gic_v2.hh revision 13503
1/*
2 * Copyright (c) 2010, 2013, 2015-2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 */
42
43
44/** @file
45 * Implementation of a GICv2
46 */
47
48#ifndef __DEV_ARM_GICV2_H__
49#define __DEV_ARM_GICV2_H__
50
51#include <vector>
52
53#include "base/addr_range.hh"
54#include "base/bitunion.hh"
55#include "cpu/intr_control.hh"
56#include "dev/arm/base_gic.hh"
57#include "dev/io_device.hh"
58#include "dev/platform.hh"
59#include "params/GicV2.hh"
60
61class GicV2 : public BaseGic, public BaseGicRegisters
62{
63  protected:
64    // distributor memory addresses
65    enum {
66        GICD_CTLR          = 0x000, // control register
67        GICD_TYPER         = 0x004, // controller type
68        GICD_IIDR          = 0x008, // implementer id
69        GICD_SGIR          = 0xf00, // software generated interrupt
70        GICD_PIDR0         = 0xfe0, // distributor peripheral ID0
71        GICD_PIDR1         = 0xfe4, // distributor peripheral ID1
72        GICD_PIDR2         = 0xfe8, // distributor peripheral ID2
73        GICD_PIDR3         = 0xfec, // distributor peripheral ID3
74
75        DIST_SIZE          = 0x1000,
76    };
77
78    /**
79     * As defined in:
80     * "ARM Generic Interrupt Controller Architecture" version 2.0
81     * "CoreLink GIC-400 Generic Interrupt Controller" revision r0p1
82     */
83    static constexpr uint32_t  GICD_400_PIDR_VALUE = 0x002bb490;
84    static constexpr uint32_t  GICD_400_IIDR_VALUE = 0x200143B;
85    static constexpr uint32_t  GICC_400_IIDR_VALUE = 0x202143B;
86
87    static const AddrRange GICD_IGROUPR;    // interrupt group (unimplemented)
88    static const AddrRange GICD_ISENABLER;  // interrupt set enable
89    static const AddrRange GICD_ICENABLER;  // interrupt clear enable
90    static const AddrRange GICD_ISPENDR;    // set pending interrupt
91    static const AddrRange GICD_ICPENDR;    // clear pending interrupt
92    static const AddrRange GICD_ISACTIVER;  // active bit registers
93    static const AddrRange GICD_ICACTIVER;  // clear bit registers
94    static const AddrRange GICD_IPRIORITYR; // interrupt priority registers
95    static const AddrRange GICD_ITARGETSR;  // processor target registers
96    static const AddrRange GICD_ICFGR;      // interrupt config registers
97
98    // cpu memory addresses
99    enum {
100        GICC_CTLR  = 0x00, // CPU control register
101        GICC_PMR   = 0x04, // Interrupt priority mask
102        GICC_BPR   = 0x08, // binary point register
103        GICC_IAR   = 0x0C, // interrupt ack register
104        GICC_EOIR  = 0x10, // end of interrupt
105        GICC_RPR   = 0x14, // running priority
106        GICC_HPPIR = 0x18, // highest pending interrupt
107        GICC_ABPR  = 0x1c, // aliased binary point
108        GICC_APR0  = 0xd0, // active priority register 0
109        GICC_APR1  = 0xd4, // active priority register 1
110        GICC_APR2  = 0xd8, // active priority register 2
111        GICC_APR3  = 0xdc, // active priority register 3
112        GICC_IIDR  = 0xfc, // cpu interface id register
113        GICC_DIR   = 0x1000, // deactive interrupt register
114    };
115
116    static const int SGI_MAX = 16;  // Number of Software Gen Interrupts
117    static const int PPI_MAX = 16;  // Number of Private Peripheral Interrupts
118
119    /** Mask off SGI's when setting/clearing pending bits */
120    static const int SGI_MASK = 0xFFFF0000;
121
122    /** Mask for bits that config N:N mode in GICD_ICFGR's */
123    static const int NN_CONFIG_MASK = 0x55555555;
124
125    static const int CPU_MAX = 256;   // Max number of supported CPU interfaces
126    static const int SPURIOUS_INT = 1023;
127    static const int INT_BITS_MAX = 32;
128    static const int INT_LINES_MAX = 1020;
129    static const int GLOBAL_INT_LINES = INT_LINES_MAX - SGI_MAX - PPI_MAX;
130
131    /** minimum value for Binary Point Register ("IMPLEMENTATION DEFINED");
132        chosen for consistency with Linux's in-kernel KVM GIC model */
133    static const int GICC_BPR_MINIMUM = 2;
134
135    BitUnion32(SWI)
136        Bitfield<3,0> sgi_id;
137        Bitfield<23,16> cpu_list;
138        Bitfield<25,24> list_type;
139    EndBitUnion(SWI)
140
141    BitUnion32(IAR)
142        Bitfield<9,0> ack_id;
143        Bitfield<12,10> cpu_id;
144    EndBitUnion(IAR)
145
146    BitUnion32(CTLR)
147        Bitfield<3> fiqEn;
148        Bitfield<1> enableGrp1;
149        Bitfield<0> enableGrp0;
150    EndBitUnion(CTLR)
151
152  protected: /* Params */
153    /** Address range for the distributor interface */
154    const AddrRange distRange;
155
156    /** Address range for the CPU interfaces */
157    const AddrRange cpuRange;
158
159    /** All address ranges used by this GIC */
160    const AddrRangeList addrRanges;
161
162    /** Latency for a distributor operation */
163    const Tick distPioDelay;
164
165    /** Latency for a cpu operation */
166    const Tick cpuPioDelay;
167
168    /** Latency for a interrupt to get to CPU */
169    const Tick intLatency;
170
171  protected:
172    /** Gic enabled */
173    bool enabled;
174
175    /** Are gem5 extensions available? */
176    const bool haveGem5Extensions;
177
178    /** gem5 many-core extension enabled by driver */
179    bool gem5ExtensionsEnabled;
180
181    /** Number of itLines enabled */
182    uint32_t itLines;
183
184    /** Registers "banked for each connected processor" per ARM IHI0048B */
185    struct BankedRegs : public Serializable {
186        /** GICD_I{S,C}ENABLER0
187         * interrupt enable bits for first 32 interrupts, 1b per interrupt */
188        uint32_t intEnabled;
189
190        /** GICD_I{S,C}PENDR0
191         * interrupt pending bits for first 32 interrupts, 1b per interrupt */
192        uint32_t pendingInt;
193
194        /** GICD_I{S,C}ACTIVER0
195         * interrupt active bits for first 32 interrupts, 1b per interrupt */
196        uint32_t activeInt;
197
198        /** GICD_IGROUPR0
199         * interrupt group bits for first 32 interrupts, 1b per interrupt */
200        uint32_t intGroup;
201
202        /** GICD_IPRIORITYR{0..7}
203         * interrupt priority for SGIs and PPIs */
204        uint8_t intPriority[SGI_MAX + PPI_MAX];
205
206        void serialize(CheckpointOut &cp) const override;
207        void unserialize(CheckpointIn &cp) override;
208
209        BankedRegs() :
210            intEnabled(0), pendingInt(0), activeInt(0),
211            intGroup(0), intPriority {0}
212          {}
213    };
214    std::vector<BankedRegs*> bankedRegs;
215
216    BankedRegs& getBankedRegs(ContextID);
217
218    /** GICD_I{S,C}ENABLER{1..31}
219     * interrupt enable bits for global interrupts
220     * 1b per interrupt, 32 bits per word, 31 words */
221    uint32_t intEnabled[INT_BITS_MAX-1];
222
223    uint32_t& getIntEnabled(ContextID ctx, uint32_t ix) {
224        if (ix == 0) {
225            return getBankedRegs(ctx).intEnabled;
226        } else {
227            return intEnabled[ix - 1];
228        }
229    }
230
231    /** GICD_I{S,C}PENDR{1..31}
232     * interrupt pending bits for global interrupts
233     * 1b per interrupt, 32 bits per word, 31 words */
234    uint32_t pendingInt[INT_BITS_MAX-1];
235
236    uint32_t& getPendingInt(ContextID ctx, uint32_t ix) {
237        assert(ix < INT_BITS_MAX);
238        if (ix == 0) {
239            return getBankedRegs(ctx).pendingInt;
240        } else {
241            return pendingInt[ix - 1];
242        }
243    }
244
245    /** GICD_I{S,C}ACTIVER{1..31}
246     * interrupt active bits for global interrupts
247     * 1b per interrupt, 32 bits per word, 31 words */
248    uint32_t activeInt[INT_BITS_MAX-1];
249
250    uint32_t& getActiveInt(ContextID ctx, uint32_t ix) {
251        assert(ix < INT_BITS_MAX);
252        if (ix == 0) {
253            return getBankedRegs(ctx).activeInt;
254        } else {
255            return activeInt[ix - 1];
256        }
257    }
258
259    /** GICD_IGROUPR{1..31}
260     * interrupt group bits for global interrupts
261     * 1b per interrupt, 32 bits per word, 31 words */
262    uint32_t intGroup[INT_BITS_MAX-1];
263
264    uint32_t& getIntGroup(ContextID ctx, uint32_t ix) {
265        assert(ix < INT_BITS_MAX);
266        if (ix == 0) {
267            return getBankedRegs(ctx).intGroup;
268        } else {
269            return intGroup[ix - 1];
270        }
271    }
272
273    /** read only running priority register, 1 per cpu*/
274    uint32_t iccrpr[CPU_MAX];
275
276    /** GICD_IPRIORITYR{8..255}
277     * an 8 bit priority (lower is higher priority) for each
278     * of the global (not replicated per CPU) interrupts.
279     */
280    uint8_t intPriority[GLOBAL_INT_LINES];
281
282    uint8_t& getIntPriority(ContextID ctx, uint32_t ix) {
283        assert(ix < INT_LINES_MAX);
284        if (ix < SGI_MAX + PPI_MAX) {
285            return getBankedRegs(ctx).intPriority[ix];
286        } else {
287            return intPriority[ix - (SGI_MAX + PPI_MAX)];
288        }
289    }
290
291    /** GICD_ICFGRn
292     * get 2 bit config associated to an interrupt.
293     */
294    uint8_t getIntConfig(ContextID ctx, uint32_t ix) {
295        assert(ix < INT_LINES_MAX);
296        const uint8_t cfg_low = intNumToBit(ix * 2);
297        const uint8_t cfg_hi = cfg_low + 1;
298        return bits(intConfig[intNumToWord(ix * 2)], cfg_hi, cfg_low);
299    }
300
301    /** GICD_ITARGETSR{8..255}
302     * an 8 bit cpu target id for each global interrupt.
303     */
304    uint8_t cpuTarget[GLOBAL_INT_LINES];
305
306    uint8_t getCpuTarget(ContextID ctx, uint32_t ix) {
307        assert(ctx < sys->numRunningContexts());
308        assert(ix < INT_LINES_MAX);
309        if (ix < SGI_MAX + PPI_MAX) {
310            // "GICD_ITARGETSR0 to GICD_ITARGETSR7 are read-only, and each
311            // field returns a value that corresponds only to the processor
312            // reading the register."
313            uint32_t ctx_mask;
314            if (gem5ExtensionsEnabled) {
315                ctx_mask = ctx;
316            } else {
317            // convert the CPU id number into a bit mask
318                ctx_mask = power(2, ctx);
319            }
320            return ctx_mask;
321        } else {
322            return cpuTarget[ix - 32];
323        }
324    }
325
326    /** 2 bit per interrupt signaling if it's level or edge sensitive
327     * and if it is 1:N or N:N */
328    uint32_t intConfig[INT_BITS_MAX*2];
329
330    bool isLevelSensitive(ContextID ctx, uint32_t ix) {
331        if (ix == SPURIOUS_INT) {
332            return false;
333        } else {
334            return bits(getIntConfig(ctx, ix), 1) == 0;
335        }
336    }
337
338    bool isGroup0(ContextID ctx, uint32_t int_num) {
339        const uint32_t group_reg = getIntGroup(ctx, intNumToWord(int_num));
340        return !bits(group_reg, intNumToBit(int_num));
341    }
342
343    /**
344     * This method checks if an interrupt ID must be signaled or has been
345     * signaled as a FIQ to the cpu. It does that by reading:
346     *
347     * 1) GICD_IGROUPR: controls if the interrupt is part of group0 or
348     * group1. Only group0 interrupts can be signaled as FIQs.
349     *
350     * 2) GICC_CTLR.FIQEn: controls whether the CPU interface signals Group 0
351     * interrupts to a target processor using the FIQ or the IRQ signal
352     */
353    bool isFiq(ContextID ctx, uint32_t int_num) {
354        const bool is_group0 = isGroup0(ctx, int_num);
355        const bool use_fiq = cpuControl[ctx].fiqEn;
356
357        if (is_group0 && use_fiq) {
358            return true;
359        } else {
360            return false;
361        }
362    }
363
364    /** CPU enabled:
365     * Checks if GICC_CTLR.EnableGrp0 or EnableGrp1 are set
366     */
367    bool cpuEnabled(ContextID ctx) const {
368        return cpuControl[ctx].enableGrp0 ||
369               cpuControl[ctx].enableGrp1;
370    }
371
372    /** GICC_CTLR:
373     * CPU interface control register
374     */
375    CTLR cpuControl[CPU_MAX];
376
377    /** CPU priority */
378    uint8_t cpuPriority[CPU_MAX];
379    uint8_t getCpuPriority(unsigned cpu); // BPR-adjusted priority value
380
381    /** Binary point registers */
382    uint8_t cpuBpr[CPU_MAX];
383
384    /** highest interrupt that is interrupting CPU */
385    uint32_t cpuHighestInt[CPU_MAX];
386
387    /** One bit per cpu per software interrupt that is pending for each
388     * possible sgi source. Indexed by SGI number. Each byte in generating cpu
389     * id and bits in position is destination id. e.g. 0x4 = CPU 0 generated
390     * interrupt for CPU 2. */
391    uint64_t cpuSgiPending[SGI_MAX];
392    uint64_t cpuSgiActive[SGI_MAX];
393
394    /** SGI pending arrays for gem5 GIC extension mode, which instead keeps
395     * 16 SGI pending bits for each of the (large number of) CPUs.
396     */
397    uint32_t cpuSgiPendingExt[CPU_MAX];
398    uint32_t cpuSgiActiveExt[CPU_MAX];
399
400    /** One bit per private peripheral interrupt. Only upper 16 bits
401     * will be used since PPI interrupts are numberred from 16 to 32 */
402    uint32_t cpuPpiPending[CPU_MAX];
403    uint32_t cpuPpiActive[CPU_MAX];
404
405    /** software generated interrupt
406     * @param data data to decode that indicates which cpus to interrupt
407     */
408    void softInt(ContextID ctx, SWI swi);
409
410    /** See if some processor interrupt flags need to be enabled/disabled
411     * @param hint which set of interrupts needs to be checked
412     */
413    virtual void updateIntState(int hint);
414
415    /** Update the register that records priority of the highest priority
416     *  active interrupt*/
417    void updateRunPri();
418
419    /** generate a bit mask to check cpuSgi for an interrupt. */
420    uint64_t genSwiMask(int cpu);
421
422    int intNumToWord(int num) const { return num >> 5; }
423    int intNumToBit(int num) const { return num % 32; }
424
425    /** Clears a cpu IRQ or FIQ signal */
426    void clearInt(ContextID ctx, uint32_t int_num);
427
428    /**
429     * Post an interrupt to a CPU with a delay
430     */
431    void postInt(uint32_t cpu, Tick when);
432    void postFiq(uint32_t cpu, Tick when);
433
434    /**
435     * Deliver a delayed interrupt to the target CPU
436     */
437    void postDelayedInt(uint32_t cpu);
438    void postDelayedFiq(uint32_t cpu);
439
440    EventFunctionWrapper *postIntEvent[CPU_MAX];
441    EventFunctionWrapper *postFiqEvent[CPU_MAX];
442    int pendingDelayedInterrupts;
443
444  public:
445    typedef GicV2Params Params;
446    const Params *
447    params() const
448    {
449        return dynamic_cast<const Params *>(_params);
450    }
451    GicV2(const Params *p);
452    ~GicV2();
453
454    DrainState drain() override;
455    void drainResume() override;
456
457    void serialize(CheckpointOut &cp) const override;
458    void unserialize(CheckpointIn &cp) override;
459
460  public: /* PioDevice */
461    AddrRangeList getAddrRanges() const override { return addrRanges; }
462
463    /** A PIO read to the device, immediately split up into
464     * readDistributor() or readCpu()
465     */
466    Tick read(PacketPtr pkt) override;
467
468    /** A PIO read to the device, immediately split up into
469     * writeDistributor() or writeCpu()
470     */
471    Tick write(PacketPtr pkt) override;
472
473  public: /* BaseGic */
474    void sendInt(uint32_t number) override;
475    void clearInt(uint32_t number) override;
476
477    void sendPPInt(uint32_t num, uint32_t cpu) override;
478    void clearPPInt(uint32_t num, uint32_t cpu) override;
479
480  protected:
481    /** Handle a read to the distributor portion of the GIC
482     * @param pkt packet to respond to
483     */
484    Tick readDistributor(PacketPtr pkt);
485    uint32_t readDistributor(ContextID ctx, Addr daddr,
486                             size_t resp_sz);
487    uint32_t readDistributor(ContextID ctx, Addr daddr) override {
488        return readDistributor(ctx, daddr, 4);
489    }
490
491    /** Handle a read to the cpu portion of the GIC
492     * @param pkt packet to respond to
493     */
494    Tick readCpu(PacketPtr pkt);
495    uint32_t readCpu(ContextID ctx, Addr daddr) override;
496
497    /** Handle a write to the distributor portion of the GIC
498     * @param pkt packet to respond to
499     */
500    Tick writeDistributor(PacketPtr pkt);
501    void writeDistributor(ContextID ctx, Addr daddr,
502                          uint32_t data, size_t data_sz);
503    void writeDistributor(ContextID ctx, Addr daddr,
504                                  uint32_t data) override {
505        return writeDistributor(ctx, daddr, data, 4);
506    }
507
508    /** Handle a write to the cpu portion of the GIC
509     * @param pkt packet to respond to
510     */
511    Tick writeCpu(PacketPtr pkt);
512    void writeCpu(ContextID ctx, Addr daddr, uint32_t data) override;
513};
514
515#endif //__DEV_ARM_GIC_H__
516