i8254xGBe.cc revision 4870
12SN/A/*
21762SN/A * Copyright (c) 2006 The Regents of The University of Michigan
32SN/A * All rights reserved.
42SN/A *
52SN/A * Redistribution and use in source and binary forms, with or without
62SN/A * modification, are permitted provided that the following conditions are
72SN/A * met: redistributions of source code must retain the above copyright
82SN/A * notice, this list of conditions and the following disclaimer;
92SN/A * redistributions in binary form must reproduce the above copyright
102SN/A * notice, this list of conditions and the following disclaimer in the
112SN/A * documentation and/or other materials provided with the distribution;
122SN/A * neither the name of the copyright holders nor the names of its
132SN/A * contributors may be used to endorse or promote products derived from
142SN/A * this software without specific prior written permission.
152SN/A *
162SN/A * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
172SN/A * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
182SN/A * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
192SN/A * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
202SN/A * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
212SN/A * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
222SN/A * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
232SN/A * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
242SN/A * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
252SN/A * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
262SN/A * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
272665Ssaidi@eecs.umich.edu *
282665Ssaidi@eecs.umich.edu * Authors: Ali Saidi
292665Ssaidi@eecs.umich.edu */
302SN/A
312SN/A/* @file
3211793Sbrandon.potter@amd.com * Device model for Intel's 8254x line of gigabit ethernet controllers.
3311793Sbrandon.potter@amd.com * In particular an 82547 revision 2 (82547GI) MAC because it seems to have the
342SN/A * fewest workarounds in the driver. It will probably work with most of the
358229Snate@binkert.org * other MACs with slight modifications.
364167Sbinkertn@umich.edu */
372SN/A
382107SN/A
392SN/A/*
405870Snate@binkert.org * @todo really there are multiple dma engines.. we should implement them.
415870Snate@binkert.org */
425870Snate@binkert.org
435870Snate@binkert.org#include "base/inet.hh"
445870Snate@binkert.org#include "base/trace.hh"
455870Snate@binkert.org#include "dev/i8254xGBe.hh"
465870Snate@binkert.org#include "mem/packet.hh"
475870Snate@binkert.org#include "mem/packet_access.hh"
482SN/A#include "sim/builder.hh"
497720Sgblack@eecs.umich.edu#include "sim/stats.hh"
507720Sgblack@eecs.umich.edu#include "sim/system.hh"
512SN/A
522SN/A#include <algorithm>
532SN/A
542SN/Ausing namespace iGbReg;
552SN/Ausing namespace Net;
562SN/A
572SN/AIGbE::IGbE(Params *p)
582680Sktlim@umich.edu    : PciDev(p), etherInt(NULL),  drainEvent(NULL), useFlowControl(p->use_flow_control),
592SN/A      rxFifo(p->rx_fifo_size), txFifo(p->tx_fifo_size), rxTick(false),
602SN/A      txTick(false), txFifoTick(false), rdtrEvent(this), radvEvent(this),
612SN/A      tadvEvent(this), tidvEvent(this), tickEvent(this), interEvent(this),
622SN/A      rxDescCache(this, name()+".RxDesc", p->rx_desc_cache_size),
632SN/A      txDescCache(this, name()+".TxDesc", p->tx_desc_cache_size), clock(p->clock)
642SN/A{
653271Sgblack@eecs.umich.edu    // Initialized internal registers per Intel documentation
667720Sgblack@eecs.umich.edu    // All registers intialized to 0 by per register constructor
673271Sgblack@eecs.umich.edu    regs.ctrl.fd(1);
684539Sgblack@eecs.umich.edu    regs.ctrl.lrst(1);
695870Snate@binkert.org    regs.ctrl.speed(2);
703271Sgblack@eecs.umich.edu    regs.ctrl.frcspd(1);
713271Sgblack@eecs.umich.edu    regs.sts.speed(3); // Say we're 1000Mbps
727720Sgblack@eecs.umich.edu    regs.sts.fd(1); // full duplex
737720Sgblack@eecs.umich.edu    regs.sts.lu(1); // link up
745870Snate@binkert.org    regs.eecd.fwe(1);
755870Snate@binkert.org    regs.eecd.ee_type(1);
765870Snate@binkert.org    regs.imr = 0;
775870Snate@binkert.org    regs.iam = 0;
785870Snate@binkert.org    regs.rxdctl.gran(1);
795870Snate@binkert.org    regs.rxdctl.wthresh(1);
807720Sgblack@eecs.umich.edu    regs.fcrth(1);
815870Snate@binkert.org
825870Snate@binkert.org    regs.pba.rxa(0x30);
835870Snate@binkert.org    regs.pba.txa(0x10);
845870Snate@binkert.org
855870Snate@binkert.org    eeOpBits            = 0;
865870Snate@binkert.org    eeAddrBits          = 0;
875870Snate@binkert.org    eeDataBits          = 0;
885870Snate@binkert.org    eeOpcode            = 0;
895870Snate@binkert.org
905870Snate@binkert.org    // clear all 64 16 bit words of the eeprom
915870Snate@binkert.org    memset(&flash, 0, EEPROM_SIZE*2);
925870Snate@binkert.org
935870Snate@binkert.org    // Set the MAC address
945870Snate@binkert.org    memcpy(flash, p->hardware_address.bytes(), ETH_ADDR_LEN);
955870Snate@binkert.org    for (int x = 0; x < ETH_ADDR_LEN/2; x++)
9610201SAndrew.Bardsley@arm.com        flash[x] = htobe(flash[x]);
9710201SAndrew.Bardsley@arm.com
9810201SAndrew.Bardsley@arm.com    uint16_t csum = 0;
9910201SAndrew.Bardsley@arm.com    for (int x = 0; x < EEPROM_SIZE; x++)
10010201SAndrew.Bardsley@arm.com        csum += htobe(flash[x]);
10110201SAndrew.Bardsley@arm.com
10210201SAndrew.Bardsley@arm.com
10310201SAndrew.Bardsley@arm.com    // Magic happy checksum value
10410201SAndrew.Bardsley@arm.com    flash[EEPROM_SIZE-1] = htobe((uint16_t)(EEPROM_CSUM - csum));
10510201SAndrew.Bardsley@arm.com
10610201SAndrew.Bardsley@arm.com    rxFifo.clear();
10710201SAndrew.Bardsley@arm.com    txFifo.clear();
10810201SAndrew.Bardsley@arm.com}
10910201SAndrew.Bardsley@arm.com
11010201SAndrew.Bardsley@arm.com
11110201SAndrew.Bardsley@arm.comTick
11210201SAndrew.Bardsley@arm.comIGbE::writeConfig(PacketPtr pkt)
113{
114    int offset = pkt->getAddr() & PCI_CONFIG_SIZE;
115    if (offset < PCI_DEVICE_SPECIFIC)
116        PciDev::writeConfig(pkt);
117    else
118        panic("Device specific PCI config space not implemented.\n");
119
120    ///
121    /// Some work may need to be done here based for the pci COMMAND bits.
122    ///
123
124    return pioDelay;
125}
126
127Tick
128IGbE::read(PacketPtr pkt)
129{
130    int bar;
131    Addr daddr;
132
133    if (!getBAR(pkt->getAddr(), bar, daddr))
134        panic("Invalid PCI memory access to unmapped memory.\n");
135
136    // Only Memory register BAR is allowed
137    assert(bar == 0);
138
139    // Only 32bit accesses allowed
140    assert(pkt->getSize() == 4);
141
142    DPRINTF(Ethernet, "Read device register %#X\n", daddr);
143
144    pkt->allocate();
145
146    ///
147    /// Handle read of register here
148    ///
149
150
151    switch (daddr) {
152      case REG_CTRL:
153        pkt->set<uint32_t>(regs.ctrl());
154        break;
155      case REG_STATUS:
156        pkt->set<uint32_t>(regs.sts());
157        break;
158      case REG_EECD:
159        pkt->set<uint32_t>(regs.eecd());
160        break;
161      case REG_EERD:
162        pkt->set<uint32_t>(regs.eerd());
163        break;
164      case REG_CTRL_EXT:
165        pkt->set<uint32_t>(regs.ctrl_ext());
166        break;
167      case REG_MDIC:
168        pkt->set<uint32_t>(regs.mdic());
169        break;
170      case REG_ICR:
171        DPRINTF(Ethernet, "Reading ICR. ICR=%#x IMR=%#x IAM=%#x IAME=%d\n", regs.icr(),
172                regs.imr, regs.iam, regs.ctrl_ext.iame());
173        pkt->set<uint32_t>(regs.icr());
174        if (regs.icr.int_assert() || regs.imr == 0) {
175            regs.icr = regs.icr() & ~mask(30);
176            DPRINTF(Ethernet, "Cleared ICR. ICR=%#x\n", regs.icr());
177        }
178        if (regs.ctrl_ext.iame() && regs.icr.int_assert())
179            regs.imr &= ~regs.iam;
180        chkInterrupt();
181        break;
182      case REG_ITR:
183        pkt->set<uint32_t>(regs.itr());
184        break;
185      case REG_RCTL:
186        pkt->set<uint32_t>(regs.rctl());
187        break;
188      case REG_FCTTV:
189        pkt->set<uint32_t>(regs.fcttv());
190        break;
191      case REG_TCTL:
192        pkt->set<uint32_t>(regs.tctl());
193        break;
194      case REG_PBA:
195        pkt->set<uint32_t>(regs.pba());
196        break;
197      case REG_WUC:
198      case REG_LEDCTL:
199        pkt->set<uint32_t>(0); // We don't care, so just return 0
200        break;
201      case REG_FCRTL:
202        pkt->set<uint32_t>(regs.fcrtl());
203        break;
204      case REG_FCRTH:
205        pkt->set<uint32_t>(regs.fcrth());
206        break;
207      case REG_RDBAL:
208        pkt->set<uint32_t>(regs.rdba.rdbal());
209        break;
210      case REG_RDBAH:
211        pkt->set<uint32_t>(regs.rdba.rdbah());
212        break;
213      case REG_RDLEN:
214        pkt->set<uint32_t>(regs.rdlen());
215        break;
216      case REG_RDH:
217        pkt->set<uint32_t>(regs.rdh());
218        break;
219      case REG_RDT:
220        pkt->set<uint32_t>(regs.rdt());
221        break;
222      case REG_RDTR:
223        pkt->set<uint32_t>(regs.rdtr());
224        if (regs.rdtr.fpd()) {
225            rxDescCache.writeback(0);
226            DPRINTF(EthernetIntr, "Posting interrupt because of RDTR.FPD write\n");
227            postInterrupt(IT_RXT);
228            regs.rdtr.fpd(0);
229        }
230        break;
231      case REG_RADV:
232        pkt->set<uint32_t>(regs.radv());
233        break;
234      case REG_TDBAL:
235        pkt->set<uint32_t>(regs.tdba.tdbal());
236        break;
237      case REG_TDBAH:
238        pkt->set<uint32_t>(regs.tdba.tdbah());
239        break;
240      case REG_TDLEN:
241        pkt->set<uint32_t>(regs.tdlen());
242        break;
243      case REG_TDH:
244        pkt->set<uint32_t>(regs.tdh());
245        break;
246      case REG_TDT:
247        pkt->set<uint32_t>(regs.tdt());
248        break;
249      case REG_TIDV:
250        pkt->set<uint32_t>(regs.tidv());
251        break;
252      case REG_TXDCTL:
253        pkt->set<uint32_t>(regs.txdctl());
254        break;
255      case REG_TADV:
256        pkt->set<uint32_t>(regs.tadv());
257        break;
258      case REG_RXCSUM:
259        pkt->set<uint32_t>(regs.rxcsum());
260        break;
261      case REG_MANC:
262        pkt->set<uint32_t>(regs.manc());
263        break;
264      default:
265        if (!(daddr >= REG_VFTA && daddr < (REG_VFTA + VLAN_FILTER_TABLE_SIZE*4)) &&
266            !(daddr >= REG_RAL && daddr < (REG_RAL + RCV_ADDRESS_TABLE_SIZE*8)) &&
267            !(daddr >= REG_MTA && daddr < (REG_MTA + MULTICAST_TABLE_SIZE*4)) &&
268            !(daddr >= REG_CRCERRS && daddr < (REG_CRCERRS + STATS_REGS_SIZE)))
269            panic("Read request to unknown register number: %#x\n", daddr);
270        else
271            pkt->set<uint32_t>(0);
272    };
273
274    pkt->makeAtomicResponse();
275    return pioDelay;
276}
277
278Tick
279IGbE::write(PacketPtr pkt)
280{
281    int bar;
282    Addr daddr;
283
284
285    if (!getBAR(pkt->getAddr(), bar, daddr))
286        panic("Invalid PCI memory access to unmapped memory.\n");
287
288    // Only Memory register BAR is allowed
289    assert(bar == 0);
290
291    // Only 32bit accesses allowed
292    assert(pkt->getSize() == sizeof(uint32_t));
293
294    DPRINTF(Ethernet, "Wrote device register %#X value %#X\n", daddr, pkt->get<uint32_t>());
295
296    ///
297    /// Handle write of register here
298    ///
299    uint32_t val = pkt->get<uint32_t>();
300
301    Regs::RCTL oldrctl;
302    Regs::TCTL oldtctl;
303
304    switch (daddr) {
305      case REG_CTRL:
306        regs.ctrl = val;
307        if (regs.ctrl.tfce())
308            warn("TX Flow control enabled, should implement\n");
309        if (regs.ctrl.rfce())
310            warn("RX Flow control enabled, should implement\n");
311        break;
312      case REG_CTRL_EXT:
313        regs.ctrl_ext = val;
314        break;
315      case REG_STATUS:
316        regs.sts = val;
317        break;
318      case REG_EECD:
319        int oldClk;
320        oldClk = regs.eecd.sk();
321        regs.eecd = val;
322        // See if this is a eeprom access and emulate accordingly
323        if (!oldClk && regs.eecd.sk()) {
324            if (eeOpBits < 8) {
325                eeOpcode = eeOpcode << 1 | regs.eecd.din();
326                eeOpBits++;
327            } else if (eeAddrBits < 8 && eeOpcode == EEPROM_READ_OPCODE_SPI) {
328                eeAddr = eeAddr << 1 | regs.eecd.din();
329                eeAddrBits++;
330            } else if (eeDataBits < 16 && eeOpcode == EEPROM_READ_OPCODE_SPI) {
331                assert(eeAddr>>1 < EEPROM_SIZE);
332                DPRINTF(EthernetEEPROM, "EEPROM bit read: %d word: %#X\n",
333                        flash[eeAddr>>1] >> eeDataBits & 0x1, flash[eeAddr>>1]);
334                regs.eecd.dout((flash[eeAddr>>1] >> (15-eeDataBits)) & 0x1);
335                eeDataBits++;
336            } else if (eeDataBits < 8 && eeOpcode == EEPROM_RDSR_OPCODE_SPI) {
337                regs.eecd.dout(0);
338                eeDataBits++;
339            } else
340                panic("What's going on with eeprom interface? opcode:"
341                       " %#x:%d addr: %#x:%d, data: %d\n", (uint32_t)eeOpcode,
342                       (uint32_t)eeOpBits, (uint32_t)eeAddr,
343                       (uint32_t)eeAddrBits, (uint32_t)eeDataBits);
344
345            // Reset everything for the next command
346            if ((eeDataBits == 16 && eeOpcode == EEPROM_READ_OPCODE_SPI) ||
347               (eeDataBits == 8 && eeOpcode == EEPROM_RDSR_OPCODE_SPI)) {
348                eeOpBits = 0;
349                eeAddrBits = 0;
350                eeDataBits = 0;
351               eeOpcode = 0;
352                eeAddr = 0;
353            }
354
355           DPRINTF(EthernetEEPROM, "EEPROM: opcode: %#X:%d addr: %#X:%d\n",
356                    (uint32_t)eeOpcode, (uint32_t) eeOpBits,
357                    (uint32_t)eeAddr>>1, (uint32_t)eeAddrBits);
358           if (eeOpBits == 8 && !(eeOpcode == EEPROM_READ_OPCODE_SPI ||
359                                   eeOpcode == EEPROM_RDSR_OPCODE_SPI ))
360                panic("Unknown eeprom opcode: %#X:%d\n", (uint32_t)eeOpcode,
361                        (uint32_t)eeOpBits);
362
363
364        }
365        // If driver requests eeprom access, immediately give it to it
366        regs.eecd.ee_gnt(regs.eecd.ee_req());
367        break;
368      case REG_EERD:
369        regs.eerd = val;
370        break;
371      case REG_MDIC:
372        regs.mdic = val;
373        if (regs.mdic.i())
374            panic("No support for interrupt on mdic complete\n");
375        if (regs.mdic.phyadd() != 1)
376            panic("No support for reading anything but phy\n");
377        DPRINTF(Ethernet, "%s phy address %x\n", regs.mdic.op() == 1 ? "Writing"
378                : "Reading", regs.mdic.regadd());
379        switch (regs.mdic.regadd()) {
380            case PHY_PSTATUS:
381                regs.mdic.data(0x796D); // link up
382                break;
383            case PHY_PID:
384                regs.mdic.data(0x02A8);
385                break;
386            case PHY_EPID:
387                regs.mdic.data(0x0380);
388                break;
389            case PHY_GSTATUS:
390                regs.mdic.data(0x7C00);
391                break;
392            case PHY_EPSTATUS:
393                regs.mdic.data(0x3000);
394                break;
395            case PHY_AGC:
396                regs.mdic.data(0x180); // some random length
397                break;
398            default:
399                regs.mdic.data(0);
400        }
401        regs.mdic.r(1);
402        break;
403      case REG_ICR:
404        DPRINTF(Ethernet, "Writing ICR. ICR=%#x IMR=%#x IAM=%#x IAME=%d\n", regs.icr(),
405                regs.imr, regs.iam, regs.ctrl_ext.iame());
406        if (regs.ctrl_ext.iame())
407            regs.imr &= ~regs.iam;
408        regs.icr = ~bits(val,30,0) & regs.icr();
409        chkInterrupt();
410        break;
411      case REG_ITR:
412        regs.itr = val;
413        break;
414      case REG_ICS:
415        DPRINTF(EthernetIntr, "Posting interrupt because of ICS write\n");
416        postInterrupt((IntTypes)val);
417        break;
418       case REG_IMS:
419        regs.imr |= val;
420        chkInterrupt();
421        break;
422      case REG_IMC:
423        regs.imr &= ~val;
424        chkInterrupt();
425        break;
426      case REG_IAM:
427        regs.iam = val;
428        break;
429      case REG_RCTL:
430        oldrctl = regs.rctl;
431        regs.rctl = val;
432        if (regs.rctl.rst()) {
433            rxDescCache.reset();
434            DPRINTF(EthernetSM, "RXS: Got RESET!\n");
435            rxFifo.clear();
436            regs.rctl.rst(0);
437        }
438        if (regs.rctl.en())
439            rxTick = true;
440        restartClock();
441        break;
442      case REG_FCTTV:
443        regs.fcttv = val;
444        break;
445      case REG_TCTL:
446        regs.tctl = val;
447        oldtctl = regs.tctl;
448        regs.tctl = val;
449        if (regs.tctl.en())
450           txTick = true;
451        restartClock();
452        if (regs.tctl.en() && !oldtctl.en()) {
453            txDescCache.reset();
454        }
455         break;
456      case REG_PBA:
457        regs.pba.rxa(val);
458        regs.pba.txa(64 - regs.pba.rxa());
459        break;
460      case REG_WUC:
461      case REG_LEDCTL:
462      case REG_FCAL:
463      case REG_FCAH:
464      case REG_FCT:
465      case REG_VET:
466      case REG_AIFS:
467      case REG_TIPG:
468        ; // We don't care, so don't store anything
469        break;
470      case REG_FCRTL:
471        regs.fcrtl = val;
472        break;
473      case REG_FCRTH:
474        regs.fcrth = val;
475        break;
476      case REG_RDBAL:
477        regs.rdba.rdbal( val & ~mask(4));
478        rxDescCache.areaChanged();
479        break;
480      case REG_RDBAH:
481        regs.rdba.rdbah(val);
482        rxDescCache.areaChanged();
483        break;
484      case REG_RDLEN:
485        regs.rdlen = val & ~mask(7);
486        rxDescCache.areaChanged();
487        break;
488      case REG_RDH:
489        regs.rdh = val;
490        rxDescCache.areaChanged();
491        break;
492      case REG_RDT:
493        regs.rdt = val;
494        rxTick = true;
495        restartClock();
496        break;
497      case REG_RDTR:
498        regs.rdtr = val;
499        break;
500      case REG_RADV:
501        regs.radv = val;
502        break;
503      case REG_TDBAL:
504        regs.tdba.tdbal( val & ~mask(4));
505        txDescCache.areaChanged();
506        break;
507      case REG_TDBAH:
508        regs.tdba.tdbah(val);
509        txDescCache.areaChanged();
510        break;
511      case REG_TDLEN:
512        regs.tdlen = val & ~mask(7);
513        txDescCache.areaChanged();
514        break;
515      case REG_TDH:
516        regs.tdh = val;
517        txDescCache.areaChanged();
518        break;
519      case REG_TDT:
520        regs.tdt = val;
521        txTick = true;
522        restartClock();
523        break;
524      case REG_TIDV:
525        regs.tidv = val;
526        break;
527      case REG_TXDCTL:
528        regs.txdctl = val;
529        break;
530      case REG_TADV:
531        regs.tadv = val;
532        break;
533      case REG_RXCSUM:
534        regs.rxcsum = val;
535        break;
536      case REG_MANC:
537        regs.manc = val;
538        break;
539      default:
540       if (!(daddr >= REG_VFTA && daddr < (REG_VFTA + VLAN_FILTER_TABLE_SIZE*4)) &&
541           !(daddr >= REG_RAL && daddr < (REG_RAL + RCV_ADDRESS_TABLE_SIZE*8)) &&
542           !(daddr >= REG_MTA && daddr < (REG_MTA + MULTICAST_TABLE_SIZE*4)))
543           panic("Write request to unknown register number: %#x\n", daddr);
544    };
545
546    pkt->makeAtomicResponse();
547    return pioDelay;
548}
549
550void
551IGbE::postInterrupt(IntTypes t, bool now)
552{
553    assert(t);
554
555    // Interrupt is already pending
556    if (t & regs.icr())
557        return;
558
559    if (regs.icr() & regs.imr)
560    {
561        regs.icr = regs.icr() | t;
562        if (!interEvent.scheduled())
563            interEvent.schedule(curTick + Clock::Int::ns * 256 *
564                    regs.itr.interval());
565    } else {
566        regs.icr = regs.icr() | t;
567        if (regs.itr.interval() == 0 || now) {
568            if (interEvent.scheduled())
569                interEvent.deschedule();
570            cpuPostInt();
571        } else {
572           DPRINTF(EthernetIntr, "EINT: Scheduling timer interrupt for %d ticks\n",
573                    Clock::Int::ns * 256 * regs.itr.interval());
574           if (!interEvent.scheduled())
575               interEvent.schedule(curTick + Clock::Int::ns * 256 * regs.itr.interval());
576        }
577    }
578}
579
580void
581IGbE::cpuPostInt()
582{
583    if (rdtrEvent.scheduled()) {
584        regs.icr.rxt0(1);
585        rdtrEvent.deschedule();
586    }
587    if (radvEvent.scheduled()) {
588        regs.icr.rxt0(1);
589        radvEvent.deschedule();
590    }
591    if (tadvEvent.scheduled()) {
592        regs.icr.txdw(1);
593        tadvEvent.deschedule();
594    }
595    if (tidvEvent.scheduled()) {
596        regs.icr.txdw(1);
597        tidvEvent.deschedule();
598    }
599
600    regs.icr.int_assert(1);
601    DPRINTF(EthernetIntr, "EINT: Posting interrupt to CPU now. Vector %#x\n",
602            regs.icr());
603    intrPost();
604}
605
606void
607IGbE::cpuClearInt()
608{
609    if (regs.icr.int_assert()) {
610        regs.icr.int_assert(0);
611        DPRINTF(EthernetIntr, "EINT: Clearing interrupt to CPU now. Vector %#x\n",
612                regs.icr());
613        intrClear();
614    }
615}
616
617void
618IGbE::chkInterrupt()
619{
620    // Check if we need to clear the cpu interrupt
621    if (!(regs.icr() & regs.imr)) {
622        if (interEvent.scheduled())
623           interEvent.deschedule();
624        if (regs.icr.int_assert())
625            cpuClearInt();
626    }
627
628    if (regs.icr() & regs.imr) {
629        if (regs.itr.interval() == 0)  {
630            cpuPostInt();
631        } else {
632            if (!interEvent.scheduled())
633               interEvent.schedule(curTick + Clock::Int::ns * 256 * regs.itr.interval());
634        }
635    }
636
637
638}
639
640
641IGbE::RxDescCache::RxDescCache(IGbE *i, const std::string n, int s)
642    : DescCache<RxDesc>(i, n, s), pktDone(false), pktEvent(this)
643
644{
645}
646
647bool
648IGbE::RxDescCache::writePacket(EthPacketPtr packet)
649{
650    // We shouldn't have to deal with any of these yet
651    DPRINTF(EthernetDesc, "Packet Length: %d Desc Size: %d\n",
652            packet->length, igbe->regs.rctl.descSize());
653    assert(packet->length < igbe->regs.rctl.descSize());
654
655    if (!unusedCache.size())
656        return false;
657
658    pktPtr = packet;
659    pktDone = false;
660    igbe->dmaWrite(igbe->platform->pciToDma(unusedCache.front()->buf),
661            packet->length, &pktEvent, packet->data);
662    return true;
663}
664
665void
666IGbE::RxDescCache::pktComplete()
667{
668    assert(unusedCache.size());
669    RxDesc *desc;
670    desc = unusedCache.front();
671
672    uint16_t crcfixup = igbe->regs.rctl.secrc() ? 0 : 4 ;
673    desc->len = htole((uint16_t)(pktPtr->length + crcfixup));
674    DPRINTF(EthernetDesc, "pktPtr->length: %d stripcrc offset: %d value written: %d %d\n",
675            pktPtr->length, crcfixup,
676            htole((uint16_t)(pktPtr->length + crcfixup)),
677            (uint16_t)(pktPtr->length + crcfixup));
678
679    // no support for anything but starting at 0
680    assert(igbe->regs.rxcsum.pcss() == 0);
681
682    DPRINTF(EthernetDesc, "Packet written to memory updating Descriptor\n");
683
684    uint8_t status = RXDS_DD | RXDS_EOP;
685    uint8_t err = 0;
686
687    IpPtr ip(pktPtr);
688
689    if (ip) {
690        DPRINTF(EthernetDesc, "Proccesing Ip packet with Id=%d\n", ip->id());
691
692        if (igbe->regs.rxcsum.ipofld()) {
693            DPRINTF(EthernetDesc, "Checking IP checksum\n");
694            status |= RXDS_IPCS;
695            desc->csum = htole(cksum(ip));
696            if (cksum(ip) != 0) {
697                err |= RXDE_IPE;
698                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
699            }
700        }
701        TcpPtr tcp(ip);
702        if (tcp && igbe->regs.rxcsum.tuofld()) {
703            DPRINTF(EthernetDesc, "Checking TCP checksum\n");
704            status |= RXDS_TCPCS;
705            desc->csum = htole(cksum(tcp));
706            if (cksum(tcp) != 0) {
707                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
708                err |= RXDE_TCPE;
709            }
710        }
711
712        UdpPtr udp(ip);
713        if (udp && igbe->regs.rxcsum.tuofld()) {
714            DPRINTF(EthernetDesc, "Checking UDP checksum\n");
715            status |= RXDS_UDPCS;
716            desc->csum = htole(cksum(udp));
717            if (cksum(udp) != 0) {
718                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
719                err |= RXDE_TCPE;
720            }
721        }
722    } else { // if ip
723        DPRINTF(EthernetSM, "Proccesing Non-Ip packet\n");
724    }
725
726
727    desc->status = htole(status);
728    desc->errors = htole(err);
729
730    // No vlan support at this point... just set it to 0
731    desc->vlan = 0;
732
733    // Deal with the rx timer interrupts
734    if (igbe->regs.rdtr.delay()) {
735        DPRINTF(EthernetSM, "RXS: Scheduling DTR for %d\n",
736                igbe->regs.rdtr.delay() * igbe->intClock());
737        igbe->rdtrEvent.reschedule(curTick + igbe->regs.rdtr.delay() *
738                    igbe->intClock(),true);
739    }
740
741    if (igbe->regs.radv.idv() && igbe->regs.rdtr.delay()) {
742        DPRINTF(EthernetSM, "RXS: Scheduling ADV for %d\n",
743                igbe->regs.radv.idv() * igbe->intClock());
744        if (!igbe->radvEvent.scheduled())
745            igbe->radvEvent.schedule(curTick + igbe->regs.radv.idv() *
746                    igbe->intClock());
747    }
748
749    // if neither radv or rdtr, maybe itr is set...
750    if (!igbe->regs.rdtr.delay()) {
751        DPRINTF(EthernetSM, "RXS: Receive interrupt delay disabled, posting IT_RXT\n");
752        igbe->postInterrupt(IT_RXT);
753    }
754
755    // If the packet is small enough, interrupt appropriately
756    // I wonder if this is delayed or not?!
757    if (pktPtr->length <= igbe->regs.rsrpd.idv()) {
758        DPRINTF(EthernetSM, "RXS: Posting IT_SRPD beacuse small packet received\n");
759        igbe->postInterrupt(IT_SRPD);
760    }
761
762    DPRINTF(EthernetDesc, "Processing of this descriptor complete\n");
763    unusedCache.pop_front();
764    usedCache.push_back(desc);
765    pktPtr = NULL;
766    enableSm();
767    pktDone = true;
768    igbe->checkDrain();
769}
770
771void
772IGbE::RxDescCache::enableSm()
773{
774    igbe->rxTick = true;
775    igbe->restartClock();
776}
777
778bool
779IGbE::RxDescCache::packetDone()
780{
781    if (pktDone) {
782        pktDone = false;
783        return true;
784    }
785    return false;
786}
787
788bool
789IGbE::RxDescCache::hasOutstandingEvents()
790{
791    return pktEvent.scheduled() || wbEvent.scheduled() ||
792        fetchEvent.scheduled();
793}
794
795void
796IGbE::RxDescCache::serialize(std::ostream &os)
797{
798    DescCache<RxDesc>::serialize(os);
799    SERIALIZE_SCALAR(pktDone);
800}
801
802void
803IGbE::RxDescCache::unserialize(Checkpoint *cp, const std::string &section)
804{
805    DescCache<RxDesc>::unserialize(cp, section);
806    UNSERIALIZE_SCALAR(pktDone);
807}
808
809
810///////////////////////////////////// IGbE::TxDesc /////////////////////////////////
811
812IGbE::TxDescCache::TxDescCache(IGbE *i, const std::string n, int s)
813    : DescCache<TxDesc>(i,n, s), pktDone(false), isTcp(false), pktWaiting(false),
814       pktEvent(this)
815
816{
817}
818
819int
820IGbE::TxDescCache::getPacketSize()
821{
822    assert(unusedCache.size());
823
824    TxDesc *desc;
825
826    DPRINTF(EthernetDesc, "Starting processing of descriptor\n");
827
828    while (unusedCache.size() && TxdOp::isContext(unusedCache.front())) {
829        DPRINTF(EthernetDesc, "Got context descriptor type... skipping\n");
830
831        // I think we can just ignore these for now?
832        desc = unusedCache.front();
833        // is this going to be a tcp or udp packet?
834        isTcp = TxdOp::tcp(desc) ? true : false;
835
836        // make sure it's ipv4
837        assert(TxdOp::ip(desc));
838
839        TxdOp::setDd(desc);
840        unusedCache.pop_front();
841        usedCache.push_back(desc);
842    }
843
844    if (!unusedCache.size())
845        return -1;
846
847    DPRINTF(EthernetDesc, "Next TX packet is %d bytes\n",
848            TxdOp::getLen(unusedCache.front()));
849
850    return TxdOp::getLen(unusedCache.front());
851}
852
853void
854IGbE::TxDescCache::getPacketData(EthPacketPtr p)
855{
856    assert(unusedCache.size());
857
858    TxDesc *desc;
859    desc = unusedCache.front();
860
861    assert((TxdOp::isLegacy(desc) || TxdOp::isData(desc)) && TxdOp::getLen(desc));
862
863    pktPtr = p;
864
865    pktWaiting = true;
866
867    DPRINTF(EthernetDesc, "Starting DMA of packet\n");
868    igbe->dmaRead(igbe->platform->pciToDma(TxdOp::getBuf(desc)),
869            TxdOp::getLen(desc), &pktEvent, p->data + p->length);
870
871
872}
873
874void
875IGbE::TxDescCache::pktComplete()
876{
877
878    TxDesc *desc;
879    assert(unusedCache.size());
880    assert(pktPtr);
881
882    DPRINTF(EthernetDesc, "DMA of packet complete\n");
883
884
885    desc = unusedCache.front();
886    assert((TxdOp::isLegacy(desc) || TxdOp::isData(desc)) && TxdOp::getLen(desc));
887
888    DPRINTF(EthernetDesc, "TxDescriptor data d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
889
890    if (!TxdOp::eop(desc)) {
891        // This only supports two descriptors per tx packet
892        assert(pktPtr->length == 0);
893        pktPtr->length = TxdOp::getLen(desc);
894        unusedCache.pop_front();
895        usedCache.push_back(desc);
896        pktDone = true;
897        pktWaiting = false;
898        pktPtr = NULL;
899
900        DPRINTF(EthernetDesc, "Partial Packet Descriptor Done\n");
901        enableSm();
902        return;
903    }
904
905    // Set the length of the data in the EtherPacket
906    pktPtr->length += TxdOp::getLen(desc);
907
908    // no support for vlans
909    assert(!TxdOp::vle(desc));
910
911    // we alway report status
912    assert(TxdOp::rs(desc));
913
914    // we only support single packet descriptors at this point
915    assert(TxdOp::eop(desc));
916
917    // set that this packet is done
918    TxdOp::setDd(desc);
919
920    DPRINTF(EthernetDesc, "TxDescriptor data d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
921
922    if (DTRACE(EthernetDesc)) {
923        IpPtr ip(pktPtr);
924        if (ip)
925            DPRINTF(EthernetDesc, "Proccesing Ip packet with Id=%d\n",
926                    ip->id());
927        else
928            DPRINTF(EthernetSM, "Proccesing Non-Ip packet\n");
929    }
930
931    // Checksums are only ofloaded for new descriptor types
932    if (TxdOp::isData(desc) && ( TxdOp::ixsm(desc) || TxdOp::txsm(desc)) ) {
933        DPRINTF(EthernetDesc, "Calculating checksums for packet\n");
934        IpPtr ip(pktPtr);
935
936        if (TxdOp::ixsm(desc)) {
937            ip->sum(0);
938            ip->sum(cksum(ip));
939            DPRINTF(EthernetDesc, "Calculated IP checksum\n");
940        }
941       if (TxdOp::txsm(desc)) {
942           if (isTcp) {
943                TcpPtr tcp(ip);
944                assert(tcp);
945                tcp->sum(0);
946                tcp->sum(cksum(tcp));
947                DPRINTF(EthernetDesc, "Calculated TCP checksum\n");
948           } else {
949                UdpPtr udp(ip);
950                assert(udp);
951                udp->sum(0);
952                udp->sum(cksum(udp));
953                DPRINTF(EthernetDesc, "Calculated UDP checksum\n");
954           }
955        }
956    }
957
958    if (TxdOp::ide(desc)) {
959        // Deal with the rx timer interrupts
960        DPRINTF(EthernetDesc, "Descriptor had IDE set\n");
961        if (igbe->regs.tidv.idv()) {
962            DPRINTF(EthernetDesc, "setting tidv\n");
963            igbe->tidvEvent.reschedule(curTick + igbe->regs.tidv.idv() *
964                        igbe->intClock(), true);
965        }
966
967        if (igbe->regs.tadv.idv() && igbe->regs.tidv.idv()) {
968            DPRINTF(EthernetDesc, "setting tadv\n");
969            if (!igbe->tadvEvent.scheduled())
970                igbe->tadvEvent.schedule(curTick + igbe->regs.tadv.idv() *
971                        igbe->intClock());
972        }
973    }
974
975
976
977    unusedCache.pop_front();
978    usedCache.push_back(desc);
979    pktDone = true;
980    pktWaiting = false;
981    pktPtr = NULL;
982
983    DPRINTF(EthernetDesc, "Descriptor Done\n");
984
985    if (igbe->regs.txdctl.wthresh() == 0) {
986        DPRINTF(EthernetDesc, "WTHRESH == 0, writing back descriptor\n");
987        writeback(0);
988    } else if (igbe->regs.txdctl.wthresh() >= usedCache.size()) {
989        DPRINTF(EthernetDesc, "used > WTHRESH, writing back descriptor\n");
990        writeback((igbe->cacheBlockSize()-1)>>4);
991    }
992    enableSm();
993    igbe->checkDrain();
994}
995
996void
997IGbE::TxDescCache::serialize(std::ostream &os)
998{
999    DescCache<TxDesc>::serialize(os);
1000    SERIALIZE_SCALAR(pktDone);
1001    SERIALIZE_SCALAR(isTcp);
1002    SERIALIZE_SCALAR(pktWaiting);
1003}
1004
1005void
1006IGbE::TxDescCache::unserialize(Checkpoint *cp, const std::string &section)
1007{
1008    DescCache<TxDesc>::unserialize(cp, section);
1009    UNSERIALIZE_SCALAR(pktDone);
1010    UNSERIALIZE_SCALAR(isTcp);
1011    UNSERIALIZE_SCALAR(pktWaiting);
1012}
1013
1014bool
1015IGbE::TxDescCache::packetAvailable()
1016{
1017    if (pktDone) {
1018        pktDone = false;
1019        return true;
1020    }
1021    return false;
1022}
1023
1024void
1025IGbE::TxDescCache::enableSm()
1026{
1027    igbe->txTick = true;
1028    igbe->restartClock();
1029}
1030
1031bool
1032IGbE::TxDescCache::hasOutstandingEvents()
1033{
1034    return pktEvent.scheduled() || wbEvent.scheduled() ||
1035        fetchEvent.scheduled();
1036}
1037
1038
1039///////////////////////////////////// IGbE /////////////////////////////////
1040
1041void
1042IGbE::restartClock()
1043{
1044    if (!tickEvent.scheduled() && (rxTick || txTick || txFifoTick) && getState() ==
1045            SimObject::Running)
1046        tickEvent.schedule((curTick/cycles(1)) * cycles(1) + cycles(1));
1047}
1048
1049unsigned int
1050IGbE::drain(Event *de)
1051{
1052    unsigned int count;
1053    count = pioPort->drain(de) + dmaPort->drain(de);
1054    if (rxDescCache.hasOutstandingEvents() ||
1055            txDescCache.hasOutstandingEvents()) {
1056        count++;
1057        drainEvent = de;
1058    }
1059
1060    txFifoTick = false;
1061    txTick = false;
1062    rxTick = false;
1063
1064    if (tickEvent.scheduled())
1065        tickEvent.deschedule();
1066
1067    if (count)
1068        changeState(Draining);
1069    else
1070        changeState(Drained);
1071
1072    return count;
1073}
1074
1075void
1076IGbE::resume()
1077{
1078    SimObject::resume();
1079
1080    txFifoTick = true;
1081    txTick = true;
1082    rxTick = true;
1083
1084    restartClock();
1085}
1086
1087void
1088IGbE::checkDrain()
1089{
1090    if (!drainEvent)
1091        return;
1092
1093    if (rxDescCache.hasOutstandingEvents() ||
1094            txDescCache.hasOutstandingEvents()) {
1095        drainEvent->process();
1096        drainEvent = NULL;
1097    }
1098}
1099
1100void
1101IGbE::txStateMachine()
1102{
1103    if (!regs.tctl.en()) {
1104        txTick = false;
1105        DPRINTF(EthernetSM, "TXS: TX disabled, stopping ticking\n");
1106        return;
1107    }
1108
1109    // If we have a packet available and it's length is not 0 (meaning it's not
1110    // a multidescriptor packet) put it in the fifo, otherwise an the next
1111    // iteration we'll get the rest of the data
1112    if (txPacket && txDescCache.packetAvailable() && txPacket->length) {
1113        bool success;
1114        DPRINTF(EthernetSM, "TXS: packet placed in TX FIFO\n");
1115        success = txFifo.push(txPacket);
1116        txFifoTick = true;
1117        assert(success);
1118        txPacket = NULL;
1119        txDescCache.writeback((cacheBlockSize()-1)>>4);
1120        return;
1121    }
1122
1123    // Only support descriptor granularity
1124    assert(regs.txdctl.gran());
1125    if (regs.txdctl.lwthresh() && txDescCache.descLeft() < (regs.txdctl.lwthresh() * 8)) {
1126        DPRINTF(EthernetSM, "TXS: LWTHRESH caused posting of TXDLOW\n");
1127        postInterrupt(IT_TXDLOW);
1128    }
1129
1130    if (!txPacket) {
1131        txPacket = new EthPacketData(16384);
1132    }
1133
1134    if (!txDescCache.packetWaiting()) {
1135        if (txDescCache.descLeft() == 0) {
1136            DPRINTF(EthernetSM, "TXS: No descriptors left in ring, forcing "
1137                    "writeback stopping ticking and posting TXQE\n");
1138            txDescCache.writeback(0);
1139            txTick = false;
1140            postInterrupt(IT_TXQE, true);
1141            return;
1142        }
1143
1144
1145        if (!(txDescCache.descUnused())) {
1146            DPRINTF(EthernetSM, "TXS: No descriptors available in cache, fetching and stopping ticking\n");
1147            txTick = false;
1148            txDescCache.fetchDescriptors();
1149            return;
1150        }
1151
1152        int size;
1153        size = txDescCache.getPacketSize();
1154        if (size > 0 && txFifo.avail() > size) {
1155            DPRINTF(EthernetSM, "TXS: Reserving %d bytes in FIFO and begining "
1156                    "DMA of next packet\n", size);
1157            txFifo.reserve(size);
1158            txDescCache.getPacketData(txPacket);
1159        } else if (size <= 0) {
1160            DPRINTF(EthernetSM, "TXS: No packets to get, writing back used descriptors\n");
1161            txDescCache.writeback(0);
1162        } else {
1163            DPRINTF(EthernetSM, "TXS: FIFO full, stopping ticking until space "
1164                    "available in FIFO\n");
1165            txDescCache.writeback((cacheBlockSize()-1)>>4);
1166            txTick = false;
1167        }
1168
1169
1170        return;
1171    }
1172    DPRINTF(EthernetSM, "TXS: Nothing to do, stopping ticking\n");
1173    txTick = false;
1174}
1175
1176bool
1177IGbE::ethRxPkt(EthPacketPtr pkt)
1178{
1179    DPRINTF(Ethernet, "RxFIFO: Receiving pcakte from wire\n");
1180    if (!regs.rctl.en()) {
1181        DPRINTF(Ethernet, "RxFIFO: RX not enabled, dropping\n");
1182        return true;
1183    }
1184
1185    // restart the state machines if they are stopped
1186    rxTick = true;
1187    if ((rxTick || txTick) && !tickEvent.scheduled()) {
1188        DPRINTF(EthernetSM, "RXS: received packet into fifo, starting ticking\n");
1189        restartClock();
1190    }
1191
1192    if (!rxFifo.push(pkt)) {
1193        DPRINTF(Ethernet, "RxFIFO: Packet won't fit in fifo... dropped\n");
1194        postInterrupt(IT_RXO, true);
1195        return false;
1196    }
1197    return true;
1198}
1199
1200
1201void
1202IGbE::rxStateMachine()
1203{
1204    if (!regs.rctl.en()) {
1205        rxTick = false;
1206        DPRINTF(EthernetSM, "RXS: RX disabled, stopping ticking\n");
1207        return;
1208    }
1209
1210    // If the packet is done check for interrupts/descriptors/etc
1211    if (rxDescCache.packetDone()) {
1212        rxDmaPacket = false;
1213        DPRINTF(EthernetSM, "RXS: Packet completed DMA to memory\n");
1214        int descLeft = rxDescCache.descLeft();
1215        switch (regs.rctl.rdmts()) {
1216            case 2: if (descLeft > .125 * regs.rdlen()) break;
1217            case 1: if (descLeft > .250 * regs.rdlen()) break;
1218            case 0: if (descLeft > .500 * regs.rdlen())  break;
1219                DPRINTF(Ethernet, "RXS: Interrupting (RXDMT) because of descriptors left\n");
1220                postInterrupt(IT_RXDMT);
1221                break;
1222        }
1223
1224        if (descLeft == 0) {
1225            DPRINTF(EthernetSM, "RXS: No descriptors left in ring, forcing"
1226                    " writeback and stopping ticking\n");
1227            rxDescCache.writeback(0);
1228            rxTick = false;
1229        }
1230
1231        // only support descriptor granulaties
1232        assert(regs.rxdctl.gran());
1233
1234        if (regs.rxdctl.wthresh() >= rxDescCache.descUsed()) {
1235            DPRINTF(EthernetSM, "RXS: Writing back because WTHRESH >= descUsed\n");
1236            if (regs.rxdctl.wthresh() < (cacheBlockSize()>>4))
1237                rxDescCache.writeback(regs.rxdctl.wthresh()-1);
1238            else
1239                rxDescCache.writeback((cacheBlockSize()-1)>>4);
1240        }
1241
1242        if ((rxDescCache.descUnused() < regs.rxdctl.pthresh()) &&
1243             ((rxDescCache.descLeft() - rxDescCache.descUnused()) > regs.rxdctl.hthresh())) {
1244            DPRINTF(EthernetSM, "RXS: Fetching descriptors because descUnused < PTHRESH\n");
1245            rxDescCache.fetchDescriptors();
1246        }
1247
1248        if (rxDescCache.descUnused() == 0) {
1249            DPRINTF(EthernetSM, "RXS: No descriptors available in cache, "
1250                    "fetching descriptors and stopping ticking\n");
1251            rxTick = false;
1252            rxDescCache.fetchDescriptors();
1253        }
1254        return;
1255    }
1256
1257    if (rxDmaPacket) {
1258        DPRINTF(EthernetSM, "RXS: stopping ticking until packet DMA completes\n");
1259        rxTick = false;
1260        return;
1261    }
1262
1263    if (!rxDescCache.descUnused()) {
1264        DPRINTF(EthernetSM, "RXS: No descriptors available in cache, stopping ticking\n");
1265        rxTick = false;
1266        DPRINTF(EthernetSM, "RXS: No descriptors available, fetching\n");
1267        rxDescCache.fetchDescriptors();
1268        return;
1269    }
1270
1271    if (rxFifo.empty()) {
1272        DPRINTF(EthernetSM, "RXS: RxFIFO empty, stopping ticking\n");
1273        rxTick = false;
1274        return;
1275    }
1276
1277    EthPacketPtr pkt;
1278    pkt = rxFifo.front();
1279
1280    DPRINTF(EthernetSM, "RXS: Writing packet into memory\n");
1281    if (!rxDescCache.writePacket(pkt)) {
1282        return;
1283    }
1284
1285    DPRINTF(EthernetSM, "RXS: Removing packet from FIFO\n");
1286    rxFifo.pop();
1287    DPRINTF(EthernetSM, "RXS: stopping ticking until packet DMA completes\n");
1288    rxTick = false;
1289    rxDmaPacket = true;
1290}
1291
1292void
1293IGbE::txWire()
1294{
1295    if (txFifo.empty()) {
1296        txFifoTick = false;
1297        return;
1298    }
1299
1300
1301    if (etherInt->sendPacket(txFifo.front())) {
1302        DPRINTF(EthernetSM, "TxFIFO: Successful transmit, bytes available in fifo: %d\n",
1303                txFifo.avail());
1304        txFifo.pop();
1305    } else {
1306        // We'll get woken up when the packet ethTxDone() gets called
1307        txFifoTick = false;
1308    }
1309
1310}
1311
1312void
1313IGbE::tick()
1314{
1315    DPRINTF(EthernetSM, "IGbE: -------------- Cycle --------------\n");
1316
1317    if (rxTick)
1318        rxStateMachine();
1319
1320    if (txTick)
1321        txStateMachine();
1322
1323    if (txFifoTick)
1324        txWire();
1325
1326
1327    if (rxTick || txTick || txFifoTick)
1328        tickEvent.schedule(curTick + cycles(1));
1329}
1330
1331void
1332IGbE::ethTxDone()
1333{
1334    // restart the tx state machines if they are stopped
1335    // fifo to send another packet
1336    // tx sm to put more data into the fifo
1337    txFifoTick = true;
1338    txTick = true;
1339
1340    restartClock();
1341    DPRINTF(EthernetSM, "TxFIFO: Transmission complete\n");
1342}
1343
1344void
1345IGbE::serialize(std::ostream &os)
1346{
1347    PciDev::serialize(os);
1348
1349    regs.serialize(os);
1350    SERIALIZE_SCALAR(eeOpBits);
1351    SERIALIZE_SCALAR(eeAddrBits);
1352    SERIALIZE_SCALAR(eeDataBits);
1353    SERIALIZE_SCALAR(eeOpcode);
1354    SERIALIZE_SCALAR(eeAddr);
1355    SERIALIZE_ARRAY(flash,iGbReg::EEPROM_SIZE);
1356
1357    rxFifo.serialize("rxfifo", os);
1358    txFifo.serialize("txfifo", os);
1359
1360    bool txPktExists = txPacket;
1361    SERIALIZE_SCALAR(txPktExists);
1362    if (txPktExists)
1363        txPacket->serialize("txpacket", os);
1364
1365    Tick rdtr_time = 0, radv_time = 0, tidv_time = 0, tadv_time = 0,
1366         inter_time = 0;
1367
1368    if (rdtrEvent.scheduled())
1369       rdtr_time = rdtrEvent.when();
1370    SERIALIZE_SCALAR(rdtr_time);
1371
1372    if (radvEvent.scheduled())
1373       radv_time = radvEvent.when();
1374    SERIALIZE_SCALAR(radv_time);
1375
1376    if (tidvEvent.scheduled())
1377       rdtr_time = tidvEvent.when();
1378    SERIALIZE_SCALAR(tidv_time);
1379
1380    if (tadvEvent.scheduled())
1381       rdtr_time = tadvEvent.when();
1382    SERIALIZE_SCALAR(tadv_time);
1383
1384    if (interEvent.scheduled())
1385       rdtr_time = interEvent.when();
1386    SERIALIZE_SCALAR(inter_time);
1387
1388    nameOut(os, csprintf("%s.TxDescCache", name()));
1389    txDescCache.serialize(os);
1390
1391    nameOut(os, csprintf("%s.RxDescCache", name()));
1392    rxDescCache.serialize(os);
1393}
1394
1395void
1396IGbE::unserialize(Checkpoint *cp, const std::string &section)
1397{
1398    PciDev::unserialize(cp, section);
1399
1400    regs.unserialize(cp, section);
1401    UNSERIALIZE_SCALAR(eeOpBits);
1402    UNSERIALIZE_SCALAR(eeAddrBits);
1403    UNSERIALIZE_SCALAR(eeDataBits);
1404    UNSERIALIZE_SCALAR(eeOpcode);
1405    UNSERIALIZE_SCALAR(eeAddr);
1406    UNSERIALIZE_ARRAY(flash,iGbReg::EEPROM_SIZE);
1407
1408    rxFifo.unserialize("rxfifo", cp, section);
1409    txFifo.unserialize("txfifo", cp, section);
1410
1411    bool txPktExists;
1412    UNSERIALIZE_SCALAR(txPktExists);
1413    if (txPktExists) {
1414        txPacket = new EthPacketData(16384);
1415        txPacket->unserialize("txpacket", cp, section);
1416    }
1417
1418    rxTick = true;
1419    txTick = true;
1420    txFifoTick = true;
1421
1422    Tick rdtr_time, radv_time, tidv_time, tadv_time, inter_time;
1423    UNSERIALIZE_SCALAR(rdtr_time);
1424    UNSERIALIZE_SCALAR(radv_time);
1425    UNSERIALIZE_SCALAR(tidv_time);
1426    UNSERIALIZE_SCALAR(tadv_time);
1427    UNSERIALIZE_SCALAR(inter_time);
1428
1429    if (rdtr_time)
1430        rdtrEvent.schedule(rdtr_time);
1431
1432    if (radv_time)
1433        radvEvent.schedule(radv_time);
1434
1435    if (tidv_time)
1436        tidvEvent.schedule(tidv_time);
1437
1438    if (tadv_time)
1439        tadvEvent.schedule(tadv_time);
1440
1441    if (inter_time)
1442        interEvent.schedule(inter_time);
1443
1444    txDescCache.unserialize(cp, csprintf("%s.TxDescCache", section));
1445
1446    rxDescCache.unserialize(cp, csprintf("%s.RxDescCache", section));
1447}
1448
1449
1450BEGIN_DECLARE_SIM_OBJECT_PARAMS(IGbEInt)
1451
1452    SimObjectParam<EtherInt *> peer;
1453    SimObjectParam<IGbE *> device;
1454
1455END_DECLARE_SIM_OBJECT_PARAMS(IGbEInt)
1456
1457BEGIN_INIT_SIM_OBJECT_PARAMS(IGbEInt)
1458
1459    INIT_PARAM_DFLT(peer, "peer interface", NULL),
1460    INIT_PARAM(device, "Ethernet device of this interface")
1461
1462END_INIT_SIM_OBJECT_PARAMS(IGbEInt)
1463
1464CREATE_SIM_OBJECT(IGbEInt)
1465{
1466    IGbEInt *dev_int = new IGbEInt(getInstanceName(), device);
1467
1468    EtherInt *p = (EtherInt *)peer;
1469    if (p) {
1470        dev_int->setPeer(p);
1471        p->setPeer(dev_int);
1472    }
1473
1474    return dev_int;
1475}
1476
1477REGISTER_SIM_OBJECT("IGbEInt", IGbEInt)
1478
1479
1480BEGIN_DECLARE_SIM_OBJECT_PARAMS(IGbE)
1481
1482    SimObjectParam<System *> system;
1483    SimObjectParam<Platform *> platform;
1484    Param<Tick> min_backoff_delay;
1485    Param<Tick> max_backoff_delay;
1486    SimObjectParam<PciConfigData *> configdata;
1487    Param<uint32_t> pci_bus;
1488    Param<uint32_t> pci_dev;
1489    Param<uint32_t> pci_func;
1490    Param<Tick> pio_latency;
1491    Param<Tick> config_latency;
1492    Param<std::string> hardware_address;
1493    Param<bool> use_flow_control;
1494    Param<int> rx_fifo_size;
1495    Param<int> tx_fifo_size;
1496    Param<int> rx_desc_cache_size;
1497    Param<int> tx_desc_cache_size;
1498    Param<Tick> clock;
1499
1500
1501END_DECLARE_SIM_OBJECT_PARAMS(IGbE)
1502
1503BEGIN_INIT_SIM_OBJECT_PARAMS(IGbE)
1504
1505    INIT_PARAM(system, "System pointer"),
1506    INIT_PARAM(platform, "Platform pointer"),
1507    INIT_PARAM(min_backoff_delay, "Minimum delay after receving a nack packed"),
1508    INIT_PARAM(max_backoff_delay, "Maximum delay after receving a nack packed"),
1509    INIT_PARAM(configdata, "PCI Config data"),
1510    INIT_PARAM(pci_bus, "PCI bus ID"),
1511    INIT_PARAM(pci_dev, "PCI device number"),
1512    INIT_PARAM(pci_func, "PCI function code"),
1513    INIT_PARAM_DFLT(pio_latency, "Programmed IO latency in bus cycles", 1),
1514    INIT_PARAM(config_latency, "Number of cycles for a config read or write"),
1515    INIT_PARAM(hardware_address, "Ethernet Hardware Address"),
1516    INIT_PARAM(use_flow_control,"Should the device use xon/off packets"),
1517    INIT_PARAM(rx_fifo_size,"Size of the RX FIFO"),
1518    INIT_PARAM(tx_fifo_size,"Size of the TX FIFO"),
1519    INIT_PARAM(rx_desc_cache_size,"Size of the RX descriptor cache"),
1520    INIT_PARAM(tx_desc_cache_size,"Size of the TX descriptor cache"),
1521    INIT_PARAM(clock,"Clock rate for the device to tick at")
1522
1523END_INIT_SIM_OBJECT_PARAMS(IGbE)
1524
1525
1526CREATE_SIM_OBJECT(IGbE)
1527{
1528    IGbE::Params *params = new IGbE::Params;
1529
1530    params->name = getInstanceName();
1531    params->platform = platform;
1532    params->system = system;
1533    params->min_backoff_delay = min_backoff_delay;
1534    params->max_backoff_delay = max_backoff_delay;
1535    params->configData = configdata;
1536    params->busNum = pci_bus;
1537    params->deviceNum = pci_dev;
1538    params->functionNum = pci_func;
1539    params->pio_delay = pio_latency;
1540    params->config_delay = config_latency;
1541    params->hardware_address = hardware_address;
1542    params->use_flow_control = use_flow_control;
1543    params->rx_fifo_size = rx_fifo_size;
1544    params->tx_fifo_size = tx_fifo_size;
1545    params->rx_desc_cache_size = rx_desc_cache_size;
1546    params->tx_desc_cache_size = tx_desc_cache_size;
1547    params->clock = clock;
1548
1549
1550    return new IGbE(params);
1551}
1552
1553REGISTER_SIM_OBJECT("IGbE", IGbE)
1554