i8254xGBe.cc revision 10702
1/*
2 * Copyright (c) 2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Ali Saidi
29 */
30
31/* @file
32 * Device model for Intel's 8254x line of gigabit ethernet controllers.
33 * In particular an 82547 revision 2 (82547GI) MAC because it seems to have the
34 * fewest workarounds in the driver. It will probably work with most of the
35 * other MACs with slight modifications.
36 */
37
38
39/*
40 * @todo really there are multiple dma engines.. we should implement them.
41 */
42
43#include <algorithm>
44#include <memory>
45
46#include "base/inet.hh"
47#include "base/trace.hh"
48#include "debug/Drain.hh"
49#include "debug/EthernetAll.hh"
50#include "dev/i8254xGBe.hh"
51#include "mem/packet.hh"
52#include "mem/packet_access.hh"
53#include "params/IGbE.hh"
54#include "sim/stats.hh"
55#include "sim/system.hh"
56
57using namespace iGbReg;
58using namespace Net;
59
60IGbE::IGbE(const Params *p)
61    : EtherDevice(p), etherInt(NULL), cpa(NULL), drainManager(NULL),
62      rxFifo(p->rx_fifo_size), txFifo(p->tx_fifo_size), rxTick(false),
63      txTick(false), txFifoTick(false), rxDmaPacket(false), pktOffset(0),
64      fetchDelay(p->fetch_delay), wbDelay(p->wb_delay),
65      fetchCompDelay(p->fetch_comp_delay), wbCompDelay(p->wb_comp_delay),
66      rxWriteDelay(p->rx_write_delay), txReadDelay(p->tx_read_delay),
67      rdtrEvent(this), radvEvent(this),
68      tadvEvent(this), tidvEvent(this), tickEvent(this), interEvent(this),
69      rxDescCache(this, name()+".RxDesc", p->rx_desc_cache_size),
70      txDescCache(this, name()+".TxDesc", p->tx_desc_cache_size),
71      lastInterrupt(0)
72{
73    etherInt = new IGbEInt(name() + ".int", this);
74
75    // Initialized internal registers per Intel documentation
76    // All registers intialized to 0 by per register constructor
77    regs.ctrl.fd(1);
78    regs.ctrl.lrst(1);
79    regs.ctrl.speed(2);
80    regs.ctrl.frcspd(1);
81    regs.sts.speed(3); // Say we're 1000Mbps
82    regs.sts.fd(1); // full duplex
83    regs.sts.lu(1); // link up
84    regs.eecd.fwe(1);
85    regs.eecd.ee_type(1);
86    regs.imr = 0;
87    regs.iam = 0;
88    regs.rxdctl.gran(1);
89    regs.rxdctl.wthresh(1);
90    regs.fcrth(1);
91    regs.tdwba = 0;
92    regs.rlpml = 0;
93    regs.sw_fw_sync = 0;
94
95    regs.pba.rxa(0x30);
96    regs.pba.txa(0x10);
97
98    eeOpBits            = 0;
99    eeAddrBits          = 0;
100    eeDataBits          = 0;
101    eeOpcode            = 0;
102
103    // clear all 64 16 bit words of the eeprom
104    memset(&flash, 0, EEPROM_SIZE*2);
105
106    // Set the MAC address
107    memcpy(flash, p->hardware_address.bytes(), ETH_ADDR_LEN);
108    for (int x = 0; x < ETH_ADDR_LEN/2; x++)
109        flash[x] = htobe(flash[x]);
110
111    uint16_t csum = 0;
112    for (int x = 0; x < EEPROM_SIZE; x++)
113        csum += htobe(flash[x]);
114
115
116    // Magic happy checksum value
117    flash[EEPROM_SIZE-1] = htobe((uint16_t)(EEPROM_CSUM - csum));
118
119    // Store the MAC address as queue ID
120    macAddr = p->hardware_address;
121
122    rxFifo.clear();
123    txFifo.clear();
124}
125
126IGbE::~IGbE()
127{
128    delete etherInt;
129}
130
131void
132IGbE::init()
133{
134    cpa = CPA::cpa();
135    PciDevice::init();
136}
137
138EtherInt*
139IGbE::getEthPort(const std::string &if_name, int idx)
140{
141
142    if (if_name == "interface") {
143        if (etherInt->getPeer())
144            panic("Port already connected to\n");
145        return etherInt;
146    }
147    return NULL;
148}
149
150Tick
151IGbE::writeConfig(PacketPtr pkt)
152{
153    int offset = pkt->getAddr() & PCI_CONFIG_SIZE;
154    if (offset < PCI_DEVICE_SPECIFIC)
155        PciDevice::writeConfig(pkt);
156    else
157        panic("Device specific PCI config space not implemented.\n");
158
159    //
160    // Some work may need to be done here based for the pci COMMAND bits.
161    //
162
163    return configDelay;
164}
165
166// Handy macro for range-testing register access addresses
167#define IN_RANGE(val, base, len) (val >= base && val < (base + len))
168
169Tick
170IGbE::read(PacketPtr pkt)
171{
172    int bar;
173    Addr daddr;
174
175    if (!getBAR(pkt->getAddr(), bar, daddr))
176        panic("Invalid PCI memory access to unmapped memory.\n");
177
178    // Only Memory register BAR is allowed
179    assert(bar == 0);
180
181    // Only 32bit accesses allowed
182    assert(pkt->getSize() == 4);
183
184    DPRINTF(Ethernet, "Read device register %#X\n", daddr);
185
186    //
187    // Handle read of register here
188    //
189
190
191    switch (daddr) {
192      case REG_CTRL:
193        pkt->set<uint32_t>(regs.ctrl());
194        break;
195      case REG_STATUS:
196        pkt->set<uint32_t>(regs.sts());
197        break;
198      case REG_EECD:
199        pkt->set<uint32_t>(regs.eecd());
200        break;
201      case REG_EERD:
202        pkt->set<uint32_t>(regs.eerd());
203        break;
204      case REG_CTRL_EXT:
205        pkt->set<uint32_t>(regs.ctrl_ext());
206        break;
207      case REG_MDIC:
208        pkt->set<uint32_t>(regs.mdic());
209        break;
210      case REG_ICR:
211        DPRINTF(Ethernet, "Reading ICR. ICR=%#x IMR=%#x IAM=%#x IAME=%d\n",
212                regs.icr(), regs.imr, regs.iam, regs.ctrl_ext.iame());
213        pkt->set<uint32_t>(regs.icr());
214        if (regs.icr.int_assert() || regs.imr == 0) {
215            regs.icr = regs.icr() & ~mask(30);
216            DPRINTF(Ethernet, "Cleared ICR. ICR=%#x\n", regs.icr());
217        }
218        if (regs.ctrl_ext.iame() && regs.icr.int_assert())
219            regs.imr &= ~regs.iam;
220        chkInterrupt();
221        break;
222      case REG_EICR:
223        // This is only useful for MSI, but the driver reads it every time
224        // Just don't do anything
225        pkt->set<uint32_t>(0);
226        break;
227      case REG_ITR:
228        pkt->set<uint32_t>(regs.itr());
229        break;
230      case REG_RCTL:
231        pkt->set<uint32_t>(regs.rctl());
232        break;
233      case REG_FCTTV:
234        pkt->set<uint32_t>(regs.fcttv());
235        break;
236      case REG_TCTL:
237        pkt->set<uint32_t>(regs.tctl());
238        break;
239      case REG_PBA:
240        pkt->set<uint32_t>(regs.pba());
241        break;
242      case REG_WUC:
243      case REG_LEDCTL:
244        pkt->set<uint32_t>(0); // We don't care, so just return 0
245        break;
246      case REG_FCRTL:
247        pkt->set<uint32_t>(regs.fcrtl());
248        break;
249      case REG_FCRTH:
250        pkt->set<uint32_t>(regs.fcrth());
251        break;
252      case REG_RDBAL:
253        pkt->set<uint32_t>(regs.rdba.rdbal());
254        break;
255      case REG_RDBAH:
256        pkt->set<uint32_t>(regs.rdba.rdbah());
257        break;
258      case REG_RDLEN:
259        pkt->set<uint32_t>(regs.rdlen());
260        break;
261      case REG_SRRCTL:
262        pkt->set<uint32_t>(regs.srrctl());
263        break;
264      case REG_RDH:
265        pkt->set<uint32_t>(regs.rdh());
266        break;
267      case REG_RDT:
268        pkt->set<uint32_t>(regs.rdt());
269        break;
270      case REG_RDTR:
271        pkt->set<uint32_t>(regs.rdtr());
272        if (regs.rdtr.fpd()) {
273            rxDescCache.writeback(0);
274            DPRINTF(EthernetIntr,
275                    "Posting interrupt because of RDTR.FPD write\n");
276            postInterrupt(IT_RXT);
277            regs.rdtr.fpd(0);
278        }
279        break;
280      case REG_RXDCTL:
281        pkt->set<uint32_t>(regs.rxdctl());
282        break;
283      case REG_RADV:
284        pkt->set<uint32_t>(regs.radv());
285        break;
286      case REG_TDBAL:
287        pkt->set<uint32_t>(regs.tdba.tdbal());
288        break;
289      case REG_TDBAH:
290        pkt->set<uint32_t>(regs.tdba.tdbah());
291        break;
292      case REG_TDLEN:
293        pkt->set<uint32_t>(regs.tdlen());
294        break;
295      case REG_TDH:
296        pkt->set<uint32_t>(regs.tdh());
297        break;
298      case REG_TXDCA_CTL:
299        pkt->set<uint32_t>(regs.txdca_ctl());
300        break;
301      case REG_TDT:
302        pkt->set<uint32_t>(regs.tdt());
303        break;
304      case REG_TIDV:
305        pkt->set<uint32_t>(regs.tidv());
306        break;
307      case REG_TXDCTL:
308        pkt->set<uint32_t>(regs.txdctl());
309        break;
310      case REG_TADV:
311        pkt->set<uint32_t>(regs.tadv());
312        break;
313      case REG_TDWBAL:
314        pkt->set<uint32_t>(regs.tdwba & mask(32));
315        break;
316      case REG_TDWBAH:
317        pkt->set<uint32_t>(regs.tdwba >> 32);
318        break;
319      case REG_RXCSUM:
320        pkt->set<uint32_t>(regs.rxcsum());
321        break;
322      case REG_RLPML:
323        pkt->set<uint32_t>(regs.rlpml);
324        break;
325      case REG_RFCTL:
326        pkt->set<uint32_t>(regs.rfctl());
327        break;
328      case REG_MANC:
329        pkt->set<uint32_t>(regs.manc());
330        break;
331      case REG_SWSM:
332        pkt->set<uint32_t>(regs.swsm());
333        regs.swsm.smbi(1);
334        break;
335      case REG_FWSM:
336        pkt->set<uint32_t>(regs.fwsm());
337        break;
338      case REG_SWFWSYNC:
339        pkt->set<uint32_t>(regs.sw_fw_sync);
340        break;
341      default:
342        if (!IN_RANGE(daddr, REG_VFTA, VLAN_FILTER_TABLE_SIZE*4) &&
343            !IN_RANGE(daddr, REG_RAL, RCV_ADDRESS_TABLE_SIZE*8) &&
344            !IN_RANGE(daddr, REG_MTA, MULTICAST_TABLE_SIZE*4) &&
345            !IN_RANGE(daddr, REG_CRCERRS, STATS_REGS_SIZE))
346            panic("Read request to unknown register number: %#x\n", daddr);
347        else
348            pkt->set<uint32_t>(0);
349    };
350
351    pkt->makeAtomicResponse();
352    return pioDelay;
353}
354
355Tick
356IGbE::write(PacketPtr pkt)
357{
358    int bar;
359    Addr daddr;
360
361
362    if (!getBAR(pkt->getAddr(), bar, daddr))
363        panic("Invalid PCI memory access to unmapped memory.\n");
364
365    // Only Memory register BAR is allowed
366    assert(bar == 0);
367
368    // Only 32bit accesses allowed
369    assert(pkt->getSize() == sizeof(uint32_t));
370
371    DPRINTF(Ethernet, "Wrote device register %#X value %#X\n",
372            daddr, pkt->get<uint32_t>());
373
374    //
375    // Handle write of register here
376    //
377    uint32_t val = pkt->get<uint32_t>();
378
379    Regs::RCTL oldrctl;
380    Regs::TCTL oldtctl;
381
382    switch (daddr) {
383      case REG_CTRL:
384        regs.ctrl = val;
385        if (regs.ctrl.tfce())
386            warn("TX Flow control enabled, should implement\n");
387        if (regs.ctrl.rfce())
388            warn("RX Flow control enabled, should implement\n");
389        break;
390      case REG_CTRL_EXT:
391        regs.ctrl_ext = val;
392        break;
393      case REG_STATUS:
394        regs.sts = val;
395        break;
396      case REG_EECD:
397        int oldClk;
398        oldClk = regs.eecd.sk();
399        regs.eecd = val;
400        // See if this is a eeprom access and emulate accordingly
401        if (!oldClk && regs.eecd.sk()) {
402            if (eeOpBits < 8) {
403                eeOpcode = eeOpcode << 1 | regs.eecd.din();
404                eeOpBits++;
405            } else if (eeAddrBits < 8 && eeOpcode == EEPROM_READ_OPCODE_SPI) {
406                eeAddr = eeAddr << 1 | regs.eecd.din();
407                eeAddrBits++;
408            } else if (eeDataBits < 16 && eeOpcode == EEPROM_READ_OPCODE_SPI) {
409                assert(eeAddr>>1 < EEPROM_SIZE);
410                DPRINTF(EthernetEEPROM, "EEPROM bit read: %d word: %#X\n",
411                        flash[eeAddr>>1] >> eeDataBits & 0x1,
412                        flash[eeAddr>>1]);
413                regs.eecd.dout((flash[eeAddr>>1] >> (15-eeDataBits)) & 0x1);
414                eeDataBits++;
415            } else if (eeDataBits < 8 && eeOpcode == EEPROM_RDSR_OPCODE_SPI) {
416                regs.eecd.dout(0);
417                eeDataBits++;
418            } else
419                panic("What's going on with eeprom interface? opcode:"
420                      " %#x:%d addr: %#x:%d, data: %d\n", (uint32_t)eeOpcode,
421                      (uint32_t)eeOpBits, (uint32_t)eeAddr,
422                      (uint32_t)eeAddrBits, (uint32_t)eeDataBits);
423
424            // Reset everything for the next command
425            if ((eeDataBits == 16 && eeOpcode == EEPROM_READ_OPCODE_SPI) ||
426                (eeDataBits == 8 && eeOpcode == EEPROM_RDSR_OPCODE_SPI)) {
427                eeOpBits = 0;
428                eeAddrBits = 0;
429                eeDataBits = 0;
430                eeOpcode = 0;
431                eeAddr = 0;
432            }
433
434            DPRINTF(EthernetEEPROM, "EEPROM: opcode: %#X:%d addr: %#X:%d\n",
435                    (uint32_t)eeOpcode, (uint32_t) eeOpBits,
436                    (uint32_t)eeAddr>>1, (uint32_t)eeAddrBits);
437            if (eeOpBits == 8 && !(eeOpcode == EEPROM_READ_OPCODE_SPI ||
438                                   eeOpcode == EEPROM_RDSR_OPCODE_SPI ))
439                panic("Unknown eeprom opcode: %#X:%d\n", (uint32_t)eeOpcode,
440                      (uint32_t)eeOpBits);
441
442
443        }
444        // If driver requests eeprom access, immediately give it to it
445        regs.eecd.ee_gnt(regs.eecd.ee_req());
446        break;
447      case REG_EERD:
448        regs.eerd = val;
449        if (regs.eerd.start()) {
450            regs.eerd.done(1);
451            assert(regs.eerd.addr() < EEPROM_SIZE);
452            regs.eerd.data(flash[regs.eerd.addr()]);
453            regs.eerd.start(0);
454            DPRINTF(EthernetEEPROM, "EEPROM: read addr: %#X data %#x\n",
455                    regs.eerd.addr(), regs.eerd.data());
456        }
457        break;
458      case REG_MDIC:
459        regs.mdic = val;
460        if (regs.mdic.i())
461            panic("No support for interrupt on mdic complete\n");
462        if (regs.mdic.phyadd() != 1)
463            panic("No support for reading anything but phy\n");
464        DPRINTF(Ethernet, "%s phy address %x\n",
465                regs.mdic.op() == 1 ? "Writing" : "Reading",
466                regs.mdic.regadd());
467        switch (regs.mdic.regadd()) {
468          case PHY_PSTATUS:
469            regs.mdic.data(0x796D); // link up
470            break;
471          case PHY_PID:
472            regs.mdic.data(params()->phy_pid);
473            break;
474          case PHY_EPID:
475            regs.mdic.data(params()->phy_epid);
476            break;
477          case PHY_GSTATUS:
478            regs.mdic.data(0x7C00);
479            break;
480          case PHY_EPSTATUS:
481            regs.mdic.data(0x3000);
482            break;
483          case PHY_AGC:
484            regs.mdic.data(0x180); // some random length
485            break;
486          default:
487            regs.mdic.data(0);
488        }
489        regs.mdic.r(1);
490        break;
491      case REG_ICR:
492        DPRINTF(Ethernet, "Writing ICR. ICR=%#x IMR=%#x IAM=%#x IAME=%d\n",
493                regs.icr(), regs.imr, regs.iam, regs.ctrl_ext.iame());
494        if (regs.ctrl_ext.iame())
495            regs.imr &= ~regs.iam;
496        regs.icr = ~bits(val,30,0) & regs.icr();
497        chkInterrupt();
498        break;
499      case REG_ITR:
500        regs.itr = val;
501        break;
502      case REG_ICS:
503        DPRINTF(EthernetIntr, "Posting interrupt because of ICS write\n");
504        postInterrupt((IntTypes)val);
505        break;
506      case REG_IMS:
507        regs.imr |= val;
508        chkInterrupt();
509        break;
510      case REG_IMC:
511        regs.imr &= ~val;
512        chkInterrupt();
513        break;
514      case REG_IAM:
515        regs.iam = val;
516        break;
517      case REG_RCTL:
518        oldrctl = regs.rctl;
519        regs.rctl = val;
520        if (regs.rctl.rst()) {
521            rxDescCache.reset();
522            DPRINTF(EthernetSM, "RXS: Got RESET!\n");
523            rxFifo.clear();
524            regs.rctl.rst(0);
525        }
526        if (regs.rctl.en())
527            rxTick = true;
528        restartClock();
529        break;
530      case REG_FCTTV:
531        regs.fcttv = val;
532        break;
533      case REG_TCTL:
534        regs.tctl = val;
535        oldtctl = regs.tctl;
536        regs.tctl = val;
537        if (regs.tctl.en())
538            txTick = true;
539        restartClock();
540        if (regs.tctl.en() && !oldtctl.en()) {
541            txDescCache.reset();
542        }
543        break;
544      case REG_PBA:
545        regs.pba.rxa(val);
546        regs.pba.txa(64 - regs.pba.rxa());
547        break;
548      case REG_WUC:
549      case REG_LEDCTL:
550      case REG_FCAL:
551      case REG_FCAH:
552      case REG_FCT:
553      case REG_VET:
554      case REG_AIFS:
555      case REG_TIPG:
556        ; // We don't care, so don't store anything
557        break;
558      case REG_IVAR0:
559        warn("Writing to IVAR0, ignoring...\n");
560        break;
561      case REG_FCRTL:
562        regs.fcrtl = val;
563        break;
564      case REG_FCRTH:
565        regs.fcrth = val;
566        break;
567      case REG_RDBAL:
568        regs.rdba.rdbal( val & ~mask(4));
569        rxDescCache.areaChanged();
570        break;
571      case REG_RDBAH:
572        regs.rdba.rdbah(val);
573        rxDescCache.areaChanged();
574        break;
575      case REG_RDLEN:
576        regs.rdlen = val & ~mask(7);
577        rxDescCache.areaChanged();
578        break;
579      case REG_SRRCTL:
580        regs.srrctl = val;
581        break;
582      case REG_RDH:
583        regs.rdh = val;
584        rxDescCache.areaChanged();
585        break;
586      case REG_RDT:
587        regs.rdt = val;
588        DPRINTF(EthernetSM, "RXS: RDT Updated.\n");
589        if (getDrainState() == Drainable::Running) {
590            DPRINTF(EthernetSM, "RXS: RDT Fetching Descriptors!\n");
591            rxDescCache.fetchDescriptors();
592        } else {
593            DPRINTF(EthernetSM, "RXS: RDT NOT Fetching Desc b/c draining!\n");
594        }
595        break;
596      case REG_RDTR:
597        regs.rdtr = val;
598        break;
599      case REG_RADV:
600        regs.radv = val;
601        break;
602      case REG_RXDCTL:
603        regs.rxdctl = val;
604        break;
605      case REG_TDBAL:
606        regs.tdba.tdbal( val & ~mask(4));
607        txDescCache.areaChanged();
608        break;
609      case REG_TDBAH:
610        regs.tdba.tdbah(val);
611        txDescCache.areaChanged();
612        break;
613      case REG_TDLEN:
614        regs.tdlen = val & ~mask(7);
615        txDescCache.areaChanged();
616        break;
617      case REG_TDH:
618        regs.tdh = val;
619        txDescCache.areaChanged();
620        break;
621      case REG_TXDCA_CTL:
622        regs.txdca_ctl = val;
623        if (regs.txdca_ctl.enabled())
624            panic("No support for DCA\n");
625        break;
626      case REG_TDT:
627        regs.tdt = val;
628        DPRINTF(EthernetSM, "TXS: TX Tail pointer updated\n");
629        if (getDrainState() == Drainable::Running) {
630            DPRINTF(EthernetSM, "TXS: TDT Fetching Descriptors!\n");
631            txDescCache.fetchDescriptors();
632        } else {
633            DPRINTF(EthernetSM, "TXS: TDT NOT Fetching Desc b/c draining!\n");
634        }
635        break;
636      case REG_TIDV:
637        regs.tidv = val;
638        break;
639      case REG_TXDCTL:
640        regs.txdctl = val;
641        break;
642      case REG_TADV:
643        regs.tadv = val;
644        break;
645      case REG_TDWBAL:
646        regs.tdwba &= ~mask(32);
647        regs.tdwba |= val;
648        txDescCache.completionWriteback(regs.tdwba & ~mask(1),
649                                        regs.tdwba & mask(1));
650        break;
651      case REG_TDWBAH:
652        regs.tdwba &= mask(32);
653        regs.tdwba |= (uint64_t)val << 32;
654        txDescCache.completionWriteback(regs.tdwba & ~mask(1),
655                                        regs.tdwba & mask(1));
656        break;
657      case REG_RXCSUM:
658        regs.rxcsum = val;
659        break;
660      case REG_RLPML:
661        regs.rlpml = val;
662        break;
663      case REG_RFCTL:
664        regs.rfctl = val;
665        if (regs.rfctl.exsten())
666            panic("Extended RX descriptors not implemented\n");
667        break;
668      case REG_MANC:
669        regs.manc = val;
670        break;
671      case REG_SWSM:
672        regs.swsm = val;
673        if (regs.fwsm.eep_fw_semaphore())
674            regs.swsm.swesmbi(0);
675        break;
676      case REG_SWFWSYNC:
677        regs.sw_fw_sync = val;
678        break;
679      default:
680        if (!IN_RANGE(daddr, REG_VFTA, VLAN_FILTER_TABLE_SIZE*4) &&
681            !IN_RANGE(daddr, REG_RAL, RCV_ADDRESS_TABLE_SIZE*8) &&
682            !IN_RANGE(daddr, REG_MTA, MULTICAST_TABLE_SIZE*4))
683            panic("Write request to unknown register number: %#x\n", daddr);
684    };
685
686    pkt->makeAtomicResponse();
687    return pioDelay;
688}
689
690void
691IGbE::postInterrupt(IntTypes t, bool now)
692{
693    assert(t);
694
695    // Interrupt is already pending
696    if (t & regs.icr() && !now)
697        return;
698
699    regs.icr = regs.icr() | t;
700
701    Tick itr_interval = SimClock::Int::ns * 256 * regs.itr.interval();
702    DPRINTF(EthernetIntr,
703            "EINT: postInterrupt() curTick(): %d itr: %d interval: %d\n",
704            curTick(), regs.itr.interval(), itr_interval);
705
706    if (regs.itr.interval() == 0 || now ||
707        lastInterrupt + itr_interval <= curTick()) {
708        if (interEvent.scheduled()) {
709            deschedule(interEvent);
710        }
711        cpuPostInt();
712    } else {
713        Tick int_time = lastInterrupt + itr_interval;
714        assert(int_time > 0);
715        DPRINTF(EthernetIntr, "EINT: Scheduling timer interrupt for tick %d\n",
716                int_time);
717        if (!interEvent.scheduled()) {
718            schedule(interEvent, int_time);
719        }
720    }
721}
722
723void
724IGbE::delayIntEvent()
725{
726    cpuPostInt();
727}
728
729
730void
731IGbE::cpuPostInt()
732{
733
734    postedInterrupts++;
735
736    if (!(regs.icr() & regs.imr)) {
737        DPRINTF(Ethernet, "Interrupt Masked. Not Posting\n");
738        return;
739    }
740
741    DPRINTF(Ethernet, "Posting Interrupt\n");
742
743
744    if (interEvent.scheduled()) {
745        deschedule(interEvent);
746    }
747
748    if (rdtrEvent.scheduled()) {
749        regs.icr.rxt0(1);
750        deschedule(rdtrEvent);
751    }
752    if (radvEvent.scheduled()) {
753        regs.icr.rxt0(1);
754        deschedule(radvEvent);
755    }
756    if (tadvEvent.scheduled()) {
757        regs.icr.txdw(1);
758        deschedule(tadvEvent);
759    }
760    if (tidvEvent.scheduled()) {
761        regs.icr.txdw(1);
762        deschedule(tidvEvent);
763    }
764
765    regs.icr.int_assert(1);
766    DPRINTF(EthernetIntr, "EINT: Posting interrupt to CPU now. Vector %#x\n",
767            regs.icr());
768
769    intrPost();
770
771    lastInterrupt = curTick();
772}
773
774void
775IGbE::cpuClearInt()
776{
777    if (regs.icr.int_assert()) {
778        regs.icr.int_assert(0);
779        DPRINTF(EthernetIntr,
780                "EINT: Clearing interrupt to CPU now. Vector %#x\n",
781                regs.icr());
782        intrClear();
783    }
784}
785
786void
787IGbE::chkInterrupt()
788{
789    DPRINTF(Ethernet, "Checking interrupts icr: %#x imr: %#x\n", regs.icr(),
790            regs.imr);
791    // Check if we need to clear the cpu interrupt
792    if (!(regs.icr() & regs.imr)) {
793        DPRINTF(Ethernet, "Mask cleaned all interrupts\n");
794        if (interEvent.scheduled())
795            deschedule(interEvent);
796        if (regs.icr.int_assert())
797            cpuClearInt();
798    }
799    DPRINTF(Ethernet, "ITR = %#X itr.interval = %#X\n",
800            regs.itr(), regs.itr.interval());
801
802    if (regs.icr() & regs.imr) {
803        if (regs.itr.interval() == 0)  {
804            cpuPostInt();
805        } else {
806            DPRINTF(Ethernet,
807                    "Possibly scheduling interrupt because of imr write\n");
808            if (!interEvent.scheduled()) {
809                Tick t = curTick() + SimClock::Int::ns * 256 * regs.itr.interval();
810                DPRINTF(Ethernet, "Scheduling for %d\n", t);
811                schedule(interEvent, t);
812            }
813        }
814    }
815}
816
817
818///////////////////////////// IGbE::DescCache //////////////////////////////
819
820template<class T>
821IGbE::DescCache<T>::DescCache(IGbE *i, const std::string n, int s)
822    : igbe(i), _name(n), cachePnt(0), size(s), curFetching(0),
823      wbOut(0), moreToWb(false), wbAlignment(0), pktPtr(NULL),
824      wbDelayEvent(this), fetchDelayEvent(this), fetchEvent(this),
825      wbEvent(this)
826{
827    fetchBuf = new T[size];
828    wbBuf = new T[size];
829}
830
831template<class T>
832IGbE::DescCache<T>::~DescCache()
833{
834    reset();
835    delete[] fetchBuf;
836    delete[] wbBuf;
837}
838
839template<class T>
840void
841IGbE::DescCache<T>::areaChanged()
842{
843    if (usedCache.size() > 0 || curFetching || wbOut)
844        panic("Descriptor Address, Length or Head changed. Bad\n");
845    reset();
846
847}
848
849template<class T>
850void
851IGbE::DescCache<T>::writeback(Addr aMask)
852{
853    int curHead = descHead();
854    int max_to_wb = usedCache.size();
855
856    // Check if this writeback is less restrictive that the previous
857    // and if so setup another one immediately following it
858    if (wbOut) {
859        if (aMask < wbAlignment) {
860            moreToWb = true;
861            wbAlignment = aMask;
862        }
863        DPRINTF(EthernetDesc,
864                "Writing back already in process, returning\n");
865        return;
866    }
867
868    moreToWb = false;
869    wbAlignment = aMask;
870
871
872    DPRINTF(EthernetDesc, "Writing back descriptors head: %d tail: "
873            "%d len: %d cachePnt: %d max_to_wb: %d descleft: %d\n",
874            curHead, descTail(), descLen(), cachePnt, max_to_wb,
875            descLeft());
876
877    if (max_to_wb + curHead >= descLen()) {
878        max_to_wb = descLen() - curHead;
879        moreToWb = true;
880        // this is by definition aligned correctly
881    } else if (wbAlignment != 0) {
882        // align the wb point to the mask
883        max_to_wb = max_to_wb & ~wbAlignment;
884    }
885
886    DPRINTF(EthernetDesc, "Writing back %d descriptors\n", max_to_wb);
887
888    if (max_to_wb <= 0) {
889        if (usedCache.size())
890            igbe->anBegin(annSmWb, "Wait Alignment", CPA::FL_WAIT);
891        else
892            igbe->anWe(annSmWb, annUsedCacheQ);
893        return;
894    }
895
896    wbOut = max_to_wb;
897
898    assert(!wbDelayEvent.scheduled());
899    igbe->schedule(wbDelayEvent, curTick() + igbe->wbDelay);
900    igbe->anBegin(annSmWb, "Prepare Writeback Desc");
901}
902
903template<class T>
904void
905IGbE::DescCache<T>::writeback1()
906{
907    // If we're draining delay issuing this DMA
908    if (igbe->getDrainState() != Drainable::Running) {
909        igbe->schedule(wbDelayEvent, curTick() + igbe->wbDelay);
910        return;
911    }
912
913    DPRINTF(EthernetDesc, "Begining DMA of %d descriptors\n", wbOut);
914
915    for (int x = 0; x < wbOut; x++) {
916        assert(usedCache.size());
917        memcpy(&wbBuf[x], usedCache[x], sizeof(T));
918        igbe->anPq(annSmWb, annUsedCacheQ);
919        igbe->anPq(annSmWb, annDescQ);
920        igbe->anQ(annSmWb, annUsedDescQ);
921    }
922
923
924    igbe->anBegin(annSmWb, "Writeback Desc DMA");
925
926    assert(wbOut);
927    igbe->dmaWrite(pciToDma(descBase() + descHead() * sizeof(T)),
928                   wbOut * sizeof(T), &wbEvent, (uint8_t*)wbBuf,
929                   igbe->wbCompDelay);
930}
931
932template<class T>
933void
934IGbE::DescCache<T>::fetchDescriptors()
935{
936    size_t max_to_fetch;
937
938    if (curFetching) {
939        DPRINTF(EthernetDesc,
940                "Currently fetching %d descriptors, returning\n",
941                curFetching);
942        return;
943    }
944
945    if (descTail() >= cachePnt)
946        max_to_fetch = descTail() - cachePnt;
947    else
948        max_to_fetch = descLen() - cachePnt;
949
950    size_t free_cache = size - usedCache.size() - unusedCache.size();
951
952    if (!max_to_fetch)
953        igbe->anWe(annSmFetch, annUnusedDescQ);
954    else
955        igbe->anPq(annSmFetch, annUnusedDescQ, max_to_fetch);
956
957    if (max_to_fetch) {
958        if (!free_cache)
959            igbe->anWf(annSmFetch, annDescQ);
960        else
961            igbe->anRq(annSmFetch, annDescQ, free_cache);
962    }
963
964    max_to_fetch = std::min(max_to_fetch, free_cache);
965
966
967    DPRINTF(EthernetDesc, "Fetching descriptors head: %d tail: "
968            "%d len: %d cachePnt: %d max_to_fetch: %d descleft: %d\n",
969            descHead(), descTail(), descLen(), cachePnt,
970            max_to_fetch, descLeft());
971
972    // Nothing to do
973    if (max_to_fetch == 0)
974        return;
975
976    // So we don't have two descriptor fetches going on at once
977    curFetching = max_to_fetch;
978
979    assert(!fetchDelayEvent.scheduled());
980    igbe->schedule(fetchDelayEvent, curTick() + igbe->fetchDelay);
981    igbe->anBegin(annSmFetch, "Prepare Fetch Desc");
982}
983
984template<class T>
985void
986IGbE::DescCache<T>::fetchDescriptors1()
987{
988    // If we're draining delay issuing this DMA
989    if (igbe->getDrainState() != Drainable::Running) {
990        igbe->schedule(fetchDelayEvent, curTick() + igbe->fetchDelay);
991        return;
992    }
993
994    igbe->anBegin(annSmFetch, "Fetch Desc");
995
996    DPRINTF(EthernetDesc, "Fetching descriptors at %#x (%#x), size: %#x\n",
997            descBase() + cachePnt * sizeof(T),
998            pciToDma(descBase() + cachePnt * sizeof(T)),
999            curFetching * sizeof(T));
1000    assert(curFetching);
1001    igbe->dmaRead(pciToDma(descBase() + cachePnt * sizeof(T)),
1002                  curFetching * sizeof(T), &fetchEvent, (uint8_t*)fetchBuf,
1003                  igbe->fetchCompDelay);
1004}
1005
1006template<class T>
1007void
1008IGbE::DescCache<T>::fetchComplete()
1009{
1010    T *newDesc;
1011    igbe->anBegin(annSmFetch, "Fetch Complete");
1012    for (int x = 0; x < curFetching; x++) {
1013        newDesc = new T;
1014        memcpy(newDesc, &fetchBuf[x], sizeof(T));
1015        unusedCache.push_back(newDesc);
1016        igbe->anDq(annSmFetch, annUnusedDescQ);
1017        igbe->anQ(annSmFetch, annUnusedCacheQ);
1018        igbe->anQ(annSmFetch, annDescQ);
1019    }
1020
1021
1022#ifndef NDEBUG
1023    int oldCp = cachePnt;
1024#endif
1025
1026    cachePnt += curFetching;
1027    assert(cachePnt <= descLen());
1028    if (cachePnt == descLen())
1029        cachePnt = 0;
1030
1031    curFetching = 0;
1032
1033    DPRINTF(EthernetDesc, "Fetching complete cachePnt %d -> %d\n",
1034            oldCp, cachePnt);
1035
1036    if ((descTail() >= cachePnt ? (descTail() - cachePnt) : (descLen() -
1037                                                             cachePnt)) == 0)
1038    {
1039        igbe->anWe(annSmFetch, annUnusedDescQ);
1040    } else if (!(size - usedCache.size() - unusedCache.size())) {
1041        igbe->anWf(annSmFetch, annDescQ);
1042    } else {
1043        igbe->anBegin(annSmFetch, "Wait", CPA::FL_WAIT);
1044    }
1045
1046    enableSm();
1047    igbe->checkDrain();
1048}
1049
1050template<class T>
1051void
1052IGbE::DescCache<T>::wbComplete()
1053{
1054
1055    igbe->anBegin(annSmWb, "Finish Writeback");
1056
1057    long  curHead = descHead();
1058#ifndef NDEBUG
1059    long oldHead = curHead;
1060#endif
1061
1062    for (int x = 0; x < wbOut; x++) {
1063        assert(usedCache.size());
1064        delete usedCache[0];
1065        usedCache.pop_front();
1066
1067        igbe->anDq(annSmWb, annUsedCacheQ);
1068        igbe->anDq(annSmWb, annDescQ);
1069    }
1070
1071    curHead += wbOut;
1072    wbOut = 0;
1073
1074    if (curHead >= descLen())
1075        curHead -= descLen();
1076
1077    // Update the head
1078    updateHead(curHead);
1079
1080    DPRINTF(EthernetDesc, "Writeback complete curHead %d -> %d\n",
1081            oldHead, curHead);
1082
1083    // If we still have more to wb, call wb now
1084    actionAfterWb();
1085    if (moreToWb) {
1086        moreToWb = false;
1087        DPRINTF(EthernetDesc, "Writeback has more todo\n");
1088        writeback(wbAlignment);
1089    }
1090
1091    if (!wbOut) {
1092        igbe->checkDrain();
1093        if (usedCache.size())
1094            igbe->anBegin(annSmWb, "Wait", CPA::FL_WAIT);
1095        else
1096            igbe->anWe(annSmWb, annUsedCacheQ);
1097    }
1098    fetchAfterWb();
1099}
1100
1101template<class T>
1102void
1103IGbE::DescCache<T>::reset()
1104{
1105    DPRINTF(EthernetDesc, "Reseting descriptor cache\n");
1106    for (typename CacheType::size_type x = 0; x < usedCache.size(); x++)
1107        delete usedCache[x];
1108    for (typename CacheType::size_type x = 0; x < unusedCache.size(); x++)
1109        delete unusedCache[x];
1110
1111    usedCache.clear();
1112    unusedCache.clear();
1113
1114    cachePnt = 0;
1115
1116}
1117
1118template<class T>
1119void
1120IGbE::DescCache<T>::serialize(std::ostream &os)
1121{
1122    SERIALIZE_SCALAR(cachePnt);
1123    SERIALIZE_SCALAR(curFetching);
1124    SERIALIZE_SCALAR(wbOut);
1125    SERIALIZE_SCALAR(moreToWb);
1126    SERIALIZE_SCALAR(wbAlignment);
1127
1128    typename CacheType::size_type usedCacheSize = usedCache.size();
1129    SERIALIZE_SCALAR(usedCacheSize);
1130    for (typename CacheType::size_type x = 0; x < usedCacheSize; x++) {
1131        arrayParamOut(os, csprintf("usedCache_%d", x),
1132                      (uint8_t*)usedCache[x],sizeof(T));
1133    }
1134
1135    typename CacheType::size_type unusedCacheSize = unusedCache.size();
1136    SERIALIZE_SCALAR(unusedCacheSize);
1137    for (typename CacheType::size_type x = 0; x < unusedCacheSize; x++) {
1138        arrayParamOut(os, csprintf("unusedCache_%d", x),
1139                      (uint8_t*)unusedCache[x],sizeof(T));
1140    }
1141
1142    Tick fetch_delay = 0, wb_delay = 0;
1143    if (fetchDelayEvent.scheduled())
1144        fetch_delay = fetchDelayEvent.when();
1145    SERIALIZE_SCALAR(fetch_delay);
1146    if (wbDelayEvent.scheduled())
1147        wb_delay = wbDelayEvent.when();
1148    SERIALIZE_SCALAR(wb_delay);
1149
1150
1151}
1152
1153template<class T>
1154void
1155IGbE::DescCache<T>::unserialize(Checkpoint *cp, const std::string &section)
1156{
1157    UNSERIALIZE_SCALAR(cachePnt);
1158    UNSERIALIZE_SCALAR(curFetching);
1159    UNSERIALIZE_SCALAR(wbOut);
1160    UNSERIALIZE_SCALAR(moreToWb);
1161    UNSERIALIZE_SCALAR(wbAlignment);
1162
1163    typename CacheType::size_type usedCacheSize;
1164    UNSERIALIZE_SCALAR(usedCacheSize);
1165    T *temp;
1166    for (typename CacheType::size_type x = 0; x < usedCacheSize; x++) {
1167        temp = new T;
1168        arrayParamIn(cp, section, csprintf("usedCache_%d", x),
1169                     (uint8_t*)temp,sizeof(T));
1170        usedCache.push_back(temp);
1171    }
1172
1173    typename CacheType::size_type unusedCacheSize;
1174    UNSERIALIZE_SCALAR(unusedCacheSize);
1175    for (typename CacheType::size_type x = 0; x < unusedCacheSize; x++) {
1176        temp = new T;
1177        arrayParamIn(cp, section, csprintf("unusedCache_%d", x),
1178                     (uint8_t*)temp,sizeof(T));
1179        unusedCache.push_back(temp);
1180    }
1181    Tick fetch_delay = 0, wb_delay = 0;
1182    UNSERIALIZE_SCALAR(fetch_delay);
1183    UNSERIALIZE_SCALAR(wb_delay);
1184    if (fetch_delay)
1185        igbe->schedule(fetchDelayEvent, fetch_delay);
1186    if (wb_delay)
1187        igbe->schedule(wbDelayEvent, wb_delay);
1188
1189
1190}
1191
1192///////////////////////////// IGbE::RxDescCache //////////////////////////////
1193
1194IGbE::RxDescCache::RxDescCache(IGbE *i, const std::string n, int s)
1195    : DescCache<RxDesc>(i, n, s), pktDone(false), splitCount(0),
1196      pktEvent(this), pktHdrEvent(this), pktDataEvent(this)
1197
1198{
1199    annSmFetch = "RX Desc Fetch";
1200    annSmWb = "RX Desc Writeback";
1201    annUnusedDescQ = "RX Unused Descriptors";
1202    annUnusedCacheQ = "RX Unused Descriptor Cache";
1203    annUsedCacheQ = "RX Used Descriptor Cache";
1204    annUsedDescQ = "RX Used Descriptors";
1205    annDescQ = "RX Descriptors";
1206}
1207
1208void
1209IGbE::RxDescCache::pktSplitDone()
1210{
1211    splitCount++;
1212    DPRINTF(EthernetDesc,
1213            "Part of split packet done: splitcount now %d\n", splitCount);
1214    assert(splitCount <= 2);
1215    if (splitCount != 2)
1216        return;
1217    splitCount = 0;
1218    DPRINTF(EthernetDesc,
1219            "Part of split packet done: calling pktComplete()\n");
1220    pktComplete();
1221}
1222
1223int
1224IGbE::RxDescCache::writePacket(EthPacketPtr packet, int pkt_offset)
1225{
1226    assert(unusedCache.size());
1227    //if (!unusedCache.size())
1228    //    return false;
1229
1230    pktPtr = packet;
1231    pktDone = false;
1232    unsigned buf_len, hdr_len;
1233
1234    RxDesc *desc = unusedCache.front();
1235    switch (igbe->regs.srrctl.desctype()) {
1236      case RXDT_LEGACY:
1237        assert(pkt_offset == 0);
1238        bytesCopied = packet->length;
1239        DPRINTF(EthernetDesc, "Packet Length: %d Desc Size: %d\n",
1240                packet->length, igbe->regs.rctl.descSize());
1241        assert(packet->length < igbe->regs.rctl.descSize());
1242        igbe->dmaWrite(pciToDma(desc->legacy.buf),
1243                       packet->length, &pktEvent, packet->data,
1244                       igbe->rxWriteDelay);
1245        break;
1246      case RXDT_ADV_ONEBUF:
1247        assert(pkt_offset == 0);
1248        bytesCopied = packet->length;
1249        buf_len = igbe->regs.rctl.lpe() ? igbe->regs.srrctl.bufLen() :
1250            igbe->regs.rctl.descSize();
1251        DPRINTF(EthernetDesc, "Packet Length: %d srrctl: %#x Desc Size: %d\n",
1252                packet->length, igbe->regs.srrctl(), buf_len);
1253        assert(packet->length < buf_len);
1254        igbe->dmaWrite(pciToDma(desc->adv_read.pkt),
1255                       packet->length, &pktEvent, packet->data,
1256                       igbe->rxWriteDelay);
1257        desc->adv_wb.header_len = htole(0);
1258        desc->adv_wb.sph = htole(0);
1259        desc->adv_wb.pkt_len = htole((uint16_t)(pktPtr->length));
1260        break;
1261      case RXDT_ADV_SPLIT_A:
1262        int split_point;
1263
1264        buf_len = igbe->regs.rctl.lpe() ? igbe->regs.srrctl.bufLen() :
1265            igbe->regs.rctl.descSize();
1266        hdr_len = igbe->regs.rctl.lpe() ? igbe->regs.srrctl.hdrLen() : 0;
1267        DPRINTF(EthernetDesc,
1268                "lpe: %d Packet Length: %d offset: %d srrctl: %#x "
1269                "hdr addr: %#x Hdr Size: %d desc addr: %#x Desc Size: %d\n",
1270                igbe->regs.rctl.lpe(), packet->length, pkt_offset,
1271                igbe->regs.srrctl(), desc->adv_read.hdr, hdr_len,
1272                desc->adv_read.pkt, buf_len);
1273
1274        split_point = hsplit(pktPtr);
1275
1276        if (packet->length <= hdr_len) {
1277            bytesCopied = packet->length;
1278            assert(pkt_offset == 0);
1279            DPRINTF(EthernetDesc, "Hdr split: Entire packet in header\n");
1280            igbe->dmaWrite(pciToDma(desc->adv_read.hdr),
1281                           packet->length, &pktEvent, packet->data,
1282                           igbe->rxWriteDelay);
1283            desc->adv_wb.header_len = htole((uint16_t)packet->length);
1284            desc->adv_wb.sph = htole(0);
1285            desc->adv_wb.pkt_len = htole(0);
1286        } else if (split_point) {
1287            if (pkt_offset) {
1288                // we are only copying some data, header/data has already been
1289                // copied
1290                int max_to_copy =
1291                    std::min(packet->length - pkt_offset, buf_len);
1292                bytesCopied += max_to_copy;
1293                DPRINTF(EthernetDesc,
1294                        "Hdr split: Continuing data buffer copy\n");
1295                igbe->dmaWrite(pciToDma(desc->adv_read.pkt),
1296                               max_to_copy, &pktEvent,
1297                               packet->data + pkt_offset, igbe->rxWriteDelay);
1298                desc->adv_wb.header_len = htole(0);
1299                desc->adv_wb.pkt_len = htole((uint16_t)max_to_copy);
1300                desc->adv_wb.sph = htole(0);
1301            } else {
1302                int max_to_copy =
1303                    std::min(packet->length - split_point, buf_len);
1304                bytesCopied += max_to_copy + split_point;
1305
1306                DPRINTF(EthernetDesc, "Hdr split: splitting at %d\n",
1307                        split_point);
1308                igbe->dmaWrite(pciToDma(desc->adv_read.hdr),
1309                               split_point, &pktHdrEvent,
1310                               packet->data, igbe->rxWriteDelay);
1311                igbe->dmaWrite(pciToDma(desc->adv_read.pkt),
1312                               max_to_copy, &pktDataEvent,
1313                               packet->data + split_point, igbe->rxWriteDelay);
1314                desc->adv_wb.header_len = htole(split_point);
1315                desc->adv_wb.sph = 1;
1316                desc->adv_wb.pkt_len = htole((uint16_t)(max_to_copy));
1317            }
1318        } else {
1319            panic("Header split not fitting within header buffer or "
1320                  "undecodable packet not fitting in header unsupported\n");
1321        }
1322        break;
1323      default:
1324        panic("Unimplemnted RX receive buffer type: %d\n",
1325              igbe->regs.srrctl.desctype());
1326    }
1327    return bytesCopied;
1328
1329}
1330
1331void
1332IGbE::RxDescCache::pktComplete()
1333{
1334    assert(unusedCache.size());
1335    RxDesc *desc;
1336    desc = unusedCache.front();
1337
1338    igbe->anBegin("RXS", "Update Desc");
1339
1340    uint16_t crcfixup = igbe->regs.rctl.secrc() ? 0 : 4 ;
1341    DPRINTF(EthernetDesc, "pktPtr->length: %d bytesCopied: %d "
1342            "stripcrc offset: %d value written: %d %d\n",
1343            pktPtr->length, bytesCopied, crcfixup,
1344            htole((uint16_t)(pktPtr->length + crcfixup)),
1345            (uint16_t)(pktPtr->length + crcfixup));
1346
1347    // no support for anything but starting at 0
1348    assert(igbe->regs.rxcsum.pcss() == 0);
1349
1350    DPRINTF(EthernetDesc, "Packet written to memory updating Descriptor\n");
1351
1352    uint16_t status = RXDS_DD;
1353    uint8_t err = 0;
1354    uint16_t ext_err = 0;
1355    uint16_t csum = 0;
1356    uint16_t ptype = 0;
1357    uint16_t ip_id = 0;
1358
1359    assert(bytesCopied <= pktPtr->length);
1360    if (bytesCopied == pktPtr->length)
1361        status |= RXDS_EOP;
1362
1363    IpPtr ip(pktPtr);
1364
1365    if (ip) {
1366        DPRINTF(EthernetDesc, "Proccesing Ip packet with Id=%d\n", ip->id());
1367        ptype |= RXDP_IPV4;
1368        ip_id = ip->id();
1369
1370        if (igbe->regs.rxcsum.ipofld()) {
1371            DPRINTF(EthernetDesc, "Checking IP checksum\n");
1372            status |= RXDS_IPCS;
1373            csum = htole(cksum(ip));
1374            igbe->rxIpChecksums++;
1375            if (cksum(ip) != 0) {
1376                err |= RXDE_IPE;
1377                ext_err |= RXDEE_IPE;
1378                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
1379            }
1380        }
1381        TcpPtr tcp(ip);
1382        if (tcp && igbe->regs.rxcsum.tuofld()) {
1383            DPRINTF(EthernetDesc, "Checking TCP checksum\n");
1384            status |= RXDS_TCPCS;
1385            ptype |= RXDP_TCP;
1386            csum = htole(cksum(tcp));
1387            igbe->rxTcpChecksums++;
1388            if (cksum(tcp) != 0) {
1389                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
1390                err |= RXDE_TCPE;
1391                ext_err |= RXDEE_TCPE;
1392            }
1393        }
1394
1395        UdpPtr udp(ip);
1396        if (udp && igbe->regs.rxcsum.tuofld()) {
1397            DPRINTF(EthernetDesc, "Checking UDP checksum\n");
1398            status |= RXDS_UDPCS;
1399            ptype |= RXDP_UDP;
1400            csum = htole(cksum(udp));
1401            igbe->rxUdpChecksums++;
1402            if (cksum(udp) != 0) {
1403                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
1404                ext_err |= RXDEE_TCPE;
1405                err |= RXDE_TCPE;
1406            }
1407        }
1408    } else { // if ip
1409        DPRINTF(EthernetSM, "Proccesing Non-Ip packet\n");
1410    }
1411
1412    switch (igbe->regs.srrctl.desctype()) {
1413      case RXDT_LEGACY:
1414        desc->legacy.len = htole((uint16_t)(pktPtr->length + crcfixup));
1415        desc->legacy.status = htole(status);
1416        desc->legacy.errors = htole(err);
1417        // No vlan support at this point... just set it to 0
1418        desc->legacy.vlan = 0;
1419        break;
1420      case RXDT_ADV_SPLIT_A:
1421      case RXDT_ADV_ONEBUF:
1422        desc->adv_wb.rss_type = htole(0);
1423        desc->adv_wb.pkt_type = htole(ptype);
1424        if (igbe->regs.rxcsum.pcsd()) {
1425            // no rss support right now
1426            desc->adv_wb.rss_hash = htole(0);
1427        } else {
1428            desc->adv_wb.id = htole(ip_id);
1429            desc->adv_wb.csum = htole(csum);
1430        }
1431        desc->adv_wb.status = htole(status);
1432        desc->adv_wb.errors = htole(ext_err);
1433        // no vlan support
1434        desc->adv_wb.vlan_tag = htole(0);
1435        break;
1436      default:
1437        panic("Unimplemnted RX receive buffer type %d\n",
1438              igbe->regs.srrctl.desctype());
1439    }
1440
1441    DPRINTF(EthernetDesc, "Descriptor complete w0: %#x w1: %#x\n",
1442            desc->adv_read.pkt, desc->adv_read.hdr);
1443
1444    if (bytesCopied == pktPtr->length) {
1445        DPRINTF(EthernetDesc,
1446                "Packet completely written to descriptor buffers\n");
1447        // Deal with the rx timer interrupts
1448        if (igbe->regs.rdtr.delay()) {
1449            Tick delay = igbe->regs.rdtr.delay() * igbe->intClock();
1450            DPRINTF(EthernetSM, "RXS: Scheduling DTR for %d\n", delay);
1451            igbe->reschedule(igbe->rdtrEvent, curTick() + delay);
1452        }
1453
1454        if (igbe->regs.radv.idv()) {
1455            Tick delay = igbe->regs.radv.idv() * igbe->intClock();
1456            DPRINTF(EthernetSM, "RXS: Scheduling ADV for %d\n", delay);
1457            if (!igbe->radvEvent.scheduled()) {
1458                igbe->schedule(igbe->radvEvent, curTick() + delay);
1459            }
1460        }
1461
1462        // if neither radv or rdtr, maybe itr is set...
1463        if (!igbe->regs.rdtr.delay() && !igbe->regs.radv.idv()) {
1464            DPRINTF(EthernetSM,
1465                    "RXS: Receive interrupt delay disabled, posting IT_RXT\n");
1466            igbe->postInterrupt(IT_RXT);
1467        }
1468
1469        // If the packet is small enough, interrupt appropriately
1470        // I wonder if this is delayed or not?!
1471        if (pktPtr->length <= igbe->regs.rsrpd.idv()) {
1472            DPRINTF(EthernetSM,
1473                    "RXS: Posting IT_SRPD beacuse small packet received\n");
1474            igbe->postInterrupt(IT_SRPD);
1475        }
1476        bytesCopied = 0;
1477    }
1478
1479    pktPtr = NULL;
1480    igbe->checkDrain();
1481    enableSm();
1482    pktDone = true;
1483
1484    igbe->anBegin("RXS", "Done Updating Desc");
1485    DPRINTF(EthernetDesc, "Processing of this descriptor complete\n");
1486    igbe->anDq("RXS", annUnusedCacheQ);
1487    unusedCache.pop_front();
1488    igbe->anQ("RXS", annUsedCacheQ);
1489    usedCache.push_back(desc);
1490}
1491
1492void
1493IGbE::RxDescCache::enableSm()
1494{
1495    if (!igbe->drainManager) {
1496        igbe->rxTick = true;
1497        igbe->restartClock();
1498    }
1499}
1500
1501bool
1502IGbE::RxDescCache::packetDone()
1503{
1504    if (pktDone) {
1505        pktDone = false;
1506        return true;
1507    }
1508    return false;
1509}
1510
1511bool
1512IGbE::RxDescCache::hasOutstandingEvents()
1513{
1514    return pktEvent.scheduled() || wbEvent.scheduled() ||
1515        fetchEvent.scheduled() || pktHdrEvent.scheduled() ||
1516        pktDataEvent.scheduled();
1517
1518}
1519
1520void
1521IGbE::RxDescCache::serialize(std::ostream &os)
1522{
1523    DescCache<RxDesc>::serialize(os);
1524    SERIALIZE_SCALAR(pktDone);
1525    SERIALIZE_SCALAR(splitCount);
1526    SERIALIZE_SCALAR(bytesCopied);
1527}
1528
1529void
1530IGbE::RxDescCache::unserialize(Checkpoint *cp, const std::string &section)
1531{
1532    DescCache<RxDesc>::unserialize(cp, section);
1533    UNSERIALIZE_SCALAR(pktDone);
1534    UNSERIALIZE_SCALAR(splitCount);
1535    UNSERIALIZE_SCALAR(bytesCopied);
1536}
1537
1538
1539///////////////////////////// IGbE::TxDescCache //////////////////////////////
1540
1541IGbE::TxDescCache::TxDescCache(IGbE *i, const std::string n, int s)
1542    : DescCache<TxDesc>(i,n, s), pktDone(false), isTcp(false),
1543      pktWaiting(false), pktMultiDesc(false),
1544      completionAddress(0), completionEnabled(false),
1545      useTso(false), tsoHeaderLen(0), tsoMss(0), tsoTotalLen(0), tsoUsedLen(0),
1546      tsoPrevSeq(0), tsoPktPayloadBytes(0), tsoLoadedHeader(false),
1547      tsoPktHasHeader(false), tsoDescBytesUsed(0), tsoCopyBytes(0), tsoPkts(0),
1548      pktEvent(this), headerEvent(this), nullEvent(this)
1549{
1550    annSmFetch = "TX Desc Fetch";
1551    annSmWb = "TX Desc Writeback";
1552    annUnusedDescQ = "TX Unused Descriptors";
1553    annUnusedCacheQ = "TX Unused Descriptor Cache";
1554    annUsedCacheQ = "TX Used Descriptor Cache";
1555    annUsedDescQ = "TX Used Descriptors";
1556    annDescQ = "TX Descriptors";
1557}
1558
1559void
1560IGbE::TxDescCache::processContextDesc()
1561{
1562    assert(unusedCache.size());
1563    TxDesc *desc;
1564
1565    DPRINTF(EthernetDesc, "Checking and  processing context descriptors\n");
1566
1567    while (!useTso && unusedCache.size() &&
1568           TxdOp::isContext(unusedCache.front())) {
1569        DPRINTF(EthernetDesc, "Got context descriptor type...\n");
1570
1571        desc = unusedCache.front();
1572        DPRINTF(EthernetDesc, "Descriptor upper: %#x lower: %#X\n",
1573                desc->d1, desc->d2);
1574
1575
1576        // is this going to be a tcp or udp packet?
1577        isTcp = TxdOp::tcp(desc) ? true : false;
1578
1579        // setup all the TSO variables, they'll be ignored if we don't use
1580        // tso for this connection
1581        tsoHeaderLen = TxdOp::hdrlen(desc);
1582        tsoMss  = TxdOp::mss(desc);
1583
1584        if (TxdOp::isType(desc, TxdOp::TXD_CNXT) && TxdOp::tse(desc)) {
1585            DPRINTF(EthernetDesc, "TCP offload enabled for packet hdrlen: "
1586                    "%d mss: %d paylen %d\n", TxdOp::hdrlen(desc),
1587                    TxdOp::mss(desc), TxdOp::getLen(desc));
1588            useTso = true;
1589            tsoTotalLen = TxdOp::getLen(desc);
1590            tsoLoadedHeader = false;
1591            tsoDescBytesUsed = 0;
1592            tsoUsedLen = 0;
1593            tsoPrevSeq = 0;
1594            tsoPktHasHeader = false;
1595            tsoPkts = 0;
1596            tsoCopyBytes = 0;
1597        }
1598
1599        TxdOp::setDd(desc);
1600        unusedCache.pop_front();
1601        igbe->anDq("TXS", annUnusedCacheQ);
1602        usedCache.push_back(desc);
1603        igbe->anQ("TXS", annUsedCacheQ);
1604    }
1605
1606    if (!unusedCache.size())
1607        return;
1608
1609    desc = unusedCache.front();
1610    if (!useTso && TxdOp::isType(desc, TxdOp::TXD_ADVDATA) &&
1611        TxdOp::tse(desc)) {
1612        DPRINTF(EthernetDesc, "TCP offload(adv) enabled for packet "
1613                "hdrlen: %d mss: %d paylen %d\n",
1614                tsoHeaderLen, tsoMss, TxdOp::getTsoLen(desc));
1615        useTso = true;
1616        tsoTotalLen = TxdOp::getTsoLen(desc);
1617        tsoLoadedHeader = false;
1618        tsoDescBytesUsed = 0;
1619        tsoUsedLen = 0;
1620        tsoPrevSeq = 0;
1621        tsoPktHasHeader = false;
1622        tsoPkts = 0;
1623    }
1624
1625    if (useTso && !tsoLoadedHeader) {
1626        // we need to fetch a header
1627        DPRINTF(EthernetDesc, "Starting DMA of TSO header\n");
1628        assert(TxdOp::isData(desc) && TxdOp::getLen(desc) >= tsoHeaderLen);
1629        pktWaiting = true;
1630        assert(tsoHeaderLen <= 256);
1631        igbe->dmaRead(pciToDma(TxdOp::getBuf(desc)),
1632                      tsoHeaderLen, &headerEvent, tsoHeader, 0);
1633    }
1634}
1635
1636void
1637IGbE::TxDescCache::headerComplete()
1638{
1639    DPRINTF(EthernetDesc, "TSO: Fetching TSO header complete\n");
1640    pktWaiting = false;
1641
1642    assert(unusedCache.size());
1643    TxDesc *desc = unusedCache.front();
1644    DPRINTF(EthernetDesc, "TSO: len: %d tsoHeaderLen: %d\n",
1645            TxdOp::getLen(desc), tsoHeaderLen);
1646
1647    if (TxdOp::getLen(desc) == tsoHeaderLen) {
1648        tsoDescBytesUsed = 0;
1649        tsoLoadedHeader = true;
1650        unusedCache.pop_front();
1651        usedCache.push_back(desc);
1652    } else {
1653        DPRINTF(EthernetDesc, "TSO: header part of larger payload\n");
1654        tsoDescBytesUsed = tsoHeaderLen;
1655        tsoLoadedHeader = true;
1656    }
1657    enableSm();
1658    igbe->checkDrain();
1659}
1660
1661unsigned
1662IGbE::TxDescCache::getPacketSize(EthPacketPtr p)
1663{
1664    if (!unusedCache.size())
1665        return 0;
1666
1667    DPRINTF(EthernetDesc, "Starting processing of descriptor\n");
1668
1669    assert(!useTso || tsoLoadedHeader);
1670    TxDesc *desc = unusedCache.front();
1671
1672    if (useTso) {
1673        DPRINTF(EthernetDesc, "getPacket(): TxDescriptor data "
1674                "d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
1675        DPRINTF(EthernetDesc, "TSO: use: %d hdrlen: %d mss: %d total: %d "
1676                "used: %d loaded hdr: %d\n", useTso, tsoHeaderLen, tsoMss,
1677                tsoTotalLen, tsoUsedLen, tsoLoadedHeader);
1678
1679        if (tsoPktHasHeader)
1680            tsoCopyBytes =  std::min((tsoMss + tsoHeaderLen) - p->length,
1681                                     TxdOp::getLen(desc) - tsoDescBytesUsed);
1682        else
1683            tsoCopyBytes =  std::min(tsoMss,
1684                                     TxdOp::getLen(desc) - tsoDescBytesUsed);
1685        unsigned pkt_size =
1686            tsoCopyBytes + (tsoPktHasHeader ? 0 : tsoHeaderLen);
1687
1688        DPRINTF(EthernetDesc, "TSO: descBytesUsed: %d copyBytes: %d "
1689                "this descLen: %d\n",
1690                tsoDescBytesUsed, tsoCopyBytes, TxdOp::getLen(desc));
1691        DPRINTF(EthernetDesc, "TSO: pktHasHeader: %d\n", tsoPktHasHeader);
1692        DPRINTF(EthernetDesc, "TSO: Next packet is %d bytes\n", pkt_size);
1693        return pkt_size;
1694    }
1695
1696    DPRINTF(EthernetDesc, "Next TX packet is %d bytes\n",
1697            TxdOp::getLen(unusedCache.front()));
1698    return TxdOp::getLen(desc);
1699}
1700
1701void
1702IGbE::TxDescCache::getPacketData(EthPacketPtr p)
1703{
1704    assert(unusedCache.size());
1705
1706    TxDesc *desc;
1707    desc = unusedCache.front();
1708
1709    DPRINTF(EthernetDesc, "getPacketData(): TxDescriptor data "
1710            "d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
1711    assert((TxdOp::isLegacy(desc) || TxdOp::isData(desc)) &&
1712           TxdOp::getLen(desc));
1713
1714    pktPtr = p;
1715
1716    pktWaiting = true;
1717
1718    DPRINTF(EthernetDesc, "Starting DMA of packet at offset %d\n", p->length);
1719
1720    if (useTso) {
1721        assert(tsoLoadedHeader);
1722        if (!tsoPktHasHeader) {
1723            DPRINTF(EthernetDesc,
1724                    "Loading TSO header (%d bytes) into start of packet\n",
1725                    tsoHeaderLen);
1726            memcpy(p->data, &tsoHeader,tsoHeaderLen);
1727            p->length +=tsoHeaderLen;
1728            tsoPktHasHeader = true;
1729        }
1730    }
1731
1732    if (useTso) {
1733        DPRINTF(EthernetDesc,
1734                "Starting DMA of packet at offset %d length: %d\n",
1735                p->length, tsoCopyBytes);
1736        igbe->dmaRead(pciToDma(TxdOp::getBuf(desc))
1737                      + tsoDescBytesUsed,
1738                      tsoCopyBytes, &pktEvent, p->data + p->length,
1739                      igbe->txReadDelay);
1740        tsoDescBytesUsed += tsoCopyBytes;
1741        assert(tsoDescBytesUsed <= TxdOp::getLen(desc));
1742    } else {
1743        igbe->dmaRead(pciToDma(TxdOp::getBuf(desc)),
1744                      TxdOp::getLen(desc), &pktEvent, p->data + p->length,
1745                      igbe->txReadDelay);
1746    }
1747}
1748
1749void
1750IGbE::TxDescCache::pktComplete()
1751{
1752
1753    TxDesc *desc;
1754    assert(unusedCache.size());
1755    assert(pktPtr);
1756
1757    igbe->anBegin("TXS", "Update Desc");
1758
1759    DPRINTF(EthernetDesc, "DMA of packet complete\n");
1760
1761
1762    desc = unusedCache.front();
1763    assert((TxdOp::isLegacy(desc) || TxdOp::isData(desc)) &&
1764           TxdOp::getLen(desc));
1765
1766    DPRINTF(EthernetDesc, "TxDescriptor data d1: %#llx d2: %#llx\n",
1767            desc->d1, desc->d2);
1768
1769    // Set the length of the data in the EtherPacket
1770    if (useTso) {
1771        DPRINTF(EthernetDesc, "TSO: use: %d hdrlen: %d mss: %d total: %d "
1772            "used: %d loaded hdr: %d\n", useTso, tsoHeaderLen, tsoMss,
1773            tsoTotalLen, tsoUsedLen, tsoLoadedHeader);
1774        pktPtr->length += tsoCopyBytes;
1775        tsoUsedLen += tsoCopyBytes;
1776        DPRINTF(EthernetDesc, "TSO: descBytesUsed: %d copyBytes: %d\n",
1777            tsoDescBytesUsed, tsoCopyBytes);
1778    } else
1779        pktPtr->length += TxdOp::getLen(desc);
1780
1781
1782
1783    if ((!TxdOp::eop(desc) && !useTso) ||
1784        (pktPtr->length < ( tsoMss + tsoHeaderLen) &&
1785         tsoTotalLen != tsoUsedLen && useTso)) {
1786        assert(!useTso || (tsoDescBytesUsed == TxdOp::getLen(desc)));
1787        igbe->anDq("TXS", annUnusedCacheQ);
1788        unusedCache.pop_front();
1789        igbe->anQ("TXS", annUsedCacheQ);
1790        usedCache.push_back(desc);
1791
1792        tsoDescBytesUsed = 0;
1793        pktDone = true;
1794        pktWaiting = false;
1795        pktMultiDesc = true;
1796
1797        DPRINTF(EthernetDesc, "Partial Packet Descriptor of %d bytes Done\n",
1798                pktPtr->length);
1799        pktPtr = NULL;
1800
1801        enableSm();
1802        igbe->checkDrain();
1803        return;
1804    }
1805
1806
1807    pktMultiDesc = false;
1808    // no support for vlans
1809    assert(!TxdOp::vle(desc));
1810
1811    // we only support single packet descriptors at this point
1812    if (!useTso)
1813        assert(TxdOp::eop(desc));
1814
1815    // set that this packet is done
1816    if (TxdOp::rs(desc))
1817        TxdOp::setDd(desc);
1818
1819    DPRINTF(EthernetDesc, "TxDescriptor data d1: %#llx d2: %#llx\n",
1820            desc->d1, desc->d2);
1821
1822    if (useTso) {
1823        IpPtr ip(pktPtr);
1824        if (ip) {
1825            DPRINTF(EthernetDesc, "TSO: Modifying IP header. Id + %d\n",
1826                    tsoPkts);
1827            ip->id(ip->id() + tsoPkts++);
1828            ip->len(pktPtr->length - EthPtr(pktPtr)->size());
1829
1830            TcpPtr tcp(ip);
1831            if (tcp) {
1832                DPRINTF(EthernetDesc,
1833                        "TSO: Modifying TCP header. old seq %d + %d\n",
1834                        tcp->seq(), tsoPrevSeq);
1835                tcp->seq(tcp->seq() + tsoPrevSeq);
1836                if (tsoUsedLen != tsoTotalLen)
1837                    tcp->flags(tcp->flags() & ~9); // clear fin & psh
1838            }
1839            UdpPtr udp(ip);
1840            if (udp) {
1841                DPRINTF(EthernetDesc, "TSO: Modifying UDP header.\n");
1842                udp->len(pktPtr->length - EthPtr(pktPtr)->size());
1843            }
1844        }
1845        tsoPrevSeq = tsoUsedLen;
1846    }
1847
1848    if (DTRACE(EthernetDesc)) {
1849        IpPtr ip(pktPtr);
1850        if (ip)
1851            DPRINTF(EthernetDesc, "Proccesing Ip packet with Id=%d\n",
1852                    ip->id());
1853        else
1854            DPRINTF(EthernetSM, "Proccesing Non-Ip packet\n");
1855    }
1856
1857    // Checksums are only ofloaded for new descriptor types
1858    if (TxdOp::isData(desc) && ( TxdOp::ixsm(desc) || TxdOp::txsm(desc)) ) {
1859        DPRINTF(EthernetDesc, "Calculating checksums for packet\n");
1860        IpPtr ip(pktPtr);
1861        assert(ip);
1862        if (TxdOp::ixsm(desc)) {
1863            ip->sum(0);
1864            ip->sum(cksum(ip));
1865            igbe->txIpChecksums++;
1866            DPRINTF(EthernetDesc, "Calculated IP checksum\n");
1867        }
1868        if (TxdOp::txsm(desc)) {
1869            TcpPtr tcp(ip);
1870            UdpPtr udp(ip);
1871            if (tcp) {
1872                tcp->sum(0);
1873                tcp->sum(cksum(tcp));
1874                igbe->txTcpChecksums++;
1875                DPRINTF(EthernetDesc, "Calculated TCP checksum\n");
1876            } else if (udp) {
1877                assert(udp);
1878                udp->sum(0);
1879                udp->sum(cksum(udp));
1880                igbe->txUdpChecksums++;
1881                DPRINTF(EthernetDesc, "Calculated UDP checksum\n");
1882            } else {
1883                panic("Told to checksum, but don't know how\n");
1884            }
1885        }
1886    }
1887
1888    if (TxdOp::ide(desc)) {
1889        // Deal with the rx timer interrupts
1890        DPRINTF(EthernetDesc, "Descriptor had IDE set\n");
1891        if (igbe->regs.tidv.idv()) {
1892            Tick delay = igbe->regs.tidv.idv() * igbe->intClock();
1893            DPRINTF(EthernetDesc, "setting tidv\n");
1894            igbe->reschedule(igbe->tidvEvent, curTick() + delay, true);
1895        }
1896
1897        if (igbe->regs.tadv.idv() && igbe->regs.tidv.idv()) {
1898            Tick delay = igbe->regs.tadv.idv() * igbe->intClock();
1899            DPRINTF(EthernetDesc, "setting tadv\n");
1900            if (!igbe->tadvEvent.scheduled()) {
1901                igbe->schedule(igbe->tadvEvent, curTick() + delay);
1902            }
1903        }
1904    }
1905
1906
1907    if (!useTso ||  TxdOp::getLen(desc) == tsoDescBytesUsed) {
1908        DPRINTF(EthernetDesc, "Descriptor Done\n");
1909        igbe->anDq("TXS", annUnusedCacheQ);
1910        unusedCache.pop_front();
1911        igbe->anQ("TXS", annUsedCacheQ);
1912        usedCache.push_back(desc);
1913        tsoDescBytesUsed = 0;
1914    }
1915
1916    if (useTso && tsoUsedLen == tsoTotalLen)
1917        useTso = false;
1918
1919
1920    DPRINTF(EthernetDesc,
1921            "------Packet of %d bytes ready for transmission-------\n",
1922            pktPtr->length);
1923    pktDone = true;
1924    pktWaiting = false;
1925    pktPtr = NULL;
1926    tsoPktHasHeader = false;
1927
1928    if (igbe->regs.txdctl.wthresh() == 0) {
1929        igbe->anBegin("TXS", "Desc Writeback");
1930        DPRINTF(EthernetDesc, "WTHRESH == 0, writing back descriptor\n");
1931        writeback(0);
1932    } else if (!igbe->regs.txdctl.gran() && igbe->regs.txdctl.wthresh() <=
1933               descInBlock(usedCache.size())) {
1934        DPRINTF(EthernetDesc, "used > WTHRESH, writing back descriptor\n");
1935        igbe->anBegin("TXS", "Desc Writeback");
1936        writeback((igbe->cacheBlockSize()-1)>>4);
1937    } else if (igbe->regs.txdctl.wthresh() <= usedCache.size()) {
1938        DPRINTF(EthernetDesc, "used > WTHRESH, writing back descriptor\n");
1939        igbe->anBegin("TXS", "Desc Writeback");
1940        writeback((igbe->cacheBlockSize()-1)>>4);
1941    }
1942
1943    enableSm();
1944    igbe->checkDrain();
1945}
1946
1947void
1948IGbE::TxDescCache::actionAfterWb()
1949{
1950    DPRINTF(EthernetDesc, "actionAfterWb() completionEnabled: %d\n",
1951            completionEnabled);
1952    igbe->postInterrupt(iGbReg::IT_TXDW);
1953    if (completionEnabled) {
1954        descEnd = igbe->regs.tdh();
1955        DPRINTF(EthernetDesc,
1956                "Completion writing back value: %d to addr: %#x\n", descEnd,
1957                completionAddress);
1958        igbe->dmaWrite(pciToDma(mbits(completionAddress, 63, 2)),
1959                       sizeof(descEnd), &nullEvent, (uint8_t*)&descEnd, 0);
1960    }
1961}
1962
1963void
1964IGbE::TxDescCache::serialize(std::ostream &os)
1965{
1966    DescCache<TxDesc>::serialize(os);
1967    SERIALIZE_SCALAR(pktDone);
1968    SERIALIZE_SCALAR(isTcp);
1969    SERIALIZE_SCALAR(pktWaiting);
1970    SERIALIZE_SCALAR(pktMultiDesc);
1971
1972    SERIALIZE_SCALAR(useTso);
1973    SERIALIZE_SCALAR(tsoHeaderLen);
1974    SERIALIZE_SCALAR(tsoMss);
1975    SERIALIZE_SCALAR(tsoTotalLen);
1976    SERIALIZE_SCALAR(tsoUsedLen);
1977    SERIALIZE_SCALAR(tsoPrevSeq);;
1978    SERIALIZE_SCALAR(tsoPktPayloadBytes);
1979    SERIALIZE_SCALAR(tsoLoadedHeader);
1980    SERIALIZE_SCALAR(tsoPktHasHeader);
1981    SERIALIZE_ARRAY(tsoHeader, 256);
1982    SERIALIZE_SCALAR(tsoDescBytesUsed);
1983    SERIALIZE_SCALAR(tsoCopyBytes);
1984    SERIALIZE_SCALAR(tsoPkts);
1985
1986    SERIALIZE_SCALAR(completionAddress);
1987    SERIALIZE_SCALAR(completionEnabled);
1988    SERIALIZE_SCALAR(descEnd);
1989}
1990
1991void
1992IGbE::TxDescCache::unserialize(Checkpoint *cp, const std::string &section)
1993{
1994    DescCache<TxDesc>::unserialize(cp, section);
1995    UNSERIALIZE_SCALAR(pktDone);
1996    UNSERIALIZE_SCALAR(isTcp);
1997    UNSERIALIZE_SCALAR(pktWaiting);
1998    UNSERIALIZE_SCALAR(pktMultiDesc);
1999
2000    UNSERIALIZE_SCALAR(useTso);
2001    UNSERIALIZE_SCALAR(tsoHeaderLen);
2002    UNSERIALIZE_SCALAR(tsoMss);
2003    UNSERIALIZE_SCALAR(tsoTotalLen);
2004    UNSERIALIZE_SCALAR(tsoUsedLen);
2005    UNSERIALIZE_SCALAR(tsoPrevSeq);;
2006    UNSERIALIZE_SCALAR(tsoPktPayloadBytes);
2007    UNSERIALIZE_SCALAR(tsoLoadedHeader);
2008    UNSERIALIZE_SCALAR(tsoPktHasHeader);
2009    UNSERIALIZE_ARRAY(tsoHeader, 256);
2010    UNSERIALIZE_SCALAR(tsoDescBytesUsed);
2011    UNSERIALIZE_SCALAR(tsoCopyBytes);
2012    UNSERIALIZE_SCALAR(tsoPkts);
2013
2014    UNSERIALIZE_SCALAR(completionAddress);
2015    UNSERIALIZE_SCALAR(completionEnabled);
2016    UNSERIALIZE_SCALAR(descEnd);
2017}
2018
2019bool
2020IGbE::TxDescCache::packetAvailable()
2021{
2022    if (pktDone) {
2023        pktDone = false;
2024        return true;
2025    }
2026    return false;
2027}
2028
2029void
2030IGbE::TxDescCache::enableSm()
2031{
2032    if (!igbe->drainManager) {
2033        igbe->txTick = true;
2034        igbe->restartClock();
2035    }
2036}
2037
2038bool
2039IGbE::TxDescCache::hasOutstandingEvents()
2040{
2041    return pktEvent.scheduled() || wbEvent.scheduled() ||
2042        fetchEvent.scheduled();
2043}
2044
2045
2046///////////////////////////////////// IGbE /////////////////////////////////
2047
2048void
2049IGbE::restartClock()
2050{
2051    if (!tickEvent.scheduled() && (rxTick || txTick || txFifoTick) &&
2052        getDrainState() == Drainable::Running)
2053        schedule(tickEvent, clockEdge(Cycles(1)));
2054}
2055
2056unsigned int
2057IGbE::drain(DrainManager *dm)
2058{
2059    unsigned int count;
2060    count = pioPort.drain(dm) + dmaPort.drain(dm);
2061    if (rxDescCache.hasOutstandingEvents() ||
2062        txDescCache.hasOutstandingEvents()) {
2063        count++;
2064        drainManager = dm;
2065    }
2066
2067    txFifoTick = false;
2068    txTick = false;
2069    rxTick = false;
2070
2071    if (tickEvent.scheduled())
2072        deschedule(tickEvent);
2073
2074    if (count) {
2075        DPRINTF(Drain, "IGbE not drained\n");
2076        setDrainState(Drainable::Draining);
2077    } else
2078        setDrainState(Drainable::Drained);
2079
2080    return count;
2081}
2082
2083void
2084IGbE::drainResume()
2085{
2086    Drainable::drainResume();
2087
2088    txFifoTick = true;
2089    txTick = true;
2090    rxTick = true;
2091
2092    restartClock();
2093    DPRINTF(EthernetSM, "resuming from drain");
2094}
2095
2096void
2097IGbE::checkDrain()
2098{
2099    if (!drainManager)
2100        return;
2101
2102    txFifoTick = false;
2103    txTick = false;
2104    rxTick = false;
2105    if (!rxDescCache.hasOutstandingEvents() &&
2106        !txDescCache.hasOutstandingEvents()) {
2107        DPRINTF(Drain, "IGbE done draining, processing drain event\n");
2108        drainManager->signalDrainDone();
2109        drainManager = NULL;
2110    }
2111}
2112
2113void
2114IGbE::txStateMachine()
2115{
2116    if (!regs.tctl.en()) {
2117        txTick = false;
2118        DPRINTF(EthernetSM, "TXS: TX disabled, stopping ticking\n");
2119        return;
2120    }
2121
2122    // If we have a packet available and it's length is not 0 (meaning it's not
2123    // a multidescriptor packet) put it in the fifo, otherwise an the next
2124    // iteration we'll get the rest of the data
2125    if (txPacket && txDescCache.packetAvailable()
2126        && !txDescCache.packetMultiDesc() && txPacket->length) {
2127        anQ("TXS", "TX FIFO Q");
2128        DPRINTF(EthernetSM, "TXS: packet placed in TX FIFO\n");
2129#ifndef NDEBUG
2130        bool success =
2131#endif
2132            txFifo.push(txPacket);
2133        txFifoTick = true && !drainManager;
2134        assert(success);
2135        txPacket = NULL;
2136        anBegin("TXS", "Desc Writeback");
2137        txDescCache.writeback((cacheBlockSize()-1)>>4);
2138        return;
2139    }
2140
2141    // Only support descriptor granularity
2142    if (regs.txdctl.lwthresh() &&
2143        txDescCache.descLeft() < (regs.txdctl.lwthresh() * 8)) {
2144        DPRINTF(EthernetSM, "TXS: LWTHRESH caused posting of TXDLOW\n");
2145        postInterrupt(IT_TXDLOW);
2146    }
2147
2148    if (!txPacket) {
2149        txPacket = std::make_shared<EthPacketData>(16384);
2150    }
2151
2152    if (!txDescCache.packetWaiting()) {
2153        if (txDescCache.descLeft() == 0) {
2154            postInterrupt(IT_TXQE);
2155            anBegin("TXS", "Desc Writeback");
2156            txDescCache.writeback(0);
2157            anBegin("TXS", "Desc Fetch");
2158            anWe("TXS", txDescCache.annUnusedCacheQ);
2159            txDescCache.fetchDescriptors();
2160            DPRINTF(EthernetSM, "TXS: No descriptors left in ring, forcing "
2161                    "writeback stopping ticking and posting TXQE\n");
2162            txTick = false;
2163            return;
2164        }
2165
2166
2167        if (!(txDescCache.descUnused())) {
2168            anBegin("TXS", "Desc Fetch");
2169            txDescCache.fetchDescriptors();
2170            anWe("TXS", txDescCache.annUnusedCacheQ);
2171            DPRINTF(EthernetSM, "TXS: No descriptors available in cache, "
2172                    "fetching and stopping ticking\n");
2173            txTick = false;
2174            return;
2175        }
2176        anPq("TXS", txDescCache.annUnusedCacheQ);
2177
2178
2179        txDescCache.processContextDesc();
2180        if (txDescCache.packetWaiting()) {
2181            DPRINTF(EthernetSM,
2182                    "TXS: Fetching TSO header, stopping ticking\n");
2183            txTick = false;
2184            return;
2185        }
2186
2187        unsigned size = txDescCache.getPacketSize(txPacket);
2188        if (size > 0 && txFifo.avail() > size) {
2189            anRq("TXS", "TX FIFO Q");
2190            anBegin("TXS", "DMA Packet");
2191            DPRINTF(EthernetSM, "TXS: Reserving %d bytes in FIFO and "
2192                    "beginning DMA of next packet\n", size);
2193            txFifo.reserve(size);
2194            txDescCache.getPacketData(txPacket);
2195        } else if (size == 0) {
2196            DPRINTF(EthernetSM, "TXS: getPacketSize returned: %d\n", size);
2197            DPRINTF(EthernetSM,
2198                    "TXS: No packets to get, writing back used descriptors\n");
2199            anBegin("TXS", "Desc Writeback");
2200            txDescCache.writeback(0);
2201        } else {
2202            anWf("TXS", "TX FIFO Q");
2203            DPRINTF(EthernetSM, "TXS: FIFO full, stopping ticking until space "
2204                    "available in FIFO\n");
2205            txTick = false;
2206        }
2207
2208
2209        return;
2210    }
2211    DPRINTF(EthernetSM, "TXS: Nothing to do, stopping ticking\n");
2212    txTick = false;
2213}
2214
2215bool
2216IGbE::ethRxPkt(EthPacketPtr pkt)
2217{
2218    rxBytes += pkt->length;
2219    rxPackets++;
2220
2221    DPRINTF(Ethernet, "RxFIFO: Receiving pcakte from wire\n");
2222    anBegin("RXQ", "Wire Recv");
2223
2224
2225    if (!regs.rctl.en()) {
2226        DPRINTF(Ethernet, "RxFIFO: RX not enabled, dropping\n");
2227        anBegin("RXQ", "FIFO Drop", CPA::FL_BAD);
2228        return true;
2229    }
2230
2231    // restart the state machines if they are stopped
2232    rxTick = true && !drainManager;
2233    if ((rxTick || txTick) && !tickEvent.scheduled()) {
2234        DPRINTF(EthernetSM,
2235                "RXS: received packet into fifo, starting ticking\n");
2236        restartClock();
2237    }
2238
2239    if (!rxFifo.push(pkt)) {
2240        DPRINTF(Ethernet, "RxFIFO: Packet won't fit in fifo... dropped\n");
2241        postInterrupt(IT_RXO, true);
2242        anBegin("RXQ", "FIFO Drop", CPA::FL_BAD);
2243        return false;
2244    }
2245
2246    if (CPA::available() && cpa->enabled()) {
2247        assert(sys->numSystemsRunning <= 2);
2248        System *other_sys;
2249        if (sys->systemList[0] == sys)
2250            other_sys = sys->systemList[1];
2251        else
2252            other_sys = sys->systemList[0];
2253
2254        cpa->hwDq(CPA::FL_NONE, sys, macAddr, "RXQ", "WireQ", 0, other_sys);
2255        anQ("RXQ", "RX FIFO Q");
2256        cpa->hwWe(CPA::FL_NONE, sys, macAddr, "RXQ", "WireQ", 0, other_sys);
2257    }
2258
2259    return true;
2260}
2261
2262
2263void
2264IGbE::rxStateMachine()
2265{
2266    if (!regs.rctl.en()) {
2267        rxTick = false;
2268        DPRINTF(EthernetSM, "RXS: RX disabled, stopping ticking\n");
2269        return;
2270    }
2271
2272    // If the packet is done check for interrupts/descriptors/etc
2273    if (rxDescCache.packetDone()) {
2274        rxDmaPacket = false;
2275        DPRINTF(EthernetSM, "RXS: Packet completed DMA to memory\n");
2276        int descLeft = rxDescCache.descLeft();
2277        DPRINTF(EthernetSM, "RXS: descLeft: %d rdmts: %d rdlen: %d\n",
2278                descLeft, regs.rctl.rdmts(), regs.rdlen());
2279        switch (regs.rctl.rdmts()) {
2280          case 2: if (descLeft > .125 * regs.rdlen()) break;
2281          case 1: if (descLeft > .250 * regs.rdlen()) break;
2282          case 0: if (descLeft > .500 * regs.rdlen())  break;
2283            DPRINTF(Ethernet, "RXS: Interrupting (RXDMT) "
2284                    "because of descriptors left\n");
2285            postInterrupt(IT_RXDMT);
2286            break;
2287        }
2288
2289        if (rxFifo.empty())
2290            rxDescCache.writeback(0);
2291
2292        if (descLeft == 0) {
2293            anBegin("RXS", "Writeback Descriptors");
2294            rxDescCache.writeback(0);
2295            DPRINTF(EthernetSM, "RXS: No descriptors left in ring, forcing"
2296                    " writeback and stopping ticking\n");
2297            rxTick = false;
2298        }
2299
2300        // only support descriptor granulaties
2301        assert(regs.rxdctl.gran());
2302
2303        if (regs.rxdctl.wthresh() >= rxDescCache.descUsed()) {
2304            DPRINTF(EthernetSM,
2305                    "RXS: Writing back because WTHRESH >= descUsed\n");
2306            anBegin("RXS", "Writeback Descriptors");
2307            if (regs.rxdctl.wthresh() < (cacheBlockSize()>>4))
2308                rxDescCache.writeback(regs.rxdctl.wthresh()-1);
2309            else
2310                rxDescCache.writeback((cacheBlockSize()-1)>>4);
2311        }
2312
2313        if ((rxDescCache.descUnused() < regs.rxdctl.pthresh()) &&
2314            ((rxDescCache.descLeft() - rxDescCache.descUnused()) >
2315             regs.rxdctl.hthresh())) {
2316            DPRINTF(EthernetSM, "RXS: Fetching descriptors because "
2317                    "descUnused < PTHRESH\n");
2318            anBegin("RXS", "Fetch Descriptors");
2319            rxDescCache.fetchDescriptors();
2320        }
2321
2322        if (rxDescCache.descUnused() == 0) {
2323            anBegin("RXS", "Fetch Descriptors");
2324            rxDescCache.fetchDescriptors();
2325            anWe("RXS", rxDescCache.annUnusedCacheQ);
2326            DPRINTF(EthernetSM, "RXS: No descriptors available in cache, "
2327                    "fetching descriptors and stopping ticking\n");
2328            rxTick = false;
2329        }
2330        return;
2331    }
2332
2333    if (rxDmaPacket) {
2334        DPRINTF(EthernetSM,
2335                "RXS: stopping ticking until packet DMA completes\n");
2336        rxTick = false;
2337        return;
2338    }
2339
2340    if (!rxDescCache.descUnused()) {
2341        anBegin("RXS", "Fetch Descriptors");
2342        rxDescCache.fetchDescriptors();
2343        anWe("RXS", rxDescCache.annUnusedCacheQ);
2344        DPRINTF(EthernetSM, "RXS: No descriptors available in cache, "
2345                "stopping ticking\n");
2346        rxTick = false;
2347        DPRINTF(EthernetSM, "RXS: No descriptors available, fetching\n");
2348        return;
2349    }
2350    anPq("RXS", rxDescCache.annUnusedCacheQ);
2351
2352    if (rxFifo.empty()) {
2353        anWe("RXS", "RX FIFO Q");
2354        DPRINTF(EthernetSM, "RXS: RxFIFO empty, stopping ticking\n");
2355        rxTick = false;
2356        return;
2357    }
2358    anPq("RXS", "RX FIFO Q");
2359    anBegin("RXS", "Get Desc");
2360
2361    EthPacketPtr pkt;
2362    pkt = rxFifo.front();
2363
2364
2365    pktOffset = rxDescCache.writePacket(pkt, pktOffset);
2366    DPRINTF(EthernetSM, "RXS: Writing packet into memory\n");
2367    if (pktOffset == pkt->length) {
2368        anBegin( "RXS", "FIFO Dequeue");
2369        DPRINTF(EthernetSM, "RXS: Removing packet from FIFO\n");
2370        pktOffset = 0;
2371        anDq("RXS", "RX FIFO Q");
2372        rxFifo.pop();
2373    }
2374
2375    DPRINTF(EthernetSM, "RXS: stopping ticking until packet DMA completes\n");
2376    rxTick = false;
2377    rxDmaPacket = true;
2378    anBegin("RXS", "DMA Packet");
2379}
2380
2381void
2382IGbE::txWire()
2383{
2384    if (txFifo.empty()) {
2385        anWe("TXQ", "TX FIFO Q");
2386        txFifoTick = false;
2387        return;
2388    }
2389
2390
2391    anPq("TXQ", "TX FIFO Q");
2392    if (etherInt->sendPacket(txFifo.front())) {
2393        anQ("TXQ", "WireQ");
2394        if (DTRACE(EthernetSM)) {
2395            IpPtr ip(txFifo.front());
2396            if (ip)
2397                DPRINTF(EthernetSM, "Transmitting Ip packet with Id=%d\n",
2398                        ip->id());
2399            else
2400                DPRINTF(EthernetSM, "Transmitting Non-Ip packet\n");
2401        }
2402        anDq("TXQ", "TX FIFO Q");
2403        anBegin("TXQ", "Wire Send");
2404        DPRINTF(EthernetSM,
2405                "TxFIFO: Successful transmit, bytes available in fifo: %d\n",
2406                txFifo.avail());
2407
2408        txBytes += txFifo.front()->length;
2409        txPackets++;
2410        txFifoTick = false;
2411
2412        txFifo.pop();
2413    } else {
2414        // We'll get woken up when the packet ethTxDone() gets called
2415        txFifoTick = false;
2416    }
2417}
2418
2419void
2420IGbE::tick()
2421{
2422    DPRINTF(EthernetSM, "IGbE: -------------- Cycle --------------\n");
2423
2424    if (rxTick)
2425        rxStateMachine();
2426
2427    if (txTick)
2428        txStateMachine();
2429
2430    if (txFifoTick)
2431        txWire();
2432
2433
2434    if (rxTick || txTick || txFifoTick)
2435        schedule(tickEvent, curTick() + clockPeriod());
2436}
2437
2438void
2439IGbE::ethTxDone()
2440{
2441    anBegin("TXQ", "Send Done");
2442    // restart the tx state machines if they are stopped
2443    // fifo to send another packet
2444    // tx sm to put more data into the fifo
2445    txFifoTick = true && !drainManager;
2446    if (txDescCache.descLeft() != 0 && !drainManager)
2447        txTick = true;
2448
2449    restartClock();
2450    txWire();
2451    DPRINTF(EthernetSM, "TxFIFO: Transmission complete\n");
2452}
2453
2454void
2455IGbE::serialize(std::ostream &os)
2456{
2457    PciDevice::serialize(os);
2458
2459    regs.serialize(os);
2460    SERIALIZE_SCALAR(eeOpBits);
2461    SERIALIZE_SCALAR(eeAddrBits);
2462    SERIALIZE_SCALAR(eeDataBits);
2463    SERIALIZE_SCALAR(eeOpcode);
2464    SERIALIZE_SCALAR(eeAddr);
2465    SERIALIZE_SCALAR(lastInterrupt);
2466    SERIALIZE_ARRAY(flash,iGbReg::EEPROM_SIZE);
2467
2468    rxFifo.serialize("rxfifo", os);
2469    txFifo.serialize("txfifo", os);
2470
2471    bool txPktExists = txPacket != nullptr;
2472    SERIALIZE_SCALAR(txPktExists);
2473    if (txPktExists)
2474        txPacket->serialize("txpacket", os);
2475
2476    Tick rdtr_time = 0, radv_time = 0, tidv_time = 0, tadv_time = 0,
2477        inter_time = 0;
2478
2479    if (rdtrEvent.scheduled())
2480        rdtr_time = rdtrEvent.when();
2481    SERIALIZE_SCALAR(rdtr_time);
2482
2483    if (radvEvent.scheduled())
2484        radv_time = radvEvent.when();
2485    SERIALIZE_SCALAR(radv_time);
2486
2487    if (tidvEvent.scheduled())
2488        tidv_time = tidvEvent.when();
2489    SERIALIZE_SCALAR(tidv_time);
2490
2491    if (tadvEvent.scheduled())
2492        tadv_time = tadvEvent.when();
2493    SERIALIZE_SCALAR(tadv_time);
2494
2495    if (interEvent.scheduled())
2496        inter_time = interEvent.when();
2497    SERIALIZE_SCALAR(inter_time);
2498
2499    SERIALIZE_SCALAR(pktOffset);
2500
2501    nameOut(os, csprintf("%s.TxDescCache", name()));
2502    txDescCache.serialize(os);
2503
2504    nameOut(os, csprintf("%s.RxDescCache", name()));
2505    rxDescCache.serialize(os);
2506}
2507
2508void
2509IGbE::unserialize(Checkpoint *cp, const std::string &section)
2510{
2511    PciDevice::unserialize(cp, section);
2512
2513    regs.unserialize(cp, section);
2514    UNSERIALIZE_SCALAR(eeOpBits);
2515    UNSERIALIZE_SCALAR(eeAddrBits);
2516    UNSERIALIZE_SCALAR(eeDataBits);
2517    UNSERIALIZE_SCALAR(eeOpcode);
2518    UNSERIALIZE_SCALAR(eeAddr);
2519    UNSERIALIZE_SCALAR(lastInterrupt);
2520    UNSERIALIZE_ARRAY(flash,iGbReg::EEPROM_SIZE);
2521
2522    rxFifo.unserialize("rxfifo", cp, section);
2523    txFifo.unserialize("txfifo", cp, section);
2524
2525    bool txPktExists;
2526    UNSERIALIZE_SCALAR(txPktExists);
2527    if (txPktExists) {
2528        txPacket = std::make_shared<EthPacketData>(16384);
2529        txPacket->unserialize("txpacket", cp, section);
2530    }
2531
2532    rxTick = true;
2533    txTick = true;
2534    txFifoTick = true;
2535
2536    Tick rdtr_time, radv_time, tidv_time, tadv_time, inter_time;
2537    UNSERIALIZE_SCALAR(rdtr_time);
2538    UNSERIALIZE_SCALAR(radv_time);
2539    UNSERIALIZE_SCALAR(tidv_time);
2540    UNSERIALIZE_SCALAR(tadv_time);
2541    UNSERIALIZE_SCALAR(inter_time);
2542
2543    if (rdtr_time)
2544        schedule(rdtrEvent, rdtr_time);
2545
2546    if (radv_time)
2547        schedule(radvEvent, radv_time);
2548
2549    if (tidv_time)
2550        schedule(tidvEvent, tidv_time);
2551
2552    if (tadv_time)
2553        schedule(tadvEvent, tadv_time);
2554
2555    if (inter_time)
2556        schedule(interEvent, inter_time);
2557
2558    UNSERIALIZE_SCALAR(pktOffset);
2559
2560    txDescCache.unserialize(cp, csprintf("%s.TxDescCache", section));
2561
2562    rxDescCache.unserialize(cp, csprintf("%s.RxDescCache", section));
2563}
2564
2565IGbE *
2566IGbEParams::create()
2567{
2568    return new IGbE(this);
2569}
2570