global_memory_pipeline.cc revision 11534:7106f550afad
16157Snate@binkert.org/*
26157Snate@binkert.org * Copyright (c) 2014-2015 Advanced Micro Devices, Inc.
36157Snate@binkert.org * All rights reserved.
46157Snate@binkert.org *
56157Snate@binkert.org * For use for simulation and test purposes only
66157Snate@binkert.org *
76157Snate@binkert.org * Redistribution and use in source and binary forms, with or without
86157Snate@binkert.org * modification, are permitted provided that the following conditions are met:
96157Snate@binkert.org *
106157Snate@binkert.org * 1. Redistributions of source code must retain the above copyright notice,
116157Snate@binkert.org * this list of conditions and the following disclaimer.
126157Snate@binkert.org *
136157Snate@binkert.org * 2. Redistributions in binary form must reproduce the above copyright notice,
146157Snate@binkert.org * this list of conditions and the following disclaimer in the documentation
156157Snate@binkert.org * and/or other materials provided with the distribution.
166157Snate@binkert.org *
176157Snate@binkert.org * 3. Neither the name of the copyright holder nor the names of its contributors
186157Snate@binkert.org * may be used to endorse or promote products derived from this software
196157Snate@binkert.org * without specific prior written permission.
206157Snate@binkert.org *
216157Snate@binkert.org * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
226157Snate@binkert.org * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
236157Snate@binkert.org * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
246157Snate@binkert.org * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
256157Snate@binkert.org * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
266157Snate@binkert.org * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
276157Snate@binkert.org * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
286157Snate@binkert.org * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
296157Snate@binkert.org * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
306157Snate@binkert.org * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
316157Snate@binkert.org * POSSIBILITY OF SUCH DAMAGE.
326157Snate@binkert.org *
336168Snate@binkert.org * Author: John Kalamatianos, Sooraj Puthoor
346168Snate@binkert.org */
356168Snate@binkert.org
366876Ssteve.reinhardt@amd.com#include "gpu-compute/global_memory_pipeline.hh"
376876Ssteve.reinhardt@amd.com
388436SBrad.Beckmann@amd.com#include "debug/GPUMem.hh"
396882SBrad.Beckmann@amd.com#include "debug/GPUReg.hh"
406157Snate@binkert.org#include "gpu-compute/compute_unit.hh"
418092Snilay@cs.wisc.edu#include "gpu-compute/gpu_dyn_inst.hh"
426157Snate@binkert.org#include "gpu-compute/shader.hh"
436785SBrad.Beckmann@amd.com#include "gpu-compute/vector_register_file.hh"
44#include "gpu-compute/wavefront.hh"
45
46GlobalMemPipeline::GlobalMemPipeline(const ComputeUnitParams* p) :
47    computeUnit(nullptr), gmQueueSize(p->global_mem_queue_size),
48    inflightStores(0), inflightLoads(0)
49{
50}
51
52void
53GlobalMemPipeline::init(ComputeUnit *cu)
54{
55    computeUnit = cu;
56    globalMemSize = computeUnit->shader->globalMemSize;
57    _name = computeUnit->name() + ".GlobalMemPipeline";
58}
59
60void
61GlobalMemPipeline::exec()
62{
63    // apply any returned global memory operations
64    GPUDynInstPtr m = !gmReturnedLoads.empty() ? gmReturnedLoads.front() :
65        !gmReturnedStores.empty() ? gmReturnedStores.front() : nullptr;
66
67    bool accessVrf = true;
68    // check the VRF to see if the operands of a load (or load component
69    // of an atomic) are accessible
70    if ((m) && (m->m_op==Enums::MO_LD || MO_A(m->m_op))) {
71        Wavefront *w = computeUnit->wfList[m->simdId][m->wfSlotId];
72
73        accessVrf =
74            w->computeUnit->vrf[m->simdId]->
75            vrfOperandAccessReady(m->seqNum(), w, m,
76                                  VrfAccessType::WRITE);
77    }
78
79    if ((!gmReturnedStores.empty() || !gmReturnedLoads.empty()) &&
80        m->latency.rdy() && computeUnit->glbMemToVrfBus.rdy() &&
81        accessVrf && m->statusBitVector == VectorMask(0) &&
82        (computeUnit->shader->coissue_return ||
83         computeUnit->wfWait.at(m->pipeId).rdy())) {
84
85        if (m->v_type == VT_32 && m->m_type == Enums::M_U8)
86            doGmReturn<uint32_t, uint8_t>(m);
87        else if (m->v_type == VT_32 && m->m_type == Enums::M_U16)
88            doGmReturn<uint32_t, uint16_t>(m);
89        else if (m->v_type == VT_32 && m->m_type == Enums::M_U32)
90            doGmReturn<uint32_t, uint32_t>(m);
91        else if (m->v_type == VT_32 && m->m_type == Enums::M_S8)
92            doGmReturn<int32_t, int8_t>(m);
93        else if (m->v_type == VT_32 && m->m_type == Enums::M_S16)
94            doGmReturn<int32_t, int16_t>(m);
95        else if (m->v_type == VT_32 && m->m_type == Enums::M_S32)
96            doGmReturn<int32_t, int32_t>(m);
97        else if (m->v_type == VT_32 && m->m_type == Enums::M_F16)
98            doGmReturn<float, Float16>(m);
99        else if (m->v_type == VT_32 && m->m_type == Enums::M_F32)
100            doGmReturn<float, float>(m);
101        else if (m->v_type == VT_64 && m->m_type == Enums::M_U8)
102            doGmReturn<uint64_t, uint8_t>(m);
103        else if (m->v_type == VT_64 && m->m_type == Enums::M_U16)
104            doGmReturn<uint64_t, uint16_t>(m);
105        else if (m->v_type == VT_64 && m->m_type == Enums::M_U32)
106            doGmReturn<uint64_t, uint32_t>(m);
107        else if (m->v_type == VT_64 && m->m_type == Enums::M_U64)
108            doGmReturn<uint64_t, uint64_t>(m);
109        else if (m->v_type == VT_64 && m->m_type == Enums::M_S8)
110            doGmReturn<int64_t, int8_t>(m);
111        else if (m->v_type == VT_64 && m->m_type == Enums::M_S16)
112            doGmReturn<int64_t, int16_t>(m);
113        else if (m->v_type == VT_64 && m->m_type == Enums::M_S32)
114            doGmReturn<int64_t, int32_t>(m);
115        else if (m->v_type == VT_64 && m->m_type == Enums::M_S64)
116            doGmReturn<int64_t, int64_t>(m);
117        else if (m->v_type == VT_64 && m->m_type == Enums::M_F16)
118            doGmReturn<double, Float16>(m);
119        else if (m->v_type == VT_64 && m->m_type == Enums::M_F32)
120            doGmReturn<double, float>(m);
121        else if (m->v_type == VT_64 && m->m_type == Enums::M_F64)
122            doGmReturn<double, double>(m);
123    }
124
125    // If pipeline has executed a global memory instruction
126    // execute global memory packets and issue global
127    // memory packets to DTLB
128    if (!gmIssuedRequests.empty()) {
129        GPUDynInstPtr mp = gmIssuedRequests.front();
130        if (mp->m_op == Enums::MO_LD ||
131            (mp->m_op >= Enums::MO_AAND && mp->m_op <= Enums::MO_AMIN) ||
132            (mp->m_op >= Enums::MO_ANRAND && mp->m_op <= Enums::MO_ANRMIN)) {
133
134            if (inflightLoads >= gmQueueSize) {
135                return;
136            } else {
137                ++inflightLoads;
138            }
139        } else {
140            if (inflightStores >= gmQueueSize) {
141                return;
142            } else if (mp->m_op == Enums::MO_ST) {
143                ++inflightStores;
144            }
145        }
146
147        mp->initiateAcc(mp);
148        gmIssuedRequests.pop();
149
150        DPRINTF(GPUMem, "CU%d: WF[%d][%d] Popping 0 mem_op = %s\n",
151                computeUnit->cu_id, mp->simdId, mp->wfSlotId,
152                Enums::MemOpTypeStrings[mp->m_op]);
153    }
154}
155
156template<typename c0, typename c1>
157void
158GlobalMemPipeline::doGmReturn(GPUDynInstPtr m)
159{
160    Wavefront *w = computeUnit->wfList[m->simdId][m->wfSlotId];
161
162    // Return data to registers
163    if (m->m_op == Enums::MO_LD || MO_A(m->m_op) || MO_ANR(m->m_op)) {
164        gmReturnedLoads.pop();
165        assert(inflightLoads > 0);
166        --inflightLoads;
167
168        if (m->m_op == Enums::MO_LD || MO_A(m->m_op)) {
169            std::vector<uint32_t> regVec;
170            // iterate over number of destination register operands since
171            // this is a load or atomic operation
172            for (int k = 0; k < m->n_reg; ++k) {
173                assert((sizeof(c1) * m->n_reg) <= MAX_WIDTH_FOR_MEM_INST);
174                int dst = m->dst_reg + k;
175
176                if (m->n_reg > MAX_REGS_FOR_NON_VEC_MEM_INST)
177                    dst = m->dst_reg_vec[k];
178                // virtual->physical VGPR mapping
179                int physVgpr = w->remap(dst, sizeof(c0), 1);
180                // save the physical VGPR index
181                regVec.push_back(physVgpr);
182                c1 *p1 = &((c1 *)m->d_data)[k * w->computeUnit->wfSize()];
183
184                for (int i = 0; i < w->computeUnit->wfSize(); ++i) {
185                    if (m->exec_mask[i]) {
186                        DPRINTF(GPUReg, "CU%d, WF[%d][%d], lane %d: "
187                                "$%s%d <- %d global ld done (src = wavefront "
188                                "ld inst)\n", w->computeUnit->cu_id, w->simdId,
189                                w->wfSlotId, i, sizeof(c0) == 4 ? "s" : "d",
190                                dst, *p1);
191                        // write the value into the physical VGPR. This is a
192                        // purely functional operation. No timing is modeled.
193                        w->computeUnit->vrf[w->simdId]->write<c0>(physVgpr,
194                                                                    *p1, i);
195                    }
196                    ++p1;
197                }
198            }
199
200            // Schedule the write operation of the load data on the VRF.
201            // This simply models the timing aspect of the VRF write operation.
202            // It does not modify the physical VGPR.
203            loadVrfBankConflictCycles +=
204                w->computeUnit->vrf[w->simdId]->exec(m->seqNum(),
205                                                     w, regVec, sizeof(c0),
206                                                     m->time);
207        }
208    } else {
209        gmReturnedStores.pop();
210        assert(inflightStores > 0);
211        --inflightStores;
212    }
213
214    // Decrement outstanding register count
215    computeUnit->shader->ScheduleAdd(&w->outstanding_reqs, m->time, -1);
216
217    if (m->m_op == Enums::MO_ST || MO_A(m->m_op) || MO_ANR(m->m_op) ||
218        MO_H(m->m_op)) {
219        computeUnit->shader->ScheduleAdd(&w->outstanding_reqs_wr_gm, m->time,
220                                         -1);
221    }
222
223    if (m->m_op == Enums::MO_LD || MO_A(m->m_op) || MO_ANR(m->m_op)) {
224        computeUnit->shader->ScheduleAdd(&w->outstanding_reqs_rd_gm, m->time,
225                                         -1);
226    }
227
228    // Mark write bus busy for appropriate amount of time
229    computeUnit->glbMemToVrfBus.set(m->time);
230    if (!computeUnit->shader->coissue_return)
231        w->computeUnit->wfWait.at(m->pipeId).set(m->time);
232}
233
234void
235GlobalMemPipeline::regStats()
236{
237    loadVrfBankConflictCycles
238        .name(name() + ".load_vrf_bank_conflict_cycles")
239        .desc("total number of cycles GM data are delayed before updating "
240              "the VRF")
241        ;
242}
243