i8254xGBe.cc revision 11810:de0de48a2d1c
1/*
2 * Copyright (c) 2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Ali Saidi
29 */
30
31/* @file
32 * Device model for Intel's 8254x line of gigabit ethernet controllers.
33 * In particular an 82547 revision 2 (82547GI) MAC because it seems to have the
34 * fewest workarounds in the driver. It will probably work with most of the
35 * other MACs with slight modifications.
36 */
37
38#include "dev/net/i8254xGBe.hh"
39
40/*
41 * @todo really there are multiple dma engines.. we should implement them.
42 */
43
44#include <algorithm>
45#include <memory>
46
47#include "base/inet.hh"
48#include "base/trace.hh"
49#include "debug/Drain.hh"
50#include "debug/EthernetAll.hh"
51#include "mem/packet.hh"
52#include "mem/packet_access.hh"
53#include "params/IGbE.hh"
54#include "sim/stats.hh"
55#include "sim/system.hh"
56
57using namespace iGbReg;
58using namespace Net;
59
60IGbE::IGbE(const Params *p)
61    : EtherDevice(p), etherInt(NULL), cpa(NULL),
62      rxFifo(p->rx_fifo_size), txFifo(p->tx_fifo_size), rxTick(false),
63      txTick(false), txFifoTick(false), rxDmaPacket(false), pktOffset(0),
64      fetchDelay(p->fetch_delay), wbDelay(p->wb_delay),
65      fetchCompDelay(p->fetch_comp_delay), wbCompDelay(p->wb_comp_delay),
66      rxWriteDelay(p->rx_write_delay), txReadDelay(p->tx_read_delay),
67      rdtrEvent(this), radvEvent(this),
68      tadvEvent(this), tidvEvent(this), tickEvent(this), interEvent(this),
69      rxDescCache(this, name()+".RxDesc", p->rx_desc_cache_size),
70      txDescCache(this, name()+".TxDesc", p->tx_desc_cache_size),
71      lastInterrupt(0)
72{
73    etherInt = new IGbEInt(name() + ".int", this);
74
75    // Initialized internal registers per Intel documentation
76    // All registers intialized to 0 by per register constructor
77    regs.ctrl.fd(1);
78    regs.ctrl.lrst(1);
79    regs.ctrl.speed(2);
80    regs.ctrl.frcspd(1);
81    regs.sts.speed(3); // Say we're 1000Mbps
82    regs.sts.fd(1); // full duplex
83    regs.sts.lu(1); // link up
84    regs.eecd.fwe(1);
85    regs.eecd.ee_type(1);
86    regs.imr = 0;
87    regs.iam = 0;
88    regs.rxdctl.gran(1);
89    regs.rxdctl.wthresh(1);
90    regs.fcrth(1);
91    regs.tdwba = 0;
92    regs.rlpml = 0;
93    regs.sw_fw_sync = 0;
94
95    regs.pba.rxa(0x30);
96    regs.pba.txa(0x10);
97
98    eeOpBits            = 0;
99    eeAddrBits          = 0;
100    eeDataBits          = 0;
101    eeOpcode            = 0;
102
103    // clear all 64 16 bit words of the eeprom
104    memset(&flash, 0, EEPROM_SIZE*2);
105
106    // Set the MAC address
107    memcpy(flash, p->hardware_address.bytes(), ETH_ADDR_LEN);
108    for (int x = 0; x < ETH_ADDR_LEN/2; x++)
109        flash[x] = htobe(flash[x]);
110
111    uint16_t csum = 0;
112    for (int x = 0; x < EEPROM_SIZE; x++)
113        csum += htobe(flash[x]);
114
115
116    // Magic happy checksum value
117    flash[EEPROM_SIZE-1] = htobe((uint16_t)(EEPROM_CSUM - csum));
118
119    // Store the MAC address as queue ID
120    macAddr = p->hardware_address;
121
122    rxFifo.clear();
123    txFifo.clear();
124}
125
126IGbE::~IGbE()
127{
128    delete etherInt;
129}
130
131void
132IGbE::init()
133{
134    cpa = CPA::cpa();
135    PciDevice::init();
136}
137
138EtherInt*
139IGbE::getEthPort(const std::string &if_name, int idx)
140{
141
142    if (if_name == "interface") {
143        if (etherInt->getPeer())
144            panic("Port already connected to\n");
145        return etherInt;
146    }
147    return NULL;
148}
149
150Tick
151IGbE::writeConfig(PacketPtr pkt)
152{
153    int offset = pkt->getAddr() & PCI_CONFIG_SIZE;
154    if (offset < PCI_DEVICE_SPECIFIC)
155        PciDevice::writeConfig(pkt);
156    else
157        panic("Device specific PCI config space not implemented.\n");
158
159    //
160    // Some work may need to be done here based for the pci COMMAND bits.
161    //
162
163    return configDelay;
164}
165
166// Handy macro for range-testing register access addresses
167#define IN_RANGE(val, base, len) (val >= base && val < (base + len))
168
169Tick
170IGbE::read(PacketPtr pkt)
171{
172    int bar;
173    Addr daddr;
174
175    if (!getBAR(pkt->getAddr(), bar, daddr))
176        panic("Invalid PCI memory access to unmapped memory.\n");
177
178    // Only Memory register BAR is allowed
179    assert(bar == 0);
180
181    // Only 32bit accesses allowed
182    assert(pkt->getSize() == 4);
183
184    DPRINTF(Ethernet, "Read device register %#X\n", daddr);
185
186    //
187    // Handle read of register here
188    //
189
190
191    switch (daddr) {
192      case REG_CTRL:
193        pkt->set<uint32_t>(regs.ctrl());
194        break;
195      case REG_STATUS:
196        pkt->set<uint32_t>(regs.sts());
197        break;
198      case REG_EECD:
199        pkt->set<uint32_t>(regs.eecd());
200        break;
201      case REG_EERD:
202        pkt->set<uint32_t>(regs.eerd());
203        break;
204      case REG_CTRL_EXT:
205        pkt->set<uint32_t>(regs.ctrl_ext());
206        break;
207      case REG_MDIC:
208        pkt->set<uint32_t>(regs.mdic());
209        break;
210      case REG_ICR:
211        DPRINTF(Ethernet, "Reading ICR. ICR=%#x IMR=%#x IAM=%#x IAME=%d\n",
212                regs.icr(), regs.imr, regs.iam, regs.ctrl_ext.iame());
213        pkt->set<uint32_t>(regs.icr());
214        if (regs.icr.int_assert() || regs.imr == 0) {
215            regs.icr = regs.icr() & ~mask(30);
216            DPRINTF(Ethernet, "Cleared ICR. ICR=%#x\n", regs.icr());
217        }
218        if (regs.ctrl_ext.iame() && regs.icr.int_assert())
219            regs.imr &= ~regs.iam;
220        chkInterrupt();
221        break;
222      case REG_EICR:
223        // This is only useful for MSI, but the driver reads it every time
224        // Just don't do anything
225        pkt->set<uint32_t>(0);
226        break;
227      case REG_ITR:
228        pkt->set<uint32_t>(regs.itr());
229        break;
230      case REG_RCTL:
231        pkt->set<uint32_t>(regs.rctl());
232        break;
233      case REG_FCTTV:
234        pkt->set<uint32_t>(regs.fcttv());
235        break;
236      case REG_TCTL:
237        pkt->set<uint32_t>(regs.tctl());
238        break;
239      case REG_PBA:
240        pkt->set<uint32_t>(regs.pba());
241        break;
242      case REG_WUC:
243      case REG_WUFC:
244      case REG_WUS:
245      case REG_LEDCTL:
246        pkt->set<uint32_t>(0); // We don't care, so just return 0
247        break;
248      case REG_FCRTL:
249        pkt->set<uint32_t>(regs.fcrtl());
250        break;
251      case REG_FCRTH:
252        pkt->set<uint32_t>(regs.fcrth());
253        break;
254      case REG_RDBAL:
255        pkt->set<uint32_t>(regs.rdba.rdbal());
256        break;
257      case REG_RDBAH:
258        pkt->set<uint32_t>(regs.rdba.rdbah());
259        break;
260      case REG_RDLEN:
261        pkt->set<uint32_t>(regs.rdlen());
262        break;
263      case REG_SRRCTL:
264        pkt->set<uint32_t>(regs.srrctl());
265        break;
266      case REG_RDH:
267        pkt->set<uint32_t>(regs.rdh());
268        break;
269      case REG_RDT:
270        pkt->set<uint32_t>(regs.rdt());
271        break;
272      case REG_RDTR:
273        pkt->set<uint32_t>(regs.rdtr());
274        if (regs.rdtr.fpd()) {
275            rxDescCache.writeback(0);
276            DPRINTF(EthernetIntr,
277                    "Posting interrupt because of RDTR.FPD write\n");
278            postInterrupt(IT_RXT);
279            regs.rdtr.fpd(0);
280        }
281        break;
282      case REG_RXDCTL:
283        pkt->set<uint32_t>(regs.rxdctl());
284        break;
285      case REG_RADV:
286        pkt->set<uint32_t>(regs.radv());
287        break;
288      case REG_TDBAL:
289        pkt->set<uint32_t>(regs.tdba.tdbal());
290        break;
291      case REG_TDBAH:
292        pkt->set<uint32_t>(regs.tdba.tdbah());
293        break;
294      case REG_TDLEN:
295        pkt->set<uint32_t>(regs.tdlen());
296        break;
297      case REG_TDH:
298        pkt->set<uint32_t>(regs.tdh());
299        break;
300      case REG_TXDCA_CTL:
301        pkt->set<uint32_t>(regs.txdca_ctl());
302        break;
303      case REG_TDT:
304        pkt->set<uint32_t>(regs.tdt());
305        break;
306      case REG_TIDV:
307        pkt->set<uint32_t>(regs.tidv());
308        break;
309      case REG_TXDCTL:
310        pkt->set<uint32_t>(regs.txdctl());
311        break;
312      case REG_TADV:
313        pkt->set<uint32_t>(regs.tadv());
314        break;
315      case REG_TDWBAL:
316        pkt->set<uint32_t>(regs.tdwba & mask(32));
317        break;
318      case REG_TDWBAH:
319        pkt->set<uint32_t>(regs.tdwba >> 32);
320        break;
321      case REG_RXCSUM:
322        pkt->set<uint32_t>(regs.rxcsum());
323        break;
324      case REG_RLPML:
325        pkt->set<uint32_t>(regs.rlpml);
326        break;
327      case REG_RFCTL:
328        pkt->set<uint32_t>(regs.rfctl());
329        break;
330      case REG_MANC:
331        pkt->set<uint32_t>(regs.manc());
332        break;
333      case REG_SWSM:
334        pkt->set<uint32_t>(regs.swsm());
335        regs.swsm.smbi(1);
336        break;
337      case REG_FWSM:
338        pkt->set<uint32_t>(regs.fwsm());
339        break;
340      case REG_SWFWSYNC:
341        pkt->set<uint32_t>(regs.sw_fw_sync);
342        break;
343      default:
344        if (!IN_RANGE(daddr, REG_VFTA, VLAN_FILTER_TABLE_SIZE*4) &&
345            !IN_RANGE(daddr, REG_RAL, RCV_ADDRESS_TABLE_SIZE*8) &&
346            !IN_RANGE(daddr, REG_MTA, MULTICAST_TABLE_SIZE*4) &&
347            !IN_RANGE(daddr, REG_CRCERRS, STATS_REGS_SIZE))
348            panic("Read request to unknown register number: %#x\n", daddr);
349        else
350            pkt->set<uint32_t>(0);
351    };
352
353    pkt->makeAtomicResponse();
354    return pioDelay;
355}
356
357Tick
358IGbE::write(PacketPtr pkt)
359{
360    int bar;
361    Addr daddr;
362
363
364    if (!getBAR(pkt->getAddr(), bar, daddr))
365        panic("Invalid PCI memory access to unmapped memory.\n");
366
367    // Only Memory register BAR is allowed
368    assert(bar == 0);
369
370    // Only 32bit accesses allowed
371    assert(pkt->getSize() == sizeof(uint32_t));
372
373    DPRINTF(Ethernet, "Wrote device register %#X value %#X\n",
374            daddr, pkt->get<uint32_t>());
375
376    //
377    // Handle write of register here
378    //
379    uint32_t val = pkt->get<uint32_t>();
380
381    Regs::RCTL oldrctl;
382    Regs::TCTL oldtctl;
383
384    switch (daddr) {
385      case REG_CTRL:
386        regs.ctrl = val;
387        if (regs.ctrl.tfce())
388            warn("TX Flow control enabled, should implement\n");
389        if (regs.ctrl.rfce())
390            warn("RX Flow control enabled, should implement\n");
391        break;
392      case REG_CTRL_EXT:
393        regs.ctrl_ext = val;
394        break;
395      case REG_STATUS:
396        regs.sts = val;
397        break;
398      case REG_EECD:
399        int oldClk;
400        oldClk = regs.eecd.sk();
401        regs.eecd = val;
402        // See if this is a eeprom access and emulate accordingly
403        if (!oldClk && regs.eecd.sk()) {
404            if (eeOpBits < 8) {
405                eeOpcode = eeOpcode << 1 | regs.eecd.din();
406                eeOpBits++;
407            } else if (eeAddrBits < 8 && eeOpcode == EEPROM_READ_OPCODE_SPI) {
408                eeAddr = eeAddr << 1 | regs.eecd.din();
409                eeAddrBits++;
410            } else if (eeDataBits < 16 && eeOpcode == EEPROM_READ_OPCODE_SPI) {
411                assert(eeAddr>>1 < EEPROM_SIZE);
412                DPRINTF(EthernetEEPROM, "EEPROM bit read: %d word: %#X\n",
413                        flash[eeAddr>>1] >> eeDataBits & 0x1,
414                        flash[eeAddr>>1]);
415                regs.eecd.dout((flash[eeAddr>>1] >> (15-eeDataBits)) & 0x1);
416                eeDataBits++;
417            } else if (eeDataBits < 8 && eeOpcode == EEPROM_RDSR_OPCODE_SPI) {
418                regs.eecd.dout(0);
419                eeDataBits++;
420            } else
421                panic("What's going on with eeprom interface? opcode:"
422                      " %#x:%d addr: %#x:%d, data: %d\n", (uint32_t)eeOpcode,
423                      (uint32_t)eeOpBits, (uint32_t)eeAddr,
424                      (uint32_t)eeAddrBits, (uint32_t)eeDataBits);
425
426            // Reset everything for the next command
427            if ((eeDataBits == 16 && eeOpcode == EEPROM_READ_OPCODE_SPI) ||
428                (eeDataBits == 8 && eeOpcode == EEPROM_RDSR_OPCODE_SPI)) {
429                eeOpBits = 0;
430                eeAddrBits = 0;
431                eeDataBits = 0;
432                eeOpcode = 0;
433                eeAddr = 0;
434            }
435
436            DPRINTF(EthernetEEPROM, "EEPROM: opcode: %#X:%d addr: %#X:%d\n",
437                    (uint32_t)eeOpcode, (uint32_t) eeOpBits,
438                    (uint32_t)eeAddr>>1, (uint32_t)eeAddrBits);
439            if (eeOpBits == 8 && !(eeOpcode == EEPROM_READ_OPCODE_SPI ||
440                                   eeOpcode == EEPROM_RDSR_OPCODE_SPI ))
441                panic("Unknown eeprom opcode: %#X:%d\n", (uint32_t)eeOpcode,
442                      (uint32_t)eeOpBits);
443
444
445        }
446        // If driver requests eeprom access, immediately give it to it
447        regs.eecd.ee_gnt(regs.eecd.ee_req());
448        break;
449      case REG_EERD:
450        regs.eerd = val;
451        if (regs.eerd.start()) {
452            regs.eerd.done(1);
453            assert(regs.eerd.addr() < EEPROM_SIZE);
454            regs.eerd.data(flash[regs.eerd.addr()]);
455            regs.eerd.start(0);
456            DPRINTF(EthernetEEPROM, "EEPROM: read addr: %#X data %#x\n",
457                    regs.eerd.addr(), regs.eerd.data());
458        }
459        break;
460      case REG_MDIC:
461        regs.mdic = val;
462        if (regs.mdic.i())
463            panic("No support for interrupt on mdic complete\n");
464        if (regs.mdic.phyadd() != 1)
465            panic("No support for reading anything but phy\n");
466        DPRINTF(Ethernet, "%s phy address %x\n",
467                regs.mdic.op() == 1 ? "Writing" : "Reading",
468                regs.mdic.regadd());
469        switch (regs.mdic.regadd()) {
470          case PHY_PSTATUS:
471            regs.mdic.data(0x796D); // link up
472            break;
473          case PHY_PID:
474            regs.mdic.data(params()->phy_pid);
475            break;
476          case PHY_EPID:
477            regs.mdic.data(params()->phy_epid);
478            break;
479          case PHY_GSTATUS:
480            regs.mdic.data(0x7C00);
481            break;
482          case PHY_EPSTATUS:
483            regs.mdic.data(0x3000);
484            break;
485          case PHY_AGC:
486            regs.mdic.data(0x180); // some random length
487            break;
488          default:
489            regs.mdic.data(0);
490        }
491        regs.mdic.r(1);
492        break;
493      case REG_ICR:
494        DPRINTF(Ethernet, "Writing ICR. ICR=%#x IMR=%#x IAM=%#x IAME=%d\n",
495                regs.icr(), regs.imr, regs.iam, regs.ctrl_ext.iame());
496        if (regs.ctrl_ext.iame())
497            regs.imr &= ~regs.iam;
498        regs.icr = ~bits(val,30,0) & regs.icr();
499        chkInterrupt();
500        break;
501      case REG_ITR:
502        regs.itr = val;
503        break;
504      case REG_ICS:
505        DPRINTF(EthernetIntr, "Posting interrupt because of ICS write\n");
506        postInterrupt((IntTypes)val);
507        break;
508      case REG_IMS:
509        regs.imr |= val;
510        chkInterrupt();
511        break;
512      case REG_IMC:
513        regs.imr &= ~val;
514        chkInterrupt();
515        break;
516      case REG_IAM:
517        regs.iam = val;
518        break;
519      case REG_RCTL:
520        oldrctl = regs.rctl;
521        regs.rctl = val;
522        if (regs.rctl.rst()) {
523            rxDescCache.reset();
524            DPRINTF(EthernetSM, "RXS: Got RESET!\n");
525            rxFifo.clear();
526            regs.rctl.rst(0);
527        }
528        if (regs.rctl.en())
529            rxTick = true;
530        restartClock();
531        break;
532      case REG_FCTTV:
533        regs.fcttv = val;
534        break;
535      case REG_TCTL:
536        regs.tctl = val;
537        oldtctl = regs.tctl;
538        regs.tctl = val;
539        if (regs.tctl.en())
540            txTick = true;
541        restartClock();
542        if (regs.tctl.en() && !oldtctl.en()) {
543            txDescCache.reset();
544        }
545        break;
546      case REG_PBA:
547        regs.pba.rxa(val);
548        regs.pba.txa(64 - regs.pba.rxa());
549        break;
550      case REG_WUC:
551      case REG_WUFC:
552      case REG_WUS:
553      case REG_LEDCTL:
554      case REG_FCAL:
555      case REG_FCAH:
556      case REG_FCT:
557      case REG_VET:
558      case REG_AIFS:
559      case REG_TIPG:
560        ; // We don't care, so don't store anything
561        break;
562      case REG_IVAR0:
563        warn("Writing to IVAR0, ignoring...\n");
564        break;
565      case REG_FCRTL:
566        regs.fcrtl = val;
567        break;
568      case REG_FCRTH:
569        regs.fcrth = val;
570        break;
571      case REG_RDBAL:
572        regs.rdba.rdbal( val & ~mask(4));
573        rxDescCache.areaChanged();
574        break;
575      case REG_RDBAH:
576        regs.rdba.rdbah(val);
577        rxDescCache.areaChanged();
578        break;
579      case REG_RDLEN:
580        regs.rdlen = val & ~mask(7);
581        rxDescCache.areaChanged();
582        break;
583      case REG_SRRCTL:
584        regs.srrctl = val;
585        break;
586      case REG_RDH:
587        regs.rdh = val;
588        rxDescCache.areaChanged();
589        break;
590      case REG_RDT:
591        regs.rdt = val;
592        DPRINTF(EthernetSM, "RXS: RDT Updated.\n");
593        if (drainState() == DrainState::Running) {
594            DPRINTF(EthernetSM, "RXS: RDT Fetching Descriptors!\n");
595            rxDescCache.fetchDescriptors();
596        } else {
597            DPRINTF(EthernetSM, "RXS: RDT NOT Fetching Desc b/c draining!\n");
598        }
599        break;
600      case REG_RDTR:
601        regs.rdtr = val;
602        break;
603      case REG_RADV:
604        regs.radv = val;
605        break;
606      case REG_RXDCTL:
607        regs.rxdctl = val;
608        break;
609      case REG_TDBAL:
610        regs.tdba.tdbal( val & ~mask(4));
611        txDescCache.areaChanged();
612        break;
613      case REG_TDBAH:
614        regs.tdba.tdbah(val);
615        txDescCache.areaChanged();
616        break;
617      case REG_TDLEN:
618        regs.tdlen = val & ~mask(7);
619        txDescCache.areaChanged();
620        break;
621      case REG_TDH:
622        regs.tdh = val;
623        txDescCache.areaChanged();
624        break;
625      case REG_TXDCA_CTL:
626        regs.txdca_ctl = val;
627        if (regs.txdca_ctl.enabled())
628            panic("No support for DCA\n");
629        break;
630      case REG_TDT:
631        regs.tdt = val;
632        DPRINTF(EthernetSM, "TXS: TX Tail pointer updated\n");
633        if (drainState() == DrainState::Running) {
634            DPRINTF(EthernetSM, "TXS: TDT Fetching Descriptors!\n");
635            txDescCache.fetchDescriptors();
636        } else {
637            DPRINTF(EthernetSM, "TXS: TDT NOT Fetching Desc b/c draining!\n");
638        }
639        break;
640      case REG_TIDV:
641        regs.tidv = val;
642        break;
643      case REG_TXDCTL:
644        regs.txdctl = val;
645        break;
646      case REG_TADV:
647        regs.tadv = val;
648        break;
649      case REG_TDWBAL:
650        regs.tdwba &= ~mask(32);
651        regs.tdwba |= val;
652        txDescCache.completionWriteback(regs.tdwba & ~mask(1),
653                                        regs.tdwba & mask(1));
654        break;
655      case REG_TDWBAH:
656        regs.tdwba &= mask(32);
657        regs.tdwba |= (uint64_t)val << 32;
658        txDescCache.completionWriteback(regs.tdwba & ~mask(1),
659                                        regs.tdwba & mask(1));
660        break;
661      case REG_RXCSUM:
662        regs.rxcsum = val;
663        break;
664      case REG_RLPML:
665        regs.rlpml = val;
666        break;
667      case REG_RFCTL:
668        regs.rfctl = val;
669        if (regs.rfctl.exsten())
670            panic("Extended RX descriptors not implemented\n");
671        break;
672      case REG_MANC:
673        regs.manc = val;
674        break;
675      case REG_SWSM:
676        regs.swsm = val;
677        if (regs.fwsm.eep_fw_semaphore())
678            regs.swsm.swesmbi(0);
679        break;
680      case REG_SWFWSYNC:
681        regs.sw_fw_sync = val;
682        break;
683      default:
684        if (!IN_RANGE(daddr, REG_VFTA, VLAN_FILTER_TABLE_SIZE*4) &&
685            !IN_RANGE(daddr, REG_RAL, RCV_ADDRESS_TABLE_SIZE*8) &&
686            !IN_RANGE(daddr, REG_MTA, MULTICAST_TABLE_SIZE*4))
687            panic("Write request to unknown register number: %#x\n", daddr);
688    };
689
690    pkt->makeAtomicResponse();
691    return pioDelay;
692}
693
694void
695IGbE::postInterrupt(IntTypes t, bool now)
696{
697    assert(t);
698
699    // Interrupt is already pending
700    if (t & regs.icr() && !now)
701        return;
702
703    regs.icr = regs.icr() | t;
704
705    Tick itr_interval = SimClock::Int::ns * 256 * regs.itr.interval();
706    DPRINTF(EthernetIntr,
707            "EINT: postInterrupt() curTick(): %d itr: %d interval: %d\n",
708            curTick(), regs.itr.interval(), itr_interval);
709
710    if (regs.itr.interval() == 0 || now ||
711        lastInterrupt + itr_interval <= curTick()) {
712        if (interEvent.scheduled()) {
713            deschedule(interEvent);
714        }
715        cpuPostInt();
716    } else {
717        Tick int_time = lastInterrupt + itr_interval;
718        assert(int_time > 0);
719        DPRINTF(EthernetIntr, "EINT: Scheduling timer interrupt for tick %d\n",
720                int_time);
721        if (!interEvent.scheduled()) {
722            schedule(interEvent, int_time);
723        }
724    }
725}
726
727void
728IGbE::delayIntEvent()
729{
730    cpuPostInt();
731}
732
733
734void
735IGbE::cpuPostInt()
736{
737
738    postedInterrupts++;
739
740    if (!(regs.icr() & regs.imr)) {
741        DPRINTF(Ethernet, "Interrupt Masked. Not Posting\n");
742        return;
743    }
744
745    DPRINTF(Ethernet, "Posting Interrupt\n");
746
747
748    if (interEvent.scheduled()) {
749        deschedule(interEvent);
750    }
751
752    if (rdtrEvent.scheduled()) {
753        regs.icr.rxt0(1);
754        deschedule(rdtrEvent);
755    }
756    if (radvEvent.scheduled()) {
757        regs.icr.rxt0(1);
758        deschedule(radvEvent);
759    }
760    if (tadvEvent.scheduled()) {
761        regs.icr.txdw(1);
762        deschedule(tadvEvent);
763    }
764    if (tidvEvent.scheduled()) {
765        regs.icr.txdw(1);
766        deschedule(tidvEvent);
767    }
768
769    regs.icr.int_assert(1);
770    DPRINTF(EthernetIntr, "EINT: Posting interrupt to CPU now. Vector %#x\n",
771            regs.icr());
772
773    intrPost();
774
775    lastInterrupt = curTick();
776}
777
778void
779IGbE::cpuClearInt()
780{
781    if (regs.icr.int_assert()) {
782        regs.icr.int_assert(0);
783        DPRINTF(EthernetIntr,
784                "EINT: Clearing interrupt to CPU now. Vector %#x\n",
785                regs.icr());
786        intrClear();
787    }
788}
789
790void
791IGbE::chkInterrupt()
792{
793    DPRINTF(Ethernet, "Checking interrupts icr: %#x imr: %#x\n", regs.icr(),
794            regs.imr);
795    // Check if we need to clear the cpu interrupt
796    if (!(regs.icr() & regs.imr)) {
797        DPRINTF(Ethernet, "Mask cleaned all interrupts\n");
798        if (interEvent.scheduled())
799            deschedule(interEvent);
800        if (regs.icr.int_assert())
801            cpuClearInt();
802    }
803    DPRINTF(Ethernet, "ITR = %#X itr.interval = %#X\n",
804            regs.itr(), regs.itr.interval());
805
806    if (regs.icr() & regs.imr) {
807        if (regs.itr.interval() == 0)  {
808            cpuPostInt();
809        } else {
810            DPRINTF(Ethernet,
811                    "Possibly scheduling interrupt because of imr write\n");
812            if (!interEvent.scheduled()) {
813                Tick t = curTick() + SimClock::Int::ns * 256 * regs.itr.interval();
814                DPRINTF(Ethernet, "Scheduling for %d\n", t);
815                schedule(interEvent, t);
816            }
817        }
818    }
819}
820
821
822///////////////////////////// IGbE::DescCache //////////////////////////////
823
824template<class T>
825IGbE::DescCache<T>::DescCache(IGbE *i, const std::string n, int s)
826    : igbe(i), _name(n), cachePnt(0), size(s), curFetching(0),
827      wbOut(0), moreToWb(false), wbAlignment(0), pktPtr(NULL),
828      wbDelayEvent(this), fetchDelayEvent(this), fetchEvent(this),
829      wbEvent(this)
830{
831    fetchBuf = new T[size];
832    wbBuf = new T[size];
833}
834
835template<class T>
836IGbE::DescCache<T>::~DescCache()
837{
838    reset();
839    delete[] fetchBuf;
840    delete[] wbBuf;
841}
842
843template<class T>
844void
845IGbE::DescCache<T>::areaChanged()
846{
847    if (usedCache.size() > 0 || curFetching || wbOut)
848        panic("Descriptor Address, Length or Head changed. Bad\n");
849    reset();
850
851}
852
853template<class T>
854void
855IGbE::DescCache<T>::writeback(Addr aMask)
856{
857    int curHead = descHead();
858    int max_to_wb = usedCache.size();
859
860    // Check if this writeback is less restrictive that the previous
861    // and if so setup another one immediately following it
862    if (wbOut) {
863        if (aMask < wbAlignment) {
864            moreToWb = true;
865            wbAlignment = aMask;
866        }
867        DPRINTF(EthernetDesc,
868                "Writing back already in process, returning\n");
869        return;
870    }
871
872    moreToWb = false;
873    wbAlignment = aMask;
874
875
876    DPRINTF(EthernetDesc, "Writing back descriptors head: %d tail: "
877            "%d len: %d cachePnt: %d max_to_wb: %d descleft: %d\n",
878            curHead, descTail(), descLen(), cachePnt, max_to_wb,
879            descLeft());
880
881    if (max_to_wb + curHead >= descLen()) {
882        max_to_wb = descLen() - curHead;
883        moreToWb = true;
884        // this is by definition aligned correctly
885    } else if (wbAlignment != 0) {
886        // align the wb point to the mask
887        max_to_wb = max_to_wb & ~wbAlignment;
888    }
889
890    DPRINTF(EthernetDesc, "Writing back %d descriptors\n", max_to_wb);
891
892    if (max_to_wb <= 0) {
893        if (usedCache.size())
894            igbe->anBegin(annSmWb, "Wait Alignment", CPA::FL_WAIT);
895        else
896            igbe->anWe(annSmWb, annUsedCacheQ);
897        return;
898    }
899
900    wbOut = max_to_wb;
901
902    assert(!wbDelayEvent.scheduled());
903    igbe->schedule(wbDelayEvent, curTick() + igbe->wbDelay);
904    igbe->anBegin(annSmWb, "Prepare Writeback Desc");
905}
906
907template<class T>
908void
909IGbE::DescCache<T>::writeback1()
910{
911    // If we're draining delay issuing this DMA
912    if (igbe->drainState() != DrainState::Running) {
913        igbe->schedule(wbDelayEvent, curTick() + igbe->wbDelay);
914        return;
915    }
916
917    DPRINTF(EthernetDesc, "Begining DMA of %d descriptors\n", wbOut);
918
919    for (int x = 0; x < wbOut; x++) {
920        assert(usedCache.size());
921        memcpy(&wbBuf[x], usedCache[x], sizeof(T));
922        igbe->anPq(annSmWb, annUsedCacheQ);
923        igbe->anPq(annSmWb, annDescQ);
924        igbe->anQ(annSmWb, annUsedDescQ);
925    }
926
927
928    igbe->anBegin(annSmWb, "Writeback Desc DMA");
929
930    assert(wbOut);
931    igbe->dmaWrite(pciToDma(descBase() + descHead() * sizeof(T)),
932                   wbOut * sizeof(T), &wbEvent, (uint8_t*)wbBuf,
933                   igbe->wbCompDelay);
934}
935
936template<class T>
937void
938IGbE::DescCache<T>::fetchDescriptors()
939{
940    size_t max_to_fetch;
941
942    if (curFetching) {
943        DPRINTF(EthernetDesc,
944                "Currently fetching %d descriptors, returning\n",
945                curFetching);
946        return;
947    }
948
949    if (descTail() >= cachePnt)
950        max_to_fetch = descTail() - cachePnt;
951    else
952        max_to_fetch = descLen() - cachePnt;
953
954    size_t free_cache = size - usedCache.size() - unusedCache.size();
955
956    if (!max_to_fetch)
957        igbe->anWe(annSmFetch, annUnusedDescQ);
958    else
959        igbe->anPq(annSmFetch, annUnusedDescQ, max_to_fetch);
960
961    if (max_to_fetch) {
962        if (!free_cache)
963            igbe->anWf(annSmFetch, annDescQ);
964        else
965            igbe->anRq(annSmFetch, annDescQ, free_cache);
966    }
967
968    max_to_fetch = std::min(max_to_fetch, free_cache);
969
970
971    DPRINTF(EthernetDesc, "Fetching descriptors head: %d tail: "
972            "%d len: %d cachePnt: %d max_to_fetch: %d descleft: %d\n",
973            descHead(), descTail(), descLen(), cachePnt,
974            max_to_fetch, descLeft());
975
976    // Nothing to do
977    if (max_to_fetch == 0)
978        return;
979
980    // So we don't have two descriptor fetches going on at once
981    curFetching = max_to_fetch;
982
983    assert(!fetchDelayEvent.scheduled());
984    igbe->schedule(fetchDelayEvent, curTick() + igbe->fetchDelay);
985    igbe->anBegin(annSmFetch, "Prepare Fetch Desc");
986}
987
988template<class T>
989void
990IGbE::DescCache<T>::fetchDescriptors1()
991{
992    // If we're draining delay issuing this DMA
993    if (igbe->drainState() != DrainState::Running) {
994        igbe->schedule(fetchDelayEvent, curTick() + igbe->fetchDelay);
995        return;
996    }
997
998    igbe->anBegin(annSmFetch, "Fetch Desc");
999
1000    DPRINTF(EthernetDesc, "Fetching descriptors at %#x (%#x), size: %#x\n",
1001            descBase() + cachePnt * sizeof(T),
1002            pciToDma(descBase() + cachePnt * sizeof(T)),
1003            curFetching * sizeof(T));
1004    assert(curFetching);
1005    igbe->dmaRead(pciToDma(descBase() + cachePnt * sizeof(T)),
1006                  curFetching * sizeof(T), &fetchEvent, (uint8_t*)fetchBuf,
1007                  igbe->fetchCompDelay);
1008}
1009
1010template<class T>
1011void
1012IGbE::DescCache<T>::fetchComplete()
1013{
1014    T *newDesc;
1015    igbe->anBegin(annSmFetch, "Fetch Complete");
1016    for (int x = 0; x < curFetching; x++) {
1017        newDesc = new T;
1018        memcpy(newDesc, &fetchBuf[x], sizeof(T));
1019        unusedCache.push_back(newDesc);
1020        igbe->anDq(annSmFetch, annUnusedDescQ);
1021        igbe->anQ(annSmFetch, annUnusedCacheQ);
1022        igbe->anQ(annSmFetch, annDescQ);
1023    }
1024
1025
1026#ifndef NDEBUG
1027    int oldCp = cachePnt;
1028#endif
1029
1030    cachePnt += curFetching;
1031    assert(cachePnt <= descLen());
1032    if (cachePnt == descLen())
1033        cachePnt = 0;
1034
1035    curFetching = 0;
1036
1037    DPRINTF(EthernetDesc, "Fetching complete cachePnt %d -> %d\n",
1038            oldCp, cachePnt);
1039
1040    if ((descTail() >= cachePnt ? (descTail() - cachePnt) : (descLen() -
1041                                                             cachePnt)) == 0)
1042    {
1043        igbe->anWe(annSmFetch, annUnusedDescQ);
1044    } else if (!(size - usedCache.size() - unusedCache.size())) {
1045        igbe->anWf(annSmFetch, annDescQ);
1046    } else {
1047        igbe->anBegin(annSmFetch, "Wait", CPA::FL_WAIT);
1048    }
1049
1050    enableSm();
1051    igbe->checkDrain();
1052}
1053
1054template<class T>
1055void
1056IGbE::DescCache<T>::wbComplete()
1057{
1058
1059    igbe->anBegin(annSmWb, "Finish Writeback");
1060
1061    long  curHead = descHead();
1062#ifndef NDEBUG
1063    long oldHead = curHead;
1064#endif
1065
1066    for (int x = 0; x < wbOut; x++) {
1067        assert(usedCache.size());
1068        delete usedCache[0];
1069        usedCache.pop_front();
1070
1071        igbe->anDq(annSmWb, annUsedCacheQ);
1072        igbe->anDq(annSmWb, annDescQ);
1073    }
1074
1075    curHead += wbOut;
1076    wbOut = 0;
1077
1078    if (curHead >= descLen())
1079        curHead -= descLen();
1080
1081    // Update the head
1082    updateHead(curHead);
1083
1084    DPRINTF(EthernetDesc, "Writeback complete curHead %d -> %d\n",
1085            oldHead, curHead);
1086
1087    // If we still have more to wb, call wb now
1088    actionAfterWb();
1089    if (moreToWb) {
1090        moreToWb = false;
1091        DPRINTF(EthernetDesc, "Writeback has more todo\n");
1092        writeback(wbAlignment);
1093    }
1094
1095    if (!wbOut) {
1096        igbe->checkDrain();
1097        if (usedCache.size())
1098            igbe->anBegin(annSmWb, "Wait", CPA::FL_WAIT);
1099        else
1100            igbe->anWe(annSmWb, annUsedCacheQ);
1101    }
1102    fetchAfterWb();
1103}
1104
1105template<class T>
1106void
1107IGbE::DescCache<T>::reset()
1108{
1109    DPRINTF(EthernetDesc, "Reseting descriptor cache\n");
1110    for (typename CacheType::size_type x = 0; x < usedCache.size(); x++)
1111        delete usedCache[x];
1112    for (typename CacheType::size_type x = 0; x < unusedCache.size(); x++)
1113        delete unusedCache[x];
1114
1115    usedCache.clear();
1116    unusedCache.clear();
1117
1118    cachePnt = 0;
1119
1120}
1121
1122template<class T>
1123void
1124IGbE::DescCache<T>::serialize(CheckpointOut &cp) const
1125{
1126    SERIALIZE_SCALAR(cachePnt);
1127    SERIALIZE_SCALAR(curFetching);
1128    SERIALIZE_SCALAR(wbOut);
1129    SERIALIZE_SCALAR(moreToWb);
1130    SERIALIZE_SCALAR(wbAlignment);
1131
1132    typename CacheType::size_type usedCacheSize = usedCache.size();
1133    SERIALIZE_SCALAR(usedCacheSize);
1134    for (typename CacheType::size_type x = 0; x < usedCacheSize; x++) {
1135        arrayParamOut(cp, csprintf("usedCache_%d", x),
1136                      (uint8_t*)usedCache[x],sizeof(T));
1137    }
1138
1139    typename CacheType::size_type unusedCacheSize = unusedCache.size();
1140    SERIALIZE_SCALAR(unusedCacheSize);
1141    for (typename CacheType::size_type x = 0; x < unusedCacheSize; x++) {
1142        arrayParamOut(cp, csprintf("unusedCache_%d", x),
1143                      (uint8_t*)unusedCache[x],sizeof(T));
1144    }
1145
1146    Tick fetch_delay = 0, wb_delay = 0;
1147    if (fetchDelayEvent.scheduled())
1148        fetch_delay = fetchDelayEvent.when();
1149    SERIALIZE_SCALAR(fetch_delay);
1150    if (wbDelayEvent.scheduled())
1151        wb_delay = wbDelayEvent.when();
1152    SERIALIZE_SCALAR(wb_delay);
1153
1154
1155}
1156
1157template<class T>
1158void
1159IGbE::DescCache<T>::unserialize(CheckpointIn &cp)
1160{
1161    UNSERIALIZE_SCALAR(cachePnt);
1162    UNSERIALIZE_SCALAR(curFetching);
1163    UNSERIALIZE_SCALAR(wbOut);
1164    UNSERIALIZE_SCALAR(moreToWb);
1165    UNSERIALIZE_SCALAR(wbAlignment);
1166
1167    typename CacheType::size_type usedCacheSize;
1168    UNSERIALIZE_SCALAR(usedCacheSize);
1169    T *temp;
1170    for (typename CacheType::size_type x = 0; x < usedCacheSize; x++) {
1171        temp = new T;
1172        arrayParamIn(cp, csprintf("usedCache_%d", x),
1173                     (uint8_t*)temp,sizeof(T));
1174        usedCache.push_back(temp);
1175    }
1176
1177    typename CacheType::size_type unusedCacheSize;
1178    UNSERIALIZE_SCALAR(unusedCacheSize);
1179    for (typename CacheType::size_type x = 0; x < unusedCacheSize; x++) {
1180        temp = new T;
1181        arrayParamIn(cp, csprintf("unusedCache_%d", x),
1182                     (uint8_t*)temp,sizeof(T));
1183        unusedCache.push_back(temp);
1184    }
1185    Tick fetch_delay = 0, wb_delay = 0;
1186    UNSERIALIZE_SCALAR(fetch_delay);
1187    UNSERIALIZE_SCALAR(wb_delay);
1188    if (fetch_delay)
1189        igbe->schedule(fetchDelayEvent, fetch_delay);
1190    if (wb_delay)
1191        igbe->schedule(wbDelayEvent, wb_delay);
1192
1193
1194}
1195
1196///////////////////////////// IGbE::RxDescCache //////////////////////////////
1197
1198IGbE::RxDescCache::RxDescCache(IGbE *i, const std::string n, int s)
1199    : DescCache<RxDesc>(i, n, s), pktDone(false), splitCount(0),
1200      pktEvent(this), pktHdrEvent(this), pktDataEvent(this)
1201
1202{
1203    annSmFetch = "RX Desc Fetch";
1204    annSmWb = "RX Desc Writeback";
1205    annUnusedDescQ = "RX Unused Descriptors";
1206    annUnusedCacheQ = "RX Unused Descriptor Cache";
1207    annUsedCacheQ = "RX Used Descriptor Cache";
1208    annUsedDescQ = "RX Used Descriptors";
1209    annDescQ = "RX Descriptors";
1210}
1211
1212void
1213IGbE::RxDescCache::pktSplitDone()
1214{
1215    splitCount++;
1216    DPRINTF(EthernetDesc,
1217            "Part of split packet done: splitcount now %d\n", splitCount);
1218    assert(splitCount <= 2);
1219    if (splitCount != 2)
1220        return;
1221    splitCount = 0;
1222    DPRINTF(EthernetDesc,
1223            "Part of split packet done: calling pktComplete()\n");
1224    pktComplete();
1225}
1226
1227int
1228IGbE::RxDescCache::writePacket(EthPacketPtr packet, int pkt_offset)
1229{
1230    assert(unusedCache.size());
1231    //if (!unusedCache.size())
1232    //    return false;
1233
1234    pktPtr = packet;
1235    pktDone = false;
1236    unsigned buf_len, hdr_len;
1237
1238    RxDesc *desc = unusedCache.front();
1239    switch (igbe->regs.srrctl.desctype()) {
1240      case RXDT_LEGACY:
1241        assert(pkt_offset == 0);
1242        bytesCopied = packet->length;
1243        DPRINTF(EthernetDesc, "Packet Length: %d Desc Size: %d\n",
1244                packet->length, igbe->regs.rctl.descSize());
1245        assert(packet->length < igbe->regs.rctl.descSize());
1246        igbe->dmaWrite(pciToDma(desc->legacy.buf),
1247                       packet->length, &pktEvent, packet->data,
1248                       igbe->rxWriteDelay);
1249        break;
1250      case RXDT_ADV_ONEBUF:
1251        assert(pkt_offset == 0);
1252        bytesCopied = packet->length;
1253        buf_len = igbe->regs.rctl.lpe() ? igbe->regs.srrctl.bufLen() :
1254            igbe->regs.rctl.descSize();
1255        DPRINTF(EthernetDesc, "Packet Length: %d srrctl: %#x Desc Size: %d\n",
1256                packet->length, igbe->regs.srrctl(), buf_len);
1257        assert(packet->length < buf_len);
1258        igbe->dmaWrite(pciToDma(desc->adv_read.pkt),
1259                       packet->length, &pktEvent, packet->data,
1260                       igbe->rxWriteDelay);
1261        desc->adv_wb.header_len = htole(0);
1262        desc->adv_wb.sph = htole(0);
1263        desc->adv_wb.pkt_len = htole((uint16_t)(pktPtr->length));
1264        break;
1265      case RXDT_ADV_SPLIT_A:
1266        int split_point;
1267
1268        buf_len = igbe->regs.rctl.lpe() ? igbe->regs.srrctl.bufLen() :
1269            igbe->regs.rctl.descSize();
1270        hdr_len = igbe->regs.rctl.lpe() ? igbe->regs.srrctl.hdrLen() : 0;
1271        DPRINTF(EthernetDesc,
1272                "lpe: %d Packet Length: %d offset: %d srrctl: %#x "
1273                "hdr addr: %#x Hdr Size: %d desc addr: %#x Desc Size: %d\n",
1274                igbe->regs.rctl.lpe(), packet->length, pkt_offset,
1275                igbe->regs.srrctl(), desc->adv_read.hdr, hdr_len,
1276                desc->adv_read.pkt, buf_len);
1277
1278        split_point = hsplit(pktPtr);
1279
1280        if (packet->length <= hdr_len) {
1281            bytesCopied = packet->length;
1282            assert(pkt_offset == 0);
1283            DPRINTF(EthernetDesc, "Hdr split: Entire packet in header\n");
1284            igbe->dmaWrite(pciToDma(desc->adv_read.hdr),
1285                           packet->length, &pktEvent, packet->data,
1286                           igbe->rxWriteDelay);
1287            desc->adv_wb.header_len = htole((uint16_t)packet->length);
1288            desc->adv_wb.sph = htole(0);
1289            desc->adv_wb.pkt_len = htole(0);
1290        } else if (split_point) {
1291            if (pkt_offset) {
1292                // we are only copying some data, header/data has already been
1293                // copied
1294                int max_to_copy =
1295                    std::min(packet->length - pkt_offset, buf_len);
1296                bytesCopied += max_to_copy;
1297                DPRINTF(EthernetDesc,
1298                        "Hdr split: Continuing data buffer copy\n");
1299                igbe->dmaWrite(pciToDma(desc->adv_read.pkt),
1300                               max_to_copy, &pktEvent,
1301                               packet->data + pkt_offset, igbe->rxWriteDelay);
1302                desc->adv_wb.header_len = htole(0);
1303                desc->adv_wb.pkt_len = htole((uint16_t)max_to_copy);
1304                desc->adv_wb.sph = htole(0);
1305            } else {
1306                int max_to_copy =
1307                    std::min(packet->length - split_point, buf_len);
1308                bytesCopied += max_to_copy + split_point;
1309
1310                DPRINTF(EthernetDesc, "Hdr split: splitting at %d\n",
1311                        split_point);
1312                igbe->dmaWrite(pciToDma(desc->adv_read.hdr),
1313                               split_point, &pktHdrEvent,
1314                               packet->data, igbe->rxWriteDelay);
1315                igbe->dmaWrite(pciToDma(desc->adv_read.pkt),
1316                               max_to_copy, &pktDataEvent,
1317                               packet->data + split_point, igbe->rxWriteDelay);
1318                desc->adv_wb.header_len = htole(split_point);
1319                desc->adv_wb.sph = 1;
1320                desc->adv_wb.pkt_len = htole((uint16_t)(max_to_copy));
1321            }
1322        } else {
1323            panic("Header split not fitting within header buffer or "
1324                  "undecodable packet not fitting in header unsupported\n");
1325        }
1326        break;
1327      default:
1328        panic("Unimplemnted RX receive buffer type: %d\n",
1329              igbe->regs.srrctl.desctype());
1330    }
1331    return bytesCopied;
1332
1333}
1334
1335void
1336IGbE::RxDescCache::pktComplete()
1337{
1338    assert(unusedCache.size());
1339    RxDesc *desc;
1340    desc = unusedCache.front();
1341
1342    igbe->anBegin("RXS", "Update Desc");
1343
1344    uint16_t crcfixup = igbe->regs.rctl.secrc() ? 0 : 4 ;
1345    DPRINTF(EthernetDesc, "pktPtr->length: %d bytesCopied: %d "
1346            "stripcrc offset: %d value written: %d %d\n",
1347            pktPtr->length, bytesCopied, crcfixup,
1348            htole((uint16_t)(pktPtr->length + crcfixup)),
1349            (uint16_t)(pktPtr->length + crcfixup));
1350
1351    // no support for anything but starting at 0
1352    assert(igbe->regs.rxcsum.pcss() == 0);
1353
1354    DPRINTF(EthernetDesc, "Packet written to memory updating Descriptor\n");
1355
1356    uint16_t status = RXDS_DD;
1357    uint8_t err = 0;
1358    uint16_t ext_err = 0;
1359    uint16_t csum = 0;
1360    uint16_t ptype = 0;
1361    uint16_t ip_id = 0;
1362
1363    assert(bytesCopied <= pktPtr->length);
1364    if (bytesCopied == pktPtr->length)
1365        status |= RXDS_EOP;
1366
1367    IpPtr ip(pktPtr);
1368
1369    if (ip) {
1370        DPRINTF(EthernetDesc, "Proccesing Ip packet with Id=%d\n", ip->id());
1371        ptype |= RXDP_IPV4;
1372        ip_id = ip->id();
1373
1374        if (igbe->regs.rxcsum.ipofld()) {
1375            DPRINTF(EthernetDesc, "Checking IP checksum\n");
1376            status |= RXDS_IPCS;
1377            csum = htole(cksum(ip));
1378            igbe->rxIpChecksums++;
1379            if (cksum(ip) != 0) {
1380                err |= RXDE_IPE;
1381                ext_err |= RXDEE_IPE;
1382                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
1383            }
1384        }
1385        TcpPtr tcp(ip);
1386        if (tcp && igbe->regs.rxcsum.tuofld()) {
1387            DPRINTF(EthernetDesc, "Checking TCP checksum\n");
1388            status |= RXDS_TCPCS;
1389            ptype |= RXDP_TCP;
1390            csum = htole(cksum(tcp));
1391            igbe->rxTcpChecksums++;
1392            if (cksum(tcp) != 0) {
1393                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
1394                err |= RXDE_TCPE;
1395                ext_err |= RXDEE_TCPE;
1396            }
1397        }
1398
1399        UdpPtr udp(ip);
1400        if (udp && igbe->regs.rxcsum.tuofld()) {
1401            DPRINTF(EthernetDesc, "Checking UDP checksum\n");
1402            status |= RXDS_UDPCS;
1403            ptype |= RXDP_UDP;
1404            csum = htole(cksum(udp));
1405            igbe->rxUdpChecksums++;
1406            if (cksum(udp) != 0) {
1407                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
1408                ext_err |= RXDEE_TCPE;
1409                err |= RXDE_TCPE;
1410            }
1411        }
1412    } else { // if ip
1413        DPRINTF(EthernetSM, "Proccesing Non-Ip packet\n");
1414    }
1415
1416    switch (igbe->regs.srrctl.desctype()) {
1417      case RXDT_LEGACY:
1418        desc->legacy.len = htole((uint16_t)(pktPtr->length + crcfixup));
1419        desc->legacy.status = htole(status);
1420        desc->legacy.errors = htole(err);
1421        // No vlan support at this point... just set it to 0
1422        desc->legacy.vlan = 0;
1423        break;
1424      case RXDT_ADV_SPLIT_A:
1425      case RXDT_ADV_ONEBUF:
1426        desc->adv_wb.rss_type = htole(0);
1427        desc->adv_wb.pkt_type = htole(ptype);
1428        if (igbe->regs.rxcsum.pcsd()) {
1429            // no rss support right now
1430            desc->adv_wb.rss_hash = htole(0);
1431        } else {
1432            desc->adv_wb.id = htole(ip_id);
1433            desc->adv_wb.csum = htole(csum);
1434        }
1435        desc->adv_wb.status = htole(status);
1436        desc->adv_wb.errors = htole(ext_err);
1437        // no vlan support
1438        desc->adv_wb.vlan_tag = htole(0);
1439        break;
1440      default:
1441        panic("Unimplemnted RX receive buffer type %d\n",
1442              igbe->regs.srrctl.desctype());
1443    }
1444
1445    DPRINTF(EthernetDesc, "Descriptor complete w0: %#x w1: %#x\n",
1446            desc->adv_read.pkt, desc->adv_read.hdr);
1447
1448    if (bytesCopied == pktPtr->length) {
1449        DPRINTF(EthernetDesc,
1450                "Packet completely written to descriptor buffers\n");
1451        // Deal with the rx timer interrupts
1452        if (igbe->regs.rdtr.delay()) {
1453            Tick delay = igbe->regs.rdtr.delay() * igbe->intClock();
1454            DPRINTF(EthernetSM, "RXS: Scheduling DTR for %d\n", delay);
1455            igbe->reschedule(igbe->rdtrEvent, curTick() + delay);
1456        }
1457
1458        if (igbe->regs.radv.idv()) {
1459            Tick delay = igbe->regs.radv.idv() * igbe->intClock();
1460            DPRINTF(EthernetSM, "RXS: Scheduling ADV for %d\n", delay);
1461            if (!igbe->radvEvent.scheduled()) {
1462                igbe->schedule(igbe->radvEvent, curTick() + delay);
1463            }
1464        }
1465
1466        // if neither radv or rdtr, maybe itr is set...
1467        if (!igbe->regs.rdtr.delay() && !igbe->regs.radv.idv()) {
1468            DPRINTF(EthernetSM,
1469                    "RXS: Receive interrupt delay disabled, posting IT_RXT\n");
1470            igbe->postInterrupt(IT_RXT);
1471        }
1472
1473        // If the packet is small enough, interrupt appropriately
1474        // I wonder if this is delayed or not?!
1475        if (pktPtr->length <= igbe->regs.rsrpd.idv()) {
1476            DPRINTF(EthernetSM,
1477                    "RXS: Posting IT_SRPD beacuse small packet received\n");
1478            igbe->postInterrupt(IT_SRPD);
1479        }
1480        bytesCopied = 0;
1481    }
1482
1483    pktPtr = NULL;
1484    igbe->checkDrain();
1485    enableSm();
1486    pktDone = true;
1487
1488    igbe->anBegin("RXS", "Done Updating Desc");
1489    DPRINTF(EthernetDesc, "Processing of this descriptor complete\n");
1490    igbe->anDq("RXS", annUnusedCacheQ);
1491    unusedCache.pop_front();
1492    igbe->anQ("RXS", annUsedCacheQ);
1493    usedCache.push_back(desc);
1494}
1495
1496void
1497IGbE::RxDescCache::enableSm()
1498{
1499    if (igbe->drainState() != DrainState::Draining) {
1500        igbe->rxTick = true;
1501        igbe->restartClock();
1502    }
1503}
1504
1505bool
1506IGbE::RxDescCache::packetDone()
1507{
1508    if (pktDone) {
1509        pktDone = false;
1510        return true;
1511    }
1512    return false;
1513}
1514
1515bool
1516IGbE::RxDescCache::hasOutstandingEvents()
1517{
1518    return pktEvent.scheduled() || wbEvent.scheduled() ||
1519        fetchEvent.scheduled() || pktHdrEvent.scheduled() ||
1520        pktDataEvent.scheduled();
1521
1522}
1523
1524void
1525IGbE::RxDescCache::serialize(CheckpointOut &cp) const
1526{
1527    DescCache<RxDesc>::serialize(cp);
1528    SERIALIZE_SCALAR(pktDone);
1529    SERIALIZE_SCALAR(splitCount);
1530    SERIALIZE_SCALAR(bytesCopied);
1531}
1532
1533void
1534IGbE::RxDescCache::unserialize(CheckpointIn &cp)
1535{
1536    DescCache<RxDesc>::unserialize(cp);
1537    UNSERIALIZE_SCALAR(pktDone);
1538    UNSERIALIZE_SCALAR(splitCount);
1539    UNSERIALIZE_SCALAR(bytesCopied);
1540}
1541
1542
1543///////////////////////////// IGbE::TxDescCache //////////////////////////////
1544
1545IGbE::TxDescCache::TxDescCache(IGbE *i, const std::string n, int s)
1546    : DescCache<TxDesc>(i,n, s), pktDone(false), isTcp(false),
1547      pktWaiting(false), pktMultiDesc(false),
1548      completionAddress(0), completionEnabled(false),
1549      useTso(false), tsoHeaderLen(0), tsoMss(0), tsoTotalLen(0), tsoUsedLen(0),
1550      tsoPrevSeq(0), tsoPktPayloadBytes(0), tsoLoadedHeader(false),
1551      tsoPktHasHeader(false), tsoDescBytesUsed(0), tsoCopyBytes(0), tsoPkts(0),
1552      pktEvent(this), headerEvent(this), nullEvent(this)
1553{
1554    annSmFetch = "TX Desc Fetch";
1555    annSmWb = "TX Desc Writeback";
1556    annUnusedDescQ = "TX Unused Descriptors";
1557    annUnusedCacheQ = "TX Unused Descriptor Cache";
1558    annUsedCacheQ = "TX Used Descriptor Cache";
1559    annUsedDescQ = "TX Used Descriptors";
1560    annDescQ = "TX Descriptors";
1561}
1562
1563void
1564IGbE::TxDescCache::processContextDesc()
1565{
1566    assert(unusedCache.size());
1567    TxDesc *desc;
1568
1569    DPRINTF(EthernetDesc, "Checking and  processing context descriptors\n");
1570
1571    while (!useTso && unusedCache.size() &&
1572           TxdOp::isContext(unusedCache.front())) {
1573        DPRINTF(EthernetDesc, "Got context descriptor type...\n");
1574
1575        desc = unusedCache.front();
1576        DPRINTF(EthernetDesc, "Descriptor upper: %#x lower: %#X\n",
1577                desc->d1, desc->d2);
1578
1579
1580        // is this going to be a tcp or udp packet?
1581        isTcp = TxdOp::tcp(desc) ? true : false;
1582
1583        // setup all the TSO variables, they'll be ignored if we don't use
1584        // tso for this connection
1585        tsoHeaderLen = TxdOp::hdrlen(desc);
1586        tsoMss  = TxdOp::mss(desc);
1587
1588        if (TxdOp::isType(desc, TxdOp::TXD_CNXT) && TxdOp::tse(desc)) {
1589            DPRINTF(EthernetDesc, "TCP offload enabled for packet hdrlen: "
1590                    "%d mss: %d paylen %d\n", TxdOp::hdrlen(desc),
1591                    TxdOp::mss(desc), TxdOp::getLen(desc));
1592            useTso = true;
1593            tsoTotalLen = TxdOp::getLen(desc);
1594            tsoLoadedHeader = false;
1595            tsoDescBytesUsed = 0;
1596            tsoUsedLen = 0;
1597            tsoPrevSeq = 0;
1598            tsoPktHasHeader = false;
1599            tsoPkts = 0;
1600            tsoCopyBytes = 0;
1601        }
1602
1603        TxdOp::setDd(desc);
1604        unusedCache.pop_front();
1605        igbe->anDq("TXS", annUnusedCacheQ);
1606        usedCache.push_back(desc);
1607        igbe->anQ("TXS", annUsedCacheQ);
1608    }
1609
1610    if (!unusedCache.size())
1611        return;
1612
1613    desc = unusedCache.front();
1614    if (!useTso && TxdOp::isType(desc, TxdOp::TXD_ADVDATA) &&
1615        TxdOp::tse(desc)) {
1616        DPRINTF(EthernetDesc, "TCP offload(adv) enabled for packet "
1617                "hdrlen: %d mss: %d paylen %d\n",
1618                tsoHeaderLen, tsoMss, TxdOp::getTsoLen(desc));
1619        useTso = true;
1620        tsoTotalLen = TxdOp::getTsoLen(desc);
1621        tsoLoadedHeader = false;
1622        tsoDescBytesUsed = 0;
1623        tsoUsedLen = 0;
1624        tsoPrevSeq = 0;
1625        tsoPktHasHeader = false;
1626        tsoPkts = 0;
1627    }
1628
1629    if (useTso && !tsoLoadedHeader) {
1630        // we need to fetch a header
1631        DPRINTF(EthernetDesc, "Starting DMA of TSO header\n");
1632        assert(TxdOp::isData(desc) && TxdOp::getLen(desc) >= tsoHeaderLen);
1633        pktWaiting = true;
1634        assert(tsoHeaderLen <= 256);
1635        igbe->dmaRead(pciToDma(TxdOp::getBuf(desc)),
1636                      tsoHeaderLen, &headerEvent, tsoHeader, 0);
1637    }
1638}
1639
1640void
1641IGbE::TxDescCache::headerComplete()
1642{
1643    DPRINTF(EthernetDesc, "TSO: Fetching TSO header complete\n");
1644    pktWaiting = false;
1645
1646    assert(unusedCache.size());
1647    TxDesc *desc = unusedCache.front();
1648    DPRINTF(EthernetDesc, "TSO: len: %d tsoHeaderLen: %d\n",
1649            TxdOp::getLen(desc), tsoHeaderLen);
1650
1651    if (TxdOp::getLen(desc) == tsoHeaderLen) {
1652        tsoDescBytesUsed = 0;
1653        tsoLoadedHeader = true;
1654        unusedCache.pop_front();
1655        usedCache.push_back(desc);
1656    } else {
1657        DPRINTF(EthernetDesc, "TSO: header part of larger payload\n");
1658        tsoDescBytesUsed = tsoHeaderLen;
1659        tsoLoadedHeader = true;
1660    }
1661    enableSm();
1662    igbe->checkDrain();
1663}
1664
1665unsigned
1666IGbE::TxDescCache::getPacketSize(EthPacketPtr p)
1667{
1668    if (!unusedCache.size())
1669        return 0;
1670
1671    DPRINTF(EthernetDesc, "Starting processing of descriptor\n");
1672
1673    assert(!useTso || tsoLoadedHeader);
1674    TxDesc *desc = unusedCache.front();
1675
1676    if (useTso) {
1677        DPRINTF(EthernetDesc, "getPacket(): TxDescriptor data "
1678                "d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
1679        DPRINTF(EthernetDesc, "TSO: use: %d hdrlen: %d mss: %d total: %d "
1680                "used: %d loaded hdr: %d\n", useTso, tsoHeaderLen, tsoMss,
1681                tsoTotalLen, tsoUsedLen, tsoLoadedHeader);
1682
1683        if (tsoPktHasHeader)
1684            tsoCopyBytes =  std::min((tsoMss + tsoHeaderLen) - p->length,
1685                                     TxdOp::getLen(desc) - tsoDescBytesUsed);
1686        else
1687            tsoCopyBytes =  std::min(tsoMss,
1688                                     TxdOp::getLen(desc) - tsoDescBytesUsed);
1689        unsigned pkt_size =
1690            tsoCopyBytes + (tsoPktHasHeader ? 0 : tsoHeaderLen);
1691
1692        DPRINTF(EthernetDesc, "TSO: descBytesUsed: %d copyBytes: %d "
1693                "this descLen: %d\n",
1694                tsoDescBytesUsed, tsoCopyBytes, TxdOp::getLen(desc));
1695        DPRINTF(EthernetDesc, "TSO: pktHasHeader: %d\n", tsoPktHasHeader);
1696        DPRINTF(EthernetDesc, "TSO: Next packet is %d bytes\n", pkt_size);
1697        return pkt_size;
1698    }
1699
1700    DPRINTF(EthernetDesc, "Next TX packet is %d bytes\n",
1701            TxdOp::getLen(unusedCache.front()));
1702    return TxdOp::getLen(desc);
1703}
1704
1705void
1706IGbE::TxDescCache::getPacketData(EthPacketPtr p)
1707{
1708    assert(unusedCache.size());
1709
1710    TxDesc *desc;
1711    desc = unusedCache.front();
1712
1713    DPRINTF(EthernetDesc, "getPacketData(): TxDescriptor data "
1714            "d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
1715    assert((TxdOp::isLegacy(desc) || TxdOp::isData(desc)) &&
1716           TxdOp::getLen(desc));
1717
1718    pktPtr = p;
1719
1720    pktWaiting = true;
1721
1722    DPRINTF(EthernetDesc, "Starting DMA of packet at offset %d\n", p->length);
1723
1724    if (useTso) {
1725        assert(tsoLoadedHeader);
1726        if (!tsoPktHasHeader) {
1727            DPRINTF(EthernetDesc,
1728                    "Loading TSO header (%d bytes) into start of packet\n",
1729                    tsoHeaderLen);
1730            memcpy(p->data, &tsoHeader,tsoHeaderLen);
1731            p->length +=tsoHeaderLen;
1732            tsoPktHasHeader = true;
1733        }
1734    }
1735
1736    if (useTso) {
1737        DPRINTF(EthernetDesc,
1738                "Starting DMA of packet at offset %d length: %d\n",
1739                p->length, tsoCopyBytes);
1740        igbe->dmaRead(pciToDma(TxdOp::getBuf(desc))
1741                      + tsoDescBytesUsed,
1742                      tsoCopyBytes, &pktEvent, p->data + p->length,
1743                      igbe->txReadDelay);
1744        tsoDescBytesUsed += tsoCopyBytes;
1745        assert(tsoDescBytesUsed <= TxdOp::getLen(desc));
1746    } else {
1747        igbe->dmaRead(pciToDma(TxdOp::getBuf(desc)),
1748                      TxdOp::getLen(desc), &pktEvent, p->data + p->length,
1749                      igbe->txReadDelay);
1750    }
1751}
1752
1753void
1754IGbE::TxDescCache::pktComplete()
1755{
1756
1757    TxDesc *desc;
1758    assert(unusedCache.size());
1759    assert(pktPtr);
1760
1761    igbe->anBegin("TXS", "Update Desc");
1762
1763    DPRINTF(EthernetDesc, "DMA of packet complete\n");
1764
1765
1766    desc = unusedCache.front();
1767    assert((TxdOp::isLegacy(desc) || TxdOp::isData(desc)) &&
1768           TxdOp::getLen(desc));
1769
1770    DPRINTF(EthernetDesc, "TxDescriptor data d1: %#llx d2: %#llx\n",
1771            desc->d1, desc->d2);
1772
1773    // Set the length of the data in the EtherPacket
1774    if (useTso) {
1775        DPRINTF(EthernetDesc, "TSO: use: %d hdrlen: %d mss: %d total: %d "
1776            "used: %d loaded hdr: %d\n", useTso, tsoHeaderLen, tsoMss,
1777            tsoTotalLen, tsoUsedLen, tsoLoadedHeader);
1778        pktPtr->simLength += tsoCopyBytes;
1779        pktPtr->length += tsoCopyBytes;
1780        tsoUsedLen += tsoCopyBytes;
1781        DPRINTF(EthernetDesc, "TSO: descBytesUsed: %d copyBytes: %d\n",
1782            tsoDescBytesUsed, tsoCopyBytes);
1783    } else {
1784        pktPtr->simLength += TxdOp::getLen(desc);
1785        pktPtr->length += TxdOp::getLen(desc);
1786    }
1787
1788
1789
1790    if ((!TxdOp::eop(desc) && !useTso) ||
1791        (pktPtr->length < ( tsoMss + tsoHeaderLen) &&
1792         tsoTotalLen != tsoUsedLen && useTso)) {
1793        assert(!useTso || (tsoDescBytesUsed == TxdOp::getLen(desc)));
1794        igbe->anDq("TXS", annUnusedCacheQ);
1795        unusedCache.pop_front();
1796        igbe->anQ("TXS", annUsedCacheQ);
1797        usedCache.push_back(desc);
1798
1799        tsoDescBytesUsed = 0;
1800        pktDone = true;
1801        pktWaiting = false;
1802        pktMultiDesc = true;
1803
1804        DPRINTF(EthernetDesc, "Partial Packet Descriptor of %d bytes Done\n",
1805                pktPtr->length);
1806        pktPtr = NULL;
1807
1808        enableSm();
1809        igbe->checkDrain();
1810        return;
1811    }
1812
1813
1814    pktMultiDesc = false;
1815    // no support for vlans
1816    assert(!TxdOp::vle(desc));
1817
1818    // we only support single packet descriptors at this point
1819    if (!useTso)
1820        assert(TxdOp::eop(desc));
1821
1822    // set that this packet is done
1823    if (TxdOp::rs(desc))
1824        TxdOp::setDd(desc);
1825
1826    DPRINTF(EthernetDesc, "TxDescriptor data d1: %#llx d2: %#llx\n",
1827            desc->d1, desc->d2);
1828
1829    if (useTso) {
1830        IpPtr ip(pktPtr);
1831        if (ip) {
1832            DPRINTF(EthernetDesc, "TSO: Modifying IP header. Id + %d\n",
1833                    tsoPkts);
1834            ip->id(ip->id() + tsoPkts++);
1835            ip->len(pktPtr->length - EthPtr(pktPtr)->size());
1836
1837            TcpPtr tcp(ip);
1838            if (tcp) {
1839                DPRINTF(EthernetDesc,
1840                        "TSO: Modifying TCP header. old seq %d + %d\n",
1841                        tcp->seq(), tsoPrevSeq);
1842                tcp->seq(tcp->seq() + tsoPrevSeq);
1843                if (tsoUsedLen != tsoTotalLen)
1844                    tcp->flags(tcp->flags() & ~9); // clear fin & psh
1845            }
1846            UdpPtr udp(ip);
1847            if (udp) {
1848                DPRINTF(EthernetDesc, "TSO: Modifying UDP header.\n");
1849                udp->len(pktPtr->length - EthPtr(pktPtr)->size());
1850            }
1851        }
1852        tsoPrevSeq = tsoUsedLen;
1853    }
1854
1855    if (DTRACE(EthernetDesc)) {
1856        IpPtr ip(pktPtr);
1857        if (ip)
1858            DPRINTF(EthernetDesc, "Proccesing Ip packet with Id=%d\n",
1859                    ip->id());
1860        else
1861            DPRINTF(EthernetSM, "Proccesing Non-Ip packet\n");
1862    }
1863
1864    // Checksums are only ofloaded for new descriptor types
1865    if (TxdOp::isData(desc) && ( TxdOp::ixsm(desc) || TxdOp::txsm(desc)) ) {
1866        DPRINTF(EthernetDesc, "Calculating checksums for packet\n");
1867        IpPtr ip(pktPtr);
1868        assert(ip);
1869        if (TxdOp::ixsm(desc)) {
1870            ip->sum(0);
1871            ip->sum(cksum(ip));
1872            igbe->txIpChecksums++;
1873            DPRINTF(EthernetDesc, "Calculated IP checksum\n");
1874        }
1875        if (TxdOp::txsm(desc)) {
1876            TcpPtr tcp(ip);
1877            UdpPtr udp(ip);
1878            if (tcp) {
1879                tcp->sum(0);
1880                tcp->sum(cksum(tcp));
1881                igbe->txTcpChecksums++;
1882                DPRINTF(EthernetDesc, "Calculated TCP checksum\n");
1883            } else if (udp) {
1884                assert(udp);
1885                udp->sum(0);
1886                udp->sum(cksum(udp));
1887                igbe->txUdpChecksums++;
1888                DPRINTF(EthernetDesc, "Calculated UDP checksum\n");
1889            } else {
1890                panic("Told to checksum, but don't know how\n");
1891            }
1892        }
1893    }
1894
1895    if (TxdOp::ide(desc)) {
1896        // Deal with the rx timer interrupts
1897        DPRINTF(EthernetDesc, "Descriptor had IDE set\n");
1898        if (igbe->regs.tidv.idv()) {
1899            Tick delay = igbe->regs.tidv.idv() * igbe->intClock();
1900            DPRINTF(EthernetDesc, "setting tidv\n");
1901            igbe->reschedule(igbe->tidvEvent, curTick() + delay, true);
1902        }
1903
1904        if (igbe->regs.tadv.idv() && igbe->regs.tidv.idv()) {
1905            Tick delay = igbe->regs.tadv.idv() * igbe->intClock();
1906            DPRINTF(EthernetDesc, "setting tadv\n");
1907            if (!igbe->tadvEvent.scheduled()) {
1908                igbe->schedule(igbe->tadvEvent, curTick() + delay);
1909            }
1910        }
1911    }
1912
1913
1914    if (!useTso ||  TxdOp::getLen(desc) == tsoDescBytesUsed) {
1915        DPRINTF(EthernetDesc, "Descriptor Done\n");
1916        igbe->anDq("TXS", annUnusedCacheQ);
1917        unusedCache.pop_front();
1918        igbe->anQ("TXS", annUsedCacheQ);
1919        usedCache.push_back(desc);
1920        tsoDescBytesUsed = 0;
1921    }
1922
1923    if (useTso && tsoUsedLen == tsoTotalLen)
1924        useTso = false;
1925
1926
1927    DPRINTF(EthernetDesc,
1928            "------Packet of %d bytes ready for transmission-------\n",
1929            pktPtr->length);
1930    pktDone = true;
1931    pktWaiting = false;
1932    pktPtr = NULL;
1933    tsoPktHasHeader = false;
1934
1935    if (igbe->regs.txdctl.wthresh() == 0) {
1936        igbe->anBegin("TXS", "Desc Writeback");
1937        DPRINTF(EthernetDesc, "WTHRESH == 0, writing back descriptor\n");
1938        writeback(0);
1939    } else if (!igbe->regs.txdctl.gran() && igbe->regs.txdctl.wthresh() <=
1940               descInBlock(usedCache.size())) {
1941        DPRINTF(EthernetDesc, "used > WTHRESH, writing back descriptor\n");
1942        igbe->anBegin("TXS", "Desc Writeback");
1943        writeback((igbe->cacheBlockSize()-1)>>4);
1944    } else if (igbe->regs.txdctl.wthresh() <= usedCache.size()) {
1945        DPRINTF(EthernetDesc, "used > WTHRESH, writing back descriptor\n");
1946        igbe->anBegin("TXS", "Desc Writeback");
1947        writeback((igbe->cacheBlockSize()-1)>>4);
1948    }
1949
1950    enableSm();
1951    igbe->checkDrain();
1952}
1953
1954void
1955IGbE::TxDescCache::actionAfterWb()
1956{
1957    DPRINTF(EthernetDesc, "actionAfterWb() completionEnabled: %d\n",
1958            completionEnabled);
1959    igbe->postInterrupt(iGbReg::IT_TXDW);
1960    if (completionEnabled) {
1961        descEnd = igbe->regs.tdh();
1962        DPRINTF(EthernetDesc,
1963                "Completion writing back value: %d to addr: %#x\n", descEnd,
1964                completionAddress);
1965        igbe->dmaWrite(pciToDma(mbits(completionAddress, 63, 2)),
1966                       sizeof(descEnd), &nullEvent, (uint8_t*)&descEnd, 0);
1967    }
1968}
1969
1970void
1971IGbE::TxDescCache::serialize(CheckpointOut &cp) const
1972{
1973    DescCache<TxDesc>::serialize(cp);
1974
1975    SERIALIZE_SCALAR(pktDone);
1976    SERIALIZE_SCALAR(isTcp);
1977    SERIALIZE_SCALAR(pktWaiting);
1978    SERIALIZE_SCALAR(pktMultiDesc);
1979
1980    SERIALIZE_SCALAR(useTso);
1981    SERIALIZE_SCALAR(tsoHeaderLen);
1982    SERIALIZE_SCALAR(tsoMss);
1983    SERIALIZE_SCALAR(tsoTotalLen);
1984    SERIALIZE_SCALAR(tsoUsedLen);
1985    SERIALIZE_SCALAR(tsoPrevSeq);;
1986    SERIALIZE_SCALAR(tsoPktPayloadBytes);
1987    SERIALIZE_SCALAR(tsoLoadedHeader);
1988    SERIALIZE_SCALAR(tsoPktHasHeader);
1989    SERIALIZE_ARRAY(tsoHeader, 256);
1990    SERIALIZE_SCALAR(tsoDescBytesUsed);
1991    SERIALIZE_SCALAR(tsoCopyBytes);
1992    SERIALIZE_SCALAR(tsoPkts);
1993
1994    SERIALIZE_SCALAR(completionAddress);
1995    SERIALIZE_SCALAR(completionEnabled);
1996    SERIALIZE_SCALAR(descEnd);
1997}
1998
1999void
2000IGbE::TxDescCache::unserialize(CheckpointIn &cp)
2001{
2002    DescCache<TxDesc>::unserialize(cp);
2003
2004    UNSERIALIZE_SCALAR(pktDone);
2005    UNSERIALIZE_SCALAR(isTcp);
2006    UNSERIALIZE_SCALAR(pktWaiting);
2007    UNSERIALIZE_SCALAR(pktMultiDesc);
2008
2009    UNSERIALIZE_SCALAR(useTso);
2010    UNSERIALIZE_SCALAR(tsoHeaderLen);
2011    UNSERIALIZE_SCALAR(tsoMss);
2012    UNSERIALIZE_SCALAR(tsoTotalLen);
2013    UNSERIALIZE_SCALAR(tsoUsedLen);
2014    UNSERIALIZE_SCALAR(tsoPrevSeq);;
2015    UNSERIALIZE_SCALAR(tsoPktPayloadBytes);
2016    UNSERIALIZE_SCALAR(tsoLoadedHeader);
2017    UNSERIALIZE_SCALAR(tsoPktHasHeader);
2018    UNSERIALIZE_ARRAY(tsoHeader, 256);
2019    UNSERIALIZE_SCALAR(tsoDescBytesUsed);
2020    UNSERIALIZE_SCALAR(tsoCopyBytes);
2021    UNSERIALIZE_SCALAR(tsoPkts);
2022
2023    UNSERIALIZE_SCALAR(completionAddress);
2024    UNSERIALIZE_SCALAR(completionEnabled);
2025    UNSERIALIZE_SCALAR(descEnd);
2026}
2027
2028bool
2029IGbE::TxDescCache::packetAvailable()
2030{
2031    if (pktDone) {
2032        pktDone = false;
2033        return true;
2034    }
2035    return false;
2036}
2037
2038void
2039IGbE::TxDescCache::enableSm()
2040{
2041    if (igbe->drainState() != DrainState::Draining) {
2042        igbe->txTick = true;
2043        igbe->restartClock();
2044    }
2045}
2046
2047bool
2048IGbE::TxDescCache::hasOutstandingEvents()
2049{
2050    return pktEvent.scheduled() || wbEvent.scheduled() ||
2051        fetchEvent.scheduled();
2052}
2053
2054
2055///////////////////////////////////// IGbE /////////////////////////////////
2056
2057void
2058IGbE::restartClock()
2059{
2060    if (!tickEvent.scheduled() && (rxTick || txTick || txFifoTick) &&
2061        drainState() == DrainState::Running)
2062        schedule(tickEvent, clockEdge(Cycles(1)));
2063}
2064
2065DrainState
2066IGbE::drain()
2067{
2068    unsigned int count(0);
2069    if (rxDescCache.hasOutstandingEvents() ||
2070        txDescCache.hasOutstandingEvents()) {
2071        count++;
2072    }
2073
2074    txFifoTick = false;
2075    txTick = false;
2076    rxTick = false;
2077
2078    if (tickEvent.scheduled())
2079        deschedule(tickEvent);
2080
2081    if (count) {
2082        DPRINTF(Drain, "IGbE not drained\n");
2083        return DrainState::Draining;
2084    } else
2085        return DrainState::Drained;
2086}
2087
2088void
2089IGbE::drainResume()
2090{
2091    Drainable::drainResume();
2092
2093    txFifoTick = true;
2094    txTick = true;
2095    rxTick = true;
2096
2097    restartClock();
2098    DPRINTF(EthernetSM, "resuming from drain");
2099}
2100
2101void
2102IGbE::checkDrain()
2103{
2104    if (drainState() != DrainState::Draining)
2105        return;
2106
2107    txFifoTick = false;
2108    txTick = false;
2109    rxTick = false;
2110    if (!rxDescCache.hasOutstandingEvents() &&
2111        !txDescCache.hasOutstandingEvents()) {
2112        DPRINTF(Drain, "IGbE done draining, processing drain event\n");
2113        signalDrainDone();
2114    }
2115}
2116
2117void
2118IGbE::txStateMachine()
2119{
2120    if (!regs.tctl.en()) {
2121        txTick = false;
2122        DPRINTF(EthernetSM, "TXS: TX disabled, stopping ticking\n");
2123        return;
2124    }
2125
2126    // If we have a packet available and it's length is not 0 (meaning it's not
2127    // a multidescriptor packet) put it in the fifo, otherwise an the next
2128    // iteration we'll get the rest of the data
2129    if (txPacket && txDescCache.packetAvailable()
2130        && !txDescCache.packetMultiDesc() && txPacket->length) {
2131        anQ("TXS", "TX FIFO Q");
2132        DPRINTF(EthernetSM, "TXS: packet placed in TX FIFO\n");
2133#ifndef NDEBUG
2134        bool success =
2135#endif
2136            txFifo.push(txPacket);
2137        txFifoTick = true && drainState() != DrainState::Draining;
2138        assert(success);
2139        txPacket = NULL;
2140        anBegin("TXS", "Desc Writeback");
2141        txDescCache.writeback((cacheBlockSize()-1)>>4);
2142        return;
2143    }
2144
2145    // Only support descriptor granularity
2146    if (regs.txdctl.lwthresh() &&
2147        txDescCache.descLeft() < (regs.txdctl.lwthresh() * 8)) {
2148        DPRINTF(EthernetSM, "TXS: LWTHRESH caused posting of TXDLOW\n");
2149        postInterrupt(IT_TXDLOW);
2150    }
2151
2152    if (!txPacket) {
2153        txPacket = std::make_shared<EthPacketData>(16384);
2154    }
2155
2156    if (!txDescCache.packetWaiting()) {
2157        if (txDescCache.descLeft() == 0) {
2158            postInterrupt(IT_TXQE);
2159            anBegin("TXS", "Desc Writeback");
2160            txDescCache.writeback(0);
2161            anBegin("TXS", "Desc Fetch");
2162            anWe("TXS", txDescCache.annUnusedCacheQ);
2163            txDescCache.fetchDescriptors();
2164            DPRINTF(EthernetSM, "TXS: No descriptors left in ring, forcing "
2165                    "writeback stopping ticking and posting TXQE\n");
2166            txTick = false;
2167            return;
2168        }
2169
2170
2171        if (!(txDescCache.descUnused())) {
2172            anBegin("TXS", "Desc Fetch");
2173            txDescCache.fetchDescriptors();
2174            anWe("TXS", txDescCache.annUnusedCacheQ);
2175            DPRINTF(EthernetSM, "TXS: No descriptors available in cache, "
2176                    "fetching and stopping ticking\n");
2177            txTick = false;
2178            return;
2179        }
2180        anPq("TXS", txDescCache.annUnusedCacheQ);
2181
2182
2183        txDescCache.processContextDesc();
2184        if (txDescCache.packetWaiting()) {
2185            DPRINTF(EthernetSM,
2186                    "TXS: Fetching TSO header, stopping ticking\n");
2187            txTick = false;
2188            return;
2189        }
2190
2191        unsigned size = txDescCache.getPacketSize(txPacket);
2192        if (size > 0 && txFifo.avail() > size) {
2193            anRq("TXS", "TX FIFO Q");
2194            anBegin("TXS", "DMA Packet");
2195            DPRINTF(EthernetSM, "TXS: Reserving %d bytes in FIFO and "
2196                    "beginning DMA of next packet\n", size);
2197            txFifo.reserve(size);
2198            txDescCache.getPacketData(txPacket);
2199        } else if (size == 0) {
2200            DPRINTF(EthernetSM, "TXS: getPacketSize returned: %d\n", size);
2201            DPRINTF(EthernetSM,
2202                    "TXS: No packets to get, writing back used descriptors\n");
2203            anBegin("TXS", "Desc Writeback");
2204            txDescCache.writeback(0);
2205        } else {
2206            anWf("TXS", "TX FIFO Q");
2207            DPRINTF(EthernetSM, "TXS: FIFO full, stopping ticking until space "
2208                    "available in FIFO\n");
2209            txTick = false;
2210        }
2211
2212
2213        return;
2214    }
2215    DPRINTF(EthernetSM, "TXS: Nothing to do, stopping ticking\n");
2216    txTick = false;
2217}
2218
2219bool
2220IGbE::ethRxPkt(EthPacketPtr pkt)
2221{
2222    rxBytes += pkt->length;
2223    rxPackets++;
2224
2225    DPRINTF(Ethernet, "RxFIFO: Receiving pcakte from wire\n");
2226    anBegin("RXQ", "Wire Recv");
2227
2228
2229    if (!regs.rctl.en()) {
2230        DPRINTF(Ethernet, "RxFIFO: RX not enabled, dropping\n");
2231        anBegin("RXQ", "FIFO Drop", CPA::FL_BAD);
2232        return true;
2233    }
2234
2235    // restart the state machines if they are stopped
2236    rxTick = true && drainState() != DrainState::Draining;
2237    if ((rxTick || txTick) && !tickEvent.scheduled()) {
2238        DPRINTF(EthernetSM,
2239                "RXS: received packet into fifo, starting ticking\n");
2240        restartClock();
2241    }
2242
2243    if (!rxFifo.push(pkt)) {
2244        DPRINTF(Ethernet, "RxFIFO: Packet won't fit in fifo... dropped\n");
2245        postInterrupt(IT_RXO, true);
2246        anBegin("RXQ", "FIFO Drop", CPA::FL_BAD);
2247        return false;
2248    }
2249
2250    if (CPA::available() && cpa->enabled()) {
2251        assert(sys->numSystemsRunning <= 2);
2252        System *other_sys;
2253        if (sys->systemList[0] == sys)
2254            other_sys = sys->systemList[1];
2255        else
2256            other_sys = sys->systemList[0];
2257
2258        cpa->hwDq(CPA::FL_NONE, sys, macAddr, "RXQ", "WireQ", 0, other_sys);
2259        anQ("RXQ", "RX FIFO Q");
2260        cpa->hwWe(CPA::FL_NONE, sys, macAddr, "RXQ", "WireQ", 0, other_sys);
2261    }
2262
2263    return true;
2264}
2265
2266
2267void
2268IGbE::rxStateMachine()
2269{
2270    if (!regs.rctl.en()) {
2271        rxTick = false;
2272        DPRINTF(EthernetSM, "RXS: RX disabled, stopping ticking\n");
2273        return;
2274    }
2275
2276    // If the packet is done check for interrupts/descriptors/etc
2277    if (rxDescCache.packetDone()) {
2278        rxDmaPacket = false;
2279        DPRINTF(EthernetSM, "RXS: Packet completed DMA to memory\n");
2280        int descLeft = rxDescCache.descLeft();
2281        DPRINTF(EthernetSM, "RXS: descLeft: %d rdmts: %d rdlen: %d\n",
2282                descLeft, regs.rctl.rdmts(), regs.rdlen());
2283        switch (regs.rctl.rdmts()) {
2284          case 2: if (descLeft > .125 * regs.rdlen()) break;
2285          case 1: if (descLeft > .250 * regs.rdlen()) break;
2286          case 0: if (descLeft > .500 * regs.rdlen())  break;
2287            DPRINTF(Ethernet, "RXS: Interrupting (RXDMT) "
2288                    "because of descriptors left\n");
2289            postInterrupt(IT_RXDMT);
2290            break;
2291        }
2292
2293        if (rxFifo.empty())
2294            rxDescCache.writeback(0);
2295
2296        if (descLeft == 0) {
2297            anBegin("RXS", "Writeback Descriptors");
2298            rxDescCache.writeback(0);
2299            DPRINTF(EthernetSM, "RXS: No descriptors left in ring, forcing"
2300                    " writeback and stopping ticking\n");
2301            rxTick = false;
2302        }
2303
2304        // only support descriptor granulaties
2305        assert(regs.rxdctl.gran());
2306
2307        if (regs.rxdctl.wthresh() >= rxDescCache.descUsed()) {
2308            DPRINTF(EthernetSM,
2309                    "RXS: Writing back because WTHRESH >= descUsed\n");
2310            anBegin("RXS", "Writeback Descriptors");
2311            if (regs.rxdctl.wthresh() < (cacheBlockSize()>>4))
2312                rxDescCache.writeback(regs.rxdctl.wthresh()-1);
2313            else
2314                rxDescCache.writeback((cacheBlockSize()-1)>>4);
2315        }
2316
2317        if ((rxDescCache.descUnused() < regs.rxdctl.pthresh()) &&
2318            ((rxDescCache.descLeft() - rxDescCache.descUnused()) >
2319             regs.rxdctl.hthresh())) {
2320            DPRINTF(EthernetSM, "RXS: Fetching descriptors because "
2321                    "descUnused < PTHRESH\n");
2322            anBegin("RXS", "Fetch Descriptors");
2323            rxDescCache.fetchDescriptors();
2324        }
2325
2326        if (rxDescCache.descUnused() == 0) {
2327            anBegin("RXS", "Fetch Descriptors");
2328            rxDescCache.fetchDescriptors();
2329            anWe("RXS", rxDescCache.annUnusedCacheQ);
2330            DPRINTF(EthernetSM, "RXS: No descriptors available in cache, "
2331                    "fetching descriptors and stopping ticking\n");
2332            rxTick = false;
2333        }
2334        return;
2335    }
2336
2337    if (rxDmaPacket) {
2338        DPRINTF(EthernetSM,
2339                "RXS: stopping ticking until packet DMA completes\n");
2340        rxTick = false;
2341        return;
2342    }
2343
2344    if (!rxDescCache.descUnused()) {
2345        anBegin("RXS", "Fetch Descriptors");
2346        rxDescCache.fetchDescriptors();
2347        anWe("RXS", rxDescCache.annUnusedCacheQ);
2348        DPRINTF(EthernetSM, "RXS: No descriptors available in cache, "
2349                "stopping ticking\n");
2350        rxTick = false;
2351        DPRINTF(EthernetSM, "RXS: No descriptors available, fetching\n");
2352        return;
2353    }
2354    anPq("RXS", rxDescCache.annUnusedCacheQ);
2355
2356    if (rxFifo.empty()) {
2357        anWe("RXS", "RX FIFO Q");
2358        DPRINTF(EthernetSM, "RXS: RxFIFO empty, stopping ticking\n");
2359        rxTick = false;
2360        return;
2361    }
2362    anPq("RXS", "RX FIFO Q");
2363    anBegin("RXS", "Get Desc");
2364
2365    EthPacketPtr pkt;
2366    pkt = rxFifo.front();
2367
2368
2369    pktOffset = rxDescCache.writePacket(pkt, pktOffset);
2370    DPRINTF(EthernetSM, "RXS: Writing packet into memory\n");
2371    if (pktOffset == pkt->length) {
2372        anBegin( "RXS", "FIFO Dequeue");
2373        DPRINTF(EthernetSM, "RXS: Removing packet from FIFO\n");
2374        pktOffset = 0;
2375        anDq("RXS", "RX FIFO Q");
2376        rxFifo.pop();
2377    }
2378
2379    DPRINTF(EthernetSM, "RXS: stopping ticking until packet DMA completes\n");
2380    rxTick = false;
2381    rxDmaPacket = true;
2382    anBegin("RXS", "DMA Packet");
2383}
2384
2385void
2386IGbE::txWire()
2387{
2388    if (txFifo.empty()) {
2389        anWe("TXQ", "TX FIFO Q");
2390        txFifoTick = false;
2391        return;
2392    }
2393
2394
2395    anPq("TXQ", "TX FIFO Q");
2396    if (etherInt->sendPacket(txFifo.front())) {
2397        anQ("TXQ", "WireQ");
2398        if (DTRACE(EthernetSM)) {
2399            IpPtr ip(txFifo.front());
2400            if (ip)
2401                DPRINTF(EthernetSM, "Transmitting Ip packet with Id=%d\n",
2402                        ip->id());
2403            else
2404                DPRINTF(EthernetSM, "Transmitting Non-Ip packet\n");
2405        }
2406        anDq("TXQ", "TX FIFO Q");
2407        anBegin("TXQ", "Wire Send");
2408        DPRINTF(EthernetSM,
2409                "TxFIFO: Successful transmit, bytes available in fifo: %d\n",
2410                txFifo.avail());
2411
2412        txBytes += txFifo.front()->length;
2413        txPackets++;
2414        txFifoTick = false;
2415
2416        txFifo.pop();
2417    } else {
2418        // We'll get woken up when the packet ethTxDone() gets called
2419        txFifoTick = false;
2420    }
2421}
2422
2423void
2424IGbE::tick()
2425{
2426    DPRINTF(EthernetSM, "IGbE: -------------- Cycle --------------\n");
2427
2428    if (rxTick)
2429        rxStateMachine();
2430
2431    if (txTick)
2432        txStateMachine();
2433
2434    if (txFifoTick)
2435        txWire();
2436
2437
2438    if (rxTick || txTick || txFifoTick)
2439        schedule(tickEvent, curTick() + clockPeriod());
2440}
2441
2442void
2443IGbE::ethTxDone()
2444{
2445    anBegin("TXQ", "Send Done");
2446    // restart the tx state machines if they are stopped
2447    // fifo to send another packet
2448    // tx sm to put more data into the fifo
2449    txFifoTick = true && drainState() != DrainState::Draining;
2450    if (txDescCache.descLeft() != 0 && drainState() != DrainState::Draining)
2451        txTick = true;
2452
2453    restartClock();
2454    txWire();
2455    DPRINTF(EthernetSM, "TxFIFO: Transmission complete\n");
2456}
2457
2458void
2459IGbE::serialize(CheckpointOut &cp) const
2460{
2461    PciDevice::serialize(cp);
2462
2463    regs.serialize(cp);
2464    SERIALIZE_SCALAR(eeOpBits);
2465    SERIALIZE_SCALAR(eeAddrBits);
2466    SERIALIZE_SCALAR(eeDataBits);
2467    SERIALIZE_SCALAR(eeOpcode);
2468    SERIALIZE_SCALAR(eeAddr);
2469    SERIALIZE_SCALAR(lastInterrupt);
2470    SERIALIZE_ARRAY(flash,iGbReg::EEPROM_SIZE);
2471
2472    rxFifo.serialize("rxfifo", cp);
2473    txFifo.serialize("txfifo", cp);
2474
2475    bool txPktExists = txPacket != nullptr;
2476    SERIALIZE_SCALAR(txPktExists);
2477    if (txPktExists)
2478        txPacket->serialize("txpacket", cp);
2479
2480    Tick rdtr_time = 0, radv_time = 0, tidv_time = 0, tadv_time = 0,
2481        inter_time = 0;
2482
2483    if (rdtrEvent.scheduled())
2484        rdtr_time = rdtrEvent.when();
2485    SERIALIZE_SCALAR(rdtr_time);
2486
2487    if (radvEvent.scheduled())
2488        radv_time = radvEvent.when();
2489    SERIALIZE_SCALAR(radv_time);
2490
2491    if (tidvEvent.scheduled())
2492        tidv_time = tidvEvent.when();
2493    SERIALIZE_SCALAR(tidv_time);
2494
2495    if (tadvEvent.scheduled())
2496        tadv_time = tadvEvent.when();
2497    SERIALIZE_SCALAR(tadv_time);
2498
2499    if (interEvent.scheduled())
2500        inter_time = interEvent.when();
2501    SERIALIZE_SCALAR(inter_time);
2502
2503    SERIALIZE_SCALAR(pktOffset);
2504
2505    txDescCache.serializeSection(cp, "TxDescCache");
2506    rxDescCache.serializeSection(cp, "RxDescCache");
2507}
2508
2509void
2510IGbE::unserialize(CheckpointIn &cp)
2511{
2512    PciDevice::unserialize(cp);
2513
2514    regs.unserialize(cp);
2515    UNSERIALIZE_SCALAR(eeOpBits);
2516    UNSERIALIZE_SCALAR(eeAddrBits);
2517    UNSERIALIZE_SCALAR(eeDataBits);
2518    UNSERIALIZE_SCALAR(eeOpcode);
2519    UNSERIALIZE_SCALAR(eeAddr);
2520    UNSERIALIZE_SCALAR(lastInterrupt);
2521    UNSERIALIZE_ARRAY(flash,iGbReg::EEPROM_SIZE);
2522
2523    rxFifo.unserialize("rxfifo", cp);
2524    txFifo.unserialize("txfifo", cp);
2525
2526    bool txPktExists;
2527    UNSERIALIZE_SCALAR(txPktExists);
2528    if (txPktExists) {
2529        txPacket = std::make_shared<EthPacketData>(16384);
2530        txPacket->unserialize("txpacket", cp);
2531    }
2532
2533    rxTick = true;
2534    txTick = true;
2535    txFifoTick = true;
2536
2537    Tick rdtr_time, radv_time, tidv_time, tadv_time, inter_time;
2538    UNSERIALIZE_SCALAR(rdtr_time);
2539    UNSERIALIZE_SCALAR(radv_time);
2540    UNSERIALIZE_SCALAR(tidv_time);
2541    UNSERIALIZE_SCALAR(tadv_time);
2542    UNSERIALIZE_SCALAR(inter_time);
2543
2544    if (rdtr_time)
2545        schedule(rdtrEvent, rdtr_time);
2546
2547    if (radv_time)
2548        schedule(radvEvent, radv_time);
2549
2550    if (tidv_time)
2551        schedule(tidvEvent, tidv_time);
2552
2553    if (tadv_time)
2554        schedule(tadvEvent, tadv_time);
2555
2556    if (inter_time)
2557        schedule(interEvent, inter_time);
2558
2559    UNSERIALIZE_SCALAR(pktOffset);
2560
2561    txDescCache.unserializeSection(cp, "TxDescCache");
2562    rxDescCache.unserializeSection(cp, "RxDescCache");
2563}
2564
2565IGbE *
2566IGbEParams::create()
2567{
2568    return new IGbE(this);
2569}
2570