt*curTick());
1284                localCycles += curTick();
1285            }
1286
1287            if (hasMemSidePort) {
1288                // the one cyle added here represent the delay from when we get
1289                // the reply back till when we propagate it to the coalescer
1290                // above.
1291                if (update_stats) {
1292                    accessCycles += (req_cnt * 1);
1293                    localCycles += 1;
1294                }
1295
1296                /**
1297                 * There is a TLB below. Send the coalesced request.
1298                 * We actually send the very first packet of all the
1299                 * pending packets for this virtual page address.
1300                 */
1301                if (!memSidePort[0]->sendTimingReq(pkt)) {
1302                    DPRINTF(GPUTLB, "Failed sending translation request to "
1303                            "lower level TLB for addr %#x\n", virtPageAddr);
1304
1305                    memSidePort[0]->retries.push_back(pkt);
1306                } else {
1307                    DPRINTF(GPUTLB, "Sent translation request to lower level "
1308                            "TLB for addr %#x\n", virtPageAddr);
1309                }
1310            } else {
1311                //this is the last level TLB. Start a page walk
1312                DPRINTF(GPUTLB, "Last level TLB - start a page walk for "
1313                        "addr %#x\n", virtPageAddr);
1314
1315                if (update_stats)
1316                    pageTableCycles -= (req_cnt*curTick());
1317
1318                TLBEvent *tlb_event = translationReturnEvent[virtPageAddr];
1319                assert(tlb_event);
1320                tlb_event->updateOutcome(PAGE_WALK);
1321                schedule(tlb_event, curTick() + ticks(missLatency2));
1322            }
1323        } else if (outcome == PAGE_WALK) {
1324            if (update_stats)
1325                pageTableCycles += (req_cnt*curTick());
1326
1327            // Need to access the page table and update the TLB
1328            DPRINTF(GPUTLB, "Doing a page walk for address %#x\n",
1329                    virtPageAddr);
1330
1331            TranslationState *sender_state =
1332                safe_cast<TranslationState*>(pkt->senderState);
1333
1334            Process *p = sender_state->tc->getProcessPtr();
1335            Addr vaddr = pkt->req->getVaddr();
1336    #ifndef NDEBUG
1337            Addr alignedVaddr = p->pTable->pageAlign(vaddr);
1338            assert(alignedVaddr == virtPageAddr);
1339    #endif
1340            const EmulationPageTable::Entry *pte = p->pTable->lookup(vaddr);
1341            if (!pte && sender_state->tlbMode != BaseTLB::Execute &&
1342                    p->fixupStackFault(vaddr)) {
1343                pte = p->pTable->lookup(vaddr);
1344            }
1345
1346            if (pte) {
1347                DPRINTF(GPUTLB, "Mapping %#x to %#x\n", alignedVaddr,
1348                        pte->paddr);
1349
1350                sender_state->tlbEntry =
1351                    new TlbEntry(p->pid(), virtPageAddr, pte->paddr, false,
1352                                 false);
1353            } else {
1354                sender_state->tlbEntry = nullptr;
1355            }
1356
1357            handleTranslationReturn(virtPageAddr, TLB_MISS, pkt);
1358        } else if (outcome == MISS_RETURN) {
1359            /** we add an extra cycle in the return path of the translation
1360             * requests in between the various TLB levels.
1361             */
1362            handleTranslationReturn(virtPageAddr, TLB_MISS, pkt);
1363        } else {
1364            assert(false);
1365        }
1366    }
1367
1368    void
1369    GpuTLB::TLBEvent::process()
1370    {
1371        tlb->translationReturn(virtPageAddr, outcome, pkt);
1372    }
1373
1374    const char*
1375    GpuTLB::TLBEvent::description() const
1376    {
1377        return "trigger translationDoneEvent";
1378    }
1379
1380    void
1381    GpuTLB::TLBEvent::updateOutcome(tlbOutcome _outcome)
1382    {
1383        outcome = _outcome;
1384    }
1385
1386    Addr
1387    GpuTLB::TLBEvent::getTLBEventVaddr()
1388    {
1389        return virtPageAddr;
1390    }
1391
1392    /*
1393     * recvTiming receives a coalesced timing request from a TLBCoalescer
1394     * and it calls issueTLBLookup()
1395     * It only rejects the packet if we have exceeded the max
1396     * outstanding number of requests for the TLB
1397     */
1398    bool
1399    GpuTLB::CpuSidePort::recvTimingReq(PacketPtr pkt)
1400    {
1401        if (tlb->outstandingReqs < tlb->maxCoalescedReqs) {
1402            tlb->issueTLBLookup(pkt);
1403            // update number of outstanding translation requests
1404            tlb->outstandingReqs++;
1405            return true;
1406         } else {
1407            DPRINTF(GPUTLB, "Reached maxCoalescedReqs number %d\n",
1408                    tlb->outstandingReqs);
1409            return false;
1410         }
1411    }
1412
1413    /**
1414     * handleFuncTranslationReturn is called on a TLB hit,
1415     * when a TLB miss returns or when a page fault returns.
1416     * It updates LRU, inserts the TLB entry on a miss
1417     * depending on the allocation policy and does the required
1418     * protection checks. It does NOT create a new packet to
1419     * update the packet's addr; this is done in hsail-gpu code.
1420     */
1421    void
1422    GpuTLB::handleFuncTranslationReturn(PacketPtr pkt, tlbOutcome tlb_outcome)
1423    {
1424        TranslationState *sender_state =
1425            safe_cast<TranslationState*>(pkt->senderState);
1426
1427        ThreadContext *tc = sender_state->tc;
1428        Mode mode = sender_state->tlbMode;
1429        Addr vaddr = pkt->req->getVaddr();
1430
1431        TlbEntry *local_entry, *new_entry;
1432
1433        if (tlb_outcome == TLB_HIT) {
1434            DPRINTF(GPUTLB, "Functional Translation Done - TLB hit for addr "
1435                    "%#x\n", vaddr);
1436
1437            local_entry = sender_state->tlbEntry;
1438        } else {
1439            DPRINTF(GPUTLB, "Functional Translation Done - TLB miss for addr "
1440                    "%#x\n", vaddr);
1441
1442            // We are returning either from a page walk or from a hit at a lower
1443            // TLB level. The senderState should be "carrying" a pointer to the
1444            // correct TLBEntry.
1445            new_entry = sender_state->tlbEntry;
1446            assert(new_entry);
1447            local_entry = new_entry;
1448
1449            if (allocationPolicy) {
1450                Addr virt_page_addr = roundDown(vaddr, TheISA::PageBytes);
1451
1452                DPRINTF(GPUTLB, "allocating entry w/ addr %#x\n",
1453                        virt_page_addr);
1454
1455                local_entry = insert(virt_page_addr, *new_entry);
1456            }
1457
1458            assert(local_entry);
1459        }
1460
1461        DPRINTF(GPUTLB, "Entry found with vaddr %#x, doing protection checks "
1462                "while paddr was %#x.\n", local_entry->vaddr,
1463                local_entry->paddr);
1464
1465        /**
1466         * Do paging checks if it's a normal functional access.  If it's for a
1467         * prefetch, then sometimes you can try to prefetch something that
1468         * won't pass protection. We don't actually want to fault becuase there
1469         * is no demand access to deem this a violation.  Just put it in the
1470         * TLB and it will fault if indeed a future demand access touches it in
1471         * violation.
1472         *
1473         * This feature could be used to explore security issues around
1474         * speculative memory accesses.
1475         */
1476        if (!sender_state->prefetch && sender_state->tlbEntry)
1477            pagingProtectionChecks(tc, pkt, local_entry, mode);
1478
1479        int page_size = local_entry->size();
1480        Addr paddr = local_entry->paddr | (vaddr & (page_size - 1));
1481        DPRINTF(GPUTLB, "Translated %#x -> %#x.\n", vaddr, paddr);
1482
1483        pkt->req->setPaddr(paddr);
1484
1485        if (local_entry->uncacheable)
1486             pkt->req->setFlags(Request::UNCACHEABLE);
1487    }
1488
1489    // This is used for atomic translations. Need to
1490    // make it all happen during the same cycle.
1491    void
1492    GpuTLB::CpuSidePort::recvFunctional(PacketPtr pkt)
1493    {
1494        TranslationState *sender_state =
1495            safe_cast<TranslationState*>(pkt->senderState);
1496
1497        ThreadContext *tc = sender_state->tc;
1498        bool update_stats = !sender_state->prefetch;
1499
1500        Addr virt_page_addr = roundDown(pkt->req->getVaddr(),
1501                                        TheISA::PageBytes);
1502
1503        if (update_stats)
1504            tlb->updatePageFootprint(virt_page_addr);
1505
1506        // do the TLB lookup without updating the stats
1507        bool success = tlb->tlbLookup(pkt->req, tc, update_stats);
1508        tlbOutcome tlb_outcome = success ? TLB_HIT : TLB_MISS;
1509
1510        // functional mode means no coalescing
1511        // global metrics are the same as the local metrics
1512        if (update_stats) {
1513            tlb->globalNumTLBAccesses++;
1514
1515            if (success) {
1516                sender_state->hitLevel = sender_state->reqCnt.size();
1517                tlb->globalNumTLBHits++;
1518            }
1519        }
1520
1521        if (!success) {
1522            if (update_stats)
1523                tlb->globalNumTLBMisses++;
1524            if (tlb->hasMemSidePort) {
1525                // there is a TLB below -> propagate down the TLB hierarchy
1526                tlb->memSidePort[0]->sendFunctional(pkt);
1527                // If no valid translation from a prefetch, then just return
1528                if (sender_state->prefetch && !pkt->req->hasPaddr())
1529                    return;
1530            } else {
1531                // Need to access the page table and update the TLB
1532                DPRINTF(GPUTLB, "Doing a page walk for address %#x\n",
1533                        virt_page_addr);
1534
1535                Process *p = tc->getProcessPtr();
1536
1537                Addr vaddr = pkt->req->getVaddr();
1538    #ifndef NDEBUG
1539                Addr alignedVaddr = p->pTable->pageAlign(vaddr);
1540                assert(alignedVaddr == virt_page_addr);
1541    #endif
1542
1543                const EmulationPageTable::Entry *pte =
1544                        p->pTable->lookup(vaddr);
1545                if (!pte && sender_state->tlbMode != BaseTLB::Execute &&
1546                        p->fixupStackFault(vaddr)) {
1547                    pte = p->pTable->lookup(vaddr);
1548                }
1549
1550                if (!sender_state->prefetch) {
1551                    // no PageFaults are permitted after
1552                    // the second page table lookup
1553                    assert(pte);
1554
1555                    DPRINTF(GPUTLB, "Mapping %#x to %#x\n", alignedVaddr,
1556                            pte->paddr);
1557
1558                    sender_state->tlbEntry =
1559                        new TlbEntry(p->pid(), virt_page_addr,
1560                                     pte->paddr, false, false);
1561                } else {
1562                    // If this was a prefetch, then do the normal thing if it
1563                    // was a successful translation.  Otherwise, send an empty
1564                    // TLB entry back so that it can be figured out as empty and
1565                    // handled accordingly.
1566                    if (pte) {
1567                        DPRINTF(GPUTLB, "Mapping %#x to %#x\n", alignedVaddr,
1568                                pte->paddr);
1569
1570                        sender_state->tlbEntry =
1571                            new TlbEntry(p->pid(), virt_page_addr,
1572                                         pte->paddr, false, false);
1573                    } else {
1574                        DPRINTF(GPUPrefetch, "Prefetch failed %#x\n",
1575                                alignedVaddr);
1576
1577                        sender_state->tlbEntry = nullptr;
1578
1579                        return;
1580                    }
1581                }
1582            }
1583        } else {
1584            DPRINTF(GPUPrefetch, "Functional Hit for vaddr %#x\n",
1585                    tlb->lookup(pkt->req->getVaddr()));
1586
1587            TlbEntry *entry = tlb->lookup(pkt->req->getVaddr(),
1588                                             update_stats);
1589
1590            assert(entry);
1591
1592            auto p = sender_state->tc->getProcessPtr();
1593            sender_state->tlbEntry =
1594                new TlbEntry(p->pid(), entry->vaddr, entry->paddr,
1595                             false, false);
1596        }
1597        // This is the function that would populate pkt->req with the paddr of
1598        // the translation. But if no translation happens (i.e Prefetch fails)
1599        // then the early returns in the above code wiill keep this function
1600        // from executing.
1601        tlb->handleFuncTranslationReturn(pkt, tlb_outcome);
1602    }
1603
1604    void
1605    GpuTLB::CpuSidePort::recvReqRetry()
1606    {
1607        // The CPUSidePort never sends anything but replies. No retries
1608        // expected.
1609        assert(false);
1610    }
1611
1612    AddrRangeList
1613    GpuTLB::CpuSidePort::getAddrRanges() const
1614    {
1615        // currently not checked by the master
1616        AddrRangeList ranges;
1617
1618        return ranges;
1619    }
1620
1621    /**
1622     * MemSidePort receives the packet back.
1623     * We need to call the handleTranslationReturn
1624     * and propagate up the hierarchy.
1625     */
1626    bool
1627    GpuTLB::MemSidePort::recvTimingResp(PacketPtr pkt)
1628    {
1629        Addr virt_page_addr = roundDown(pkt->req->getVaddr(),
1630                                        TheISA::PageBytes);
1631
1632        DPRINTF(GPUTLB, "MemSidePort recvTiming for virt_page_addr %#x\n",
1633                virt_page_addr);
1634
1635        TLBEvent *tlb_event = tlb->translationReturnEvent[virt_page_addr];
1636        assert(tlb_event);
1637        assert(virt_page_addr == tlb_event->getTLBEventVaddr());
1638
1639        tlb_event->updateOutcome(MISS_RETURN);
1640        tlb->schedule(tlb_event, curTick()+tlb->ticks(1));
1641
1642        return true;
1643    }
1644
1645    void
1646    GpuTLB::MemSidePort::recvReqRetry()
1647    {
1648        // No retries should reach the TLB. The retries
1649        // should only reach the TLBCoalescer.
1650        assert(false);
1651    }
1652
1653    void
1654    GpuTLB::cleanup()
1655    {
1656        while (!cleanupQueue.empty()) {
1657            Addr cleanup_addr = cleanupQueue.front();
1658            cleanupQueue.pop();
1659
1660            // delete TLBEvent
1661            TLBEvent * old_tlb_event = translationReturnEvent[cleanup_addr];
1662            delete old_tlb_event;
1663            translationReturnEvent.erase(cleanup_addr);
1664
1665            // update number of outstanding requests
1666            outstandingReqs--;
1667        }
1668
1669        /** the higher level coalescer should retry if it has
1670         * any pending requests.
1671         */
1672        for (int i = 0; i < cpuSidePort.size(); ++i) {
1673            cpuSidePort[i]->sendRetryReq();
1674        }
1675    }
1676
1677    void
1678    GpuTLB::updatePageFootprint(Addr virt_page_addr)
1679    {
1680
1681        std::pair<AccessPatternTable::iterator, bool> ret;
1682
1683        AccessInfo tmp_access_info;
1684        tmp_access_info.lastTimeAccessed = 0;
1685        tmp_access_info.accessesPerPage = 0;
1686        tmp_access_info.totalReuseDistance = 0;
1687        tmp_access_info.sumDistance = 0;
1688        tmp_access_info.meanDistance = 0;
1689
1690        ret = TLBFootprint.insert(AccessPatternTable::value_type(virt_page_addr,
1691                                  tmp_access_info));
1692
1693        bool first_page_access = ret.second;
1694
1695        if (first_page_access) {
1696            numUniquePages++;
1697        } else  {
1698            int accessed_before;
1699            accessed_before  = curTick() - ret.first->second.lastTimeAccessed;
1700            ret.first->second.totalReuseDistance += accessed_before;
1701        }
1702
1703        ret.first->second.accessesPerPage++;
1704        ret.first->second.lastTimeAccessed = curTick();
1705
1706        if (accessDistance) {
1707            ret.first->second.localTLBAccesses
1708                .push_back(localNumTLBAccesses.value());
1709        }
1710    }
1711
1712    void
1713    GpuTLB::exitCallback()
1714    {
1715        std::ostream *page_stat_file = nullptr;
1716
1717        if (accessDistance) {
1718
1719            // print per page statistics to a separate file (.csv format)
1720            // simout is the gem5 output directory (default is m5out or the one
1721            // specified with -d
1722            page_stat_file = simout.create(name().c_str())->stream();
1723
1724            // print header
1725            *page_stat_file << "page,max_access_distance,mean_access_distance, "
1726                            << "stddev_distance" << std::endl;
1727        }
1728
1729        // update avg. reuse distance footprint
1730        AccessPatternTable::iterator iter, iter_begin, iter_end;
1731        unsigned int sum_avg_reuse_distance_per_page = 0;
1732
1733        // iterate through all pages seen by this TLB
1734        for (iter = TLBFootprint.begin(); iter != TLBFootprint.end(); iter++) {
1735            sum_avg_reuse_distance_per_page += iter->second.totalReuseDistance /
1736                                               iter->second.accessesPerPage;
1737
1738            if (accessDistance) {
1739                unsigned int tmp = iter->second.localTLBAccesses[0];
1740                unsigned int prev = tmp;
1741
1742                for (int i = 0; i < iter->second.localTLBAccesses.size(); ++i) {
1743                    if (i) {
1744                        tmp = prev + 1;
1745                    }
1746
1747                    prev = iter->second.localTLBAccesses[i];
1748                    // update the localTLBAccesses value
1749                    // with the actual differece
1750                    iter->second.localTLBAccesses[i] -= tmp;
1751                    // compute the sum of AccessDistance per page
1752                    // used later for mean
1753                    iter->second.sumDistance +=
1754                        iter->second.localTLBAccesses[i];
1755                }
1756
1757                iter->second.meanDistance =
1758                    iter->second.sumDistance / iter->second.accessesPerPage;
1759
1760                // compute std_dev and max  (we need a second round because we
1761                // need to know the mean value
1762                unsigned int max_distance = 0;
1763                unsigned int stddev_distance = 0;
1764
1765                for (int i = 0; i < iter->second.localTLBAccesses.size(); ++i) {
1766                    unsigned int tmp_access_distance =
1767                        iter->second.localTLBAccesses[i];
1768
1769                    if (tmp_access_distance > max_distance) {
1770                        max_distance = tmp_access_distance;
1771                    }
1772
1773                    unsigned int diff =
1774                        tmp_access_distance - iter->second.meanDistance;
1775                    stddev_distance += pow(diff, 2);
1776
1777                }
1778
1779                stddev_distance =
1780                    sqrt(stddev_distance/iter->second.accessesPerPage);
1781
1782                if (page_stat_file) {
1783                    *page_stat_file << std::hex << iter->first << ",";
1784                    *page_stat_file << std::dec << max_distance << ",";
1785                    *page_stat_file << std::dec << iter->second.meanDistance
1786                                    << ",";
1787                    *page_stat_file << std::dec << stddev_distance;
1788                    *page_stat_file << std::endl;
1789                }
1790
1791                // erase the localTLBAccesses array
1792                iter->second.localTLBAccesses.clear();
1793            }
1794        }
1795
1796        if (!TLBFootprint.empty()) {
1797            avgReuseDistance =
1798                sum_avg_reuse_distance_per_page / TLBFootprint.size();
1799        }
1800
1801        //clear the TLBFootprint map
1802        TLBFootprint.clear();
1803    }
1804} // namespace X86ISA
1805
1806X86ISA::GpuTLB*
1807X86GPUTLBParams::create()
1808{
1809    return new X86ISA::GpuTLB(this);
1810}
1811
1812