generic_timer.cc revision 11668:380375085863
1/*
2 * Copyright (c) 2013, 2015 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Giacomo Gabrielli
38 *          Andreas Sandberg
39 */
40
41#include "dev/arm/generic_timer.hh"
42
43#include "arch/arm/system.hh"
44#include "debug/Timer.hh"
45#include "dev/arm/base_gic.hh"
46#include "mem/packet_access.hh"
47#include "params/GenericTimer.hh"
48#include "params/GenericTimerMem.hh"
49
50SystemCounter::SystemCounter()
51    : _freq(0), _period(0), _resetTick(0), _regCntkctl(0)
52{
53    setFreq(0x01800000);
54}
55
56void
57SystemCounter::setFreq(uint32_t freq)
58{
59    if (_freq != 0) {
60        // Altering the frequency after boot shouldn't be done in practice.
61        warn_once("The frequency of the system counter has already been set");
62    }
63    _freq = freq;
64    _period = (1.0 / freq) * SimClock::Frequency;
65    _resetTick = curTick();
66}
67
68void
69SystemCounter::serialize(CheckpointOut &cp) const
70{
71    SERIALIZE_SCALAR(_regCntkctl);
72    SERIALIZE_SCALAR(_freq);
73    SERIALIZE_SCALAR(_period);
74    SERIALIZE_SCALAR(_resetTick);
75}
76
77void
78SystemCounter::unserialize(CheckpointIn &cp)
79{
80    // We didn't handle CNTKCTL in this class before, assume it's zero
81    // if it isn't present.
82    if (!UNSERIALIZE_OPT_SCALAR(_regCntkctl))
83        _regCntkctl = 0;
84    UNSERIALIZE_SCALAR(_freq);
85    UNSERIALIZE_SCALAR(_period);
86    UNSERIALIZE_SCALAR(_resetTick);
87}
88
89
90
91ArchTimer::ArchTimer(const std::string &name,
92                     SimObject &parent,
93                     SystemCounter &sysctr,
94                     const Interrupt &interrupt)
95    : _name(name), _parent(parent), _systemCounter(sysctr),
96      _interrupt(interrupt),
97      _control(0), _counterLimit(0), _offset(0),
98      _counterLimitReachedEvent(this)
99{
100}
101
102void
103ArchTimer::counterLimitReached()
104{
105    _control.istatus = 1;
106
107    if (!_control.enable)
108        return;
109
110    DPRINTF(Timer, "Counter limit reached\n");
111    if (!_control.imask) {
112        DPRINTF(Timer, "Causing interrupt\n");
113        _interrupt.send();
114    }
115}
116
117void
118ArchTimer::updateCounter()
119{
120    if (_counterLimitReachedEvent.scheduled())
121        _parent.deschedule(_counterLimitReachedEvent);
122    if (value() >= _counterLimit) {
123        counterLimitReached();
124    } else {
125        const auto period(_systemCounter.period());
126        _control.istatus = 0;
127        _parent.schedule(_counterLimitReachedEvent,
128             curTick() + (_counterLimit - value()) * period);
129    }
130}
131
132void
133ArchTimer::setCompareValue(uint64_t val)
134{
135    _counterLimit = val;
136    updateCounter();
137}
138
139void
140ArchTimer::setTimerValue(uint32_t val)
141{
142    setCompareValue(value() + sext<32>(val));
143}
144
145void
146ArchTimer::setControl(uint32_t val)
147{
148    ArchTimerCtrl new_ctl = val;
149    if ((new_ctl.enable && !new_ctl.imask) &&
150        !(_control.enable && !_control.imask)) {
151        // Re-evalute the timer condition
152        if (_counterLimit >= value()) {
153            _control.istatus = 1;
154
155            DPRINTF(Timer, "Causing interrupt in control\n");
156            //_interrupt.send();
157        }
158    }
159    _control.enable = new_ctl.enable;
160    _control.imask = new_ctl.imask;
161}
162
163void
164ArchTimer::setOffset(uint64_t val)
165{
166    _offset = val;
167    updateCounter();
168}
169
170uint64_t
171ArchTimer::value() const
172{
173    return _systemCounter.value() - _offset;
174}
175
176void
177ArchTimer::serialize(CheckpointOut &cp) const
178{
179    paramOut(cp, "control_serial", _control);
180    SERIALIZE_SCALAR(_counterLimit);
181    SERIALIZE_SCALAR(_offset);
182
183    const bool event_scheduled(_counterLimitReachedEvent.scheduled());
184    SERIALIZE_SCALAR(event_scheduled);
185    if (event_scheduled) {
186        const Tick event_time(_counterLimitReachedEvent.when());
187        SERIALIZE_SCALAR(event_time);
188    }
189}
190
191void
192ArchTimer::unserialize(CheckpointIn &cp)
193{
194    paramIn(cp, "control_serial", _control);
195    // We didn't serialize an offset before we added support for the
196    // virtual timer. Consider it optional to maintain backwards
197    // compatibility.
198    if (!UNSERIALIZE_OPT_SCALAR(_offset))
199        _offset = 0;
200    bool event_scheduled;
201    UNSERIALIZE_SCALAR(event_scheduled);
202    if (event_scheduled) {
203        Tick event_time;
204        UNSERIALIZE_SCALAR(event_time);
205        _parent.schedule(_counterLimitReachedEvent, event_time);
206    }
207}
208
209void
210ArchTimer::Interrupt::send()
211{
212    if (_ppi) {
213        _gic.sendPPInt(_irq, _cpu);
214    } else {
215        _gic.sendInt(_irq);
216    }
217}
218
219
220void
221ArchTimer::Interrupt::clear()
222{
223    if (_ppi) {
224        _gic.clearPPInt(_irq, _cpu);
225    } else {
226        _gic.clearInt(_irq);
227    }
228}
229
230
231GenericTimer::GenericTimer(GenericTimerParams *p)
232    : SimObject(p),
233      gic(p->gic),
234      irqPhys(p->int_phys),
235      irqVirt(p->int_virt)
236{
237    fatal_if(!p->system, "No system specified, can't instantiate timer.\n");
238    p->system->setGenericTimer(this);
239}
240
241void
242GenericTimer::serialize(CheckpointOut &cp) const
243{
244    paramOut(cp, "cpu_count", timers.size());
245
246    systemCounter.serializeSection(cp, "sys_counter");
247
248    for (int i = 0; i < timers.size(); ++i) {
249        const CoreTimers &core(*timers[i]);
250
251        // This should really be phys_timerN, but we are stuck with
252        // arch_timer for backwards compatibility.
253        core.phys.serializeSection(cp, csprintf("arch_timer%d", i));
254        core.virt.serializeSection(cp, csprintf("virt_timer%d", i));
255    }
256}
257
258void
259GenericTimer::unserialize(CheckpointIn &cp)
260{
261    systemCounter.unserializeSection(cp, "sys_counter");
262
263    // Try to unserialize the CPU count. Old versions of the timer
264    // model assumed a 8 CPUs, so we fall back to that if the field
265    // isn't present.
266    static const unsigned OLD_CPU_MAX = 8;
267    unsigned cpu_count;
268    if (!UNSERIALIZE_OPT_SCALAR(cpu_count)) {
269        warn("Checkpoint does not contain CPU count, assuming %i CPUs\n",
270             OLD_CPU_MAX);
271        cpu_count = OLD_CPU_MAX;
272    }
273
274    for (int i = 0; i < cpu_count; ++i) {
275        CoreTimers &core(getTimers(i));
276        // This should really be phys_timerN, but we are stuck with
277        // arch_timer for backwards compatibility.
278        core.phys.unserializeSection(cp, csprintf("arch_timer%d", i));
279        core.virt.unserializeSection(cp, csprintf("virt_timer%d", i));
280    }
281}
282
283
284GenericTimer::CoreTimers &
285GenericTimer::getTimers(int cpu_id)
286{
287    if (cpu_id >= timers.size())
288        createTimers(cpu_id + 1);
289
290    return *timers[cpu_id];
291}
292
293void
294GenericTimer::createTimers(unsigned cpus)
295{
296    assert(timers.size() < cpus);
297
298    const unsigned old_cpu_count(timers.size());
299    timers.resize(cpus);
300    for (unsigned i = old_cpu_count; i < cpus; ++i) {
301        timers[i].reset(
302            new CoreTimers(*this, i, irqPhys, irqVirt));
303    }
304}
305
306
307void
308GenericTimer::setMiscReg(int reg, unsigned cpu, MiscReg val)
309{
310    CoreTimers &core(getTimers(cpu));
311
312    switch (reg) {
313      case MISCREG_CNTFRQ:
314      case MISCREG_CNTFRQ_EL0:
315        systemCounter.setFreq(val);
316        return;
317
318      case MISCREG_CNTKCTL:
319      case MISCREG_CNTKCTL_EL1:
320        systemCounter.setKernelControl(val);
321        return;
322
323      // Physical timer
324      case MISCREG_CNTP_CVAL:
325      case MISCREG_CNTP_CVAL_NS:
326      case MISCREG_CNTP_CVAL_EL0:
327        core.phys.setCompareValue(val);
328        return;
329
330      case MISCREG_CNTP_TVAL:
331      case MISCREG_CNTP_TVAL_NS:
332      case MISCREG_CNTP_TVAL_EL0:
333        core.phys.setTimerValue(val);
334        return;
335
336      case MISCREG_CNTP_CTL:
337      case MISCREG_CNTP_CTL_NS:
338      case MISCREG_CNTP_CTL_EL0:
339        core.phys.setControl(val);
340        return;
341
342      // Count registers
343      case MISCREG_CNTPCT:
344      case MISCREG_CNTPCT_EL0:
345      case MISCREG_CNTVCT:
346      case MISCREG_CNTVCT_EL0:
347        warn("Ignoring write to read only count register: %s\n",
348             miscRegName[reg]);
349        return;
350
351      // Virtual timer
352      case MISCREG_CNTVOFF:
353      case MISCREG_CNTVOFF_EL2:
354        core.virt.setOffset(val);
355        return;
356
357      case MISCREG_CNTV_CVAL:
358      case MISCREG_CNTV_CVAL_EL0:
359        core.virt.setCompareValue(val);
360        return;
361
362      case MISCREG_CNTV_TVAL:
363      case MISCREG_CNTV_TVAL_EL0:
364        core.virt.setTimerValue(val);
365        return;
366
367      case MISCREG_CNTV_CTL:
368      case MISCREG_CNTV_CTL_EL0:
369        core.virt.setControl(val);
370        return;
371
372      // PL1 phys. timer, secure
373      case MISCREG_CNTP_CTL_S:
374      case MISCREG_CNTPS_CVAL_EL1:
375      case MISCREG_CNTPS_TVAL_EL1:
376      case MISCREG_CNTPS_CTL_EL1:
377        /* FALLTHROUGH */
378
379      // PL2 phys. timer, non-secure
380      case MISCREG_CNTHCTL:
381      case MISCREG_CNTHCTL_EL2:
382      case MISCREG_CNTHP_CVAL:
383      case MISCREG_CNTHP_CVAL_EL2:
384      case MISCREG_CNTHP_TVAL:
385      case MISCREG_CNTHP_TVAL_EL2:
386      case MISCREG_CNTHP_CTL:
387      case MISCREG_CNTHP_CTL_EL2:
388        warn("Writing to unimplemented register: %s\n",
389             miscRegName[reg]);
390        return;
391
392      default:
393        warn("Writing to unknown register: %s\n", miscRegName[reg]);
394        return;
395    }
396}
397
398
399MiscReg
400GenericTimer::readMiscReg(int reg, unsigned cpu)
401{
402    CoreTimers &core(getTimers(cpu));
403
404    switch (reg) {
405      case MISCREG_CNTFRQ:
406      case MISCREG_CNTFRQ_EL0:
407        return systemCounter.freq();
408
409      case MISCREG_CNTKCTL:
410      case MISCREG_CNTKCTL_EL1:
411        return systemCounter.getKernelControl();
412
413      // Physical timer
414      case MISCREG_CNTP_CVAL:
415      case MISCREG_CNTP_CVAL_EL0:
416        return core.phys.compareValue();
417
418      case MISCREG_CNTP_TVAL:
419      case MISCREG_CNTP_TVAL_EL0:
420        return core.phys.timerValue();
421
422      case MISCREG_CNTP_CTL:
423      case MISCREG_CNTP_CTL_EL0:
424      case MISCREG_CNTP_CTL_NS:
425        return core.phys.control();
426
427      case MISCREG_CNTPCT:
428      case MISCREG_CNTPCT_EL0:
429        return core.phys.value();
430
431
432      // Virtual timer
433      case MISCREG_CNTVCT:
434      case MISCREG_CNTVCT_EL0:
435        return core.virt.value();
436
437      case MISCREG_CNTVOFF:
438      case MISCREG_CNTVOFF_EL2:
439        return core.virt.offset();
440
441      case MISCREG_CNTV_CVAL:
442      case MISCREG_CNTV_CVAL_EL0:
443        return core.virt.compareValue();
444
445      case MISCREG_CNTV_TVAL:
446      case MISCREG_CNTV_TVAL_EL0:
447        return core.virt.timerValue();
448
449      case MISCREG_CNTV_CTL:
450      case MISCREG_CNTV_CTL_EL0:
451        return core.virt.control();
452
453      // PL1 phys. timer, secure
454      case MISCREG_CNTP_CTL_S:
455      case MISCREG_CNTPS_CVAL_EL1:
456      case MISCREG_CNTPS_TVAL_EL1:
457      case MISCREG_CNTPS_CTL_EL1:
458        /* FALLTHROUGH */
459
460      // PL2 phys. timer, non-secure
461      case MISCREG_CNTHCTL:
462      case MISCREG_CNTHCTL_EL2:
463      case MISCREG_CNTHP_CVAL:
464      case MISCREG_CNTHP_CVAL_EL2:
465      case MISCREG_CNTHP_TVAL:
466      case MISCREG_CNTHP_TVAL_EL2:
467      case MISCREG_CNTHP_CTL:
468      case MISCREG_CNTHP_CTL_EL2:
469        warn("Reading from unimplemented register: %s\n",
470             miscRegName[reg]);
471        return 0;
472
473
474      default:
475        warn("Reading from unknown register: %s\n", miscRegName[reg]);
476        return 0;
477    }
478}
479
480
481
482GenericTimerMem::GenericTimerMem(GenericTimerMemParams *p)
483    : PioDevice(p),
484      ctrlRange(RangeSize(p->base, TheISA::PageBytes)),
485      timerRange(RangeSize(p->base + TheISA::PageBytes, TheISA::PageBytes)),
486      addrRanges{ctrlRange, timerRange},
487      systemCounter(),
488      physTimer(csprintf("%s.phys_timer0", name()),
489                *this, systemCounter,
490                ArchTimer::Interrupt(*p->gic, p->int_phys)),
491      virtTimer(csprintf("%s.virt_timer0", name()),
492                *this, systemCounter,
493                ArchTimer::Interrupt(*p->gic, p->int_virt))
494{
495}
496
497void
498GenericTimerMem::serialize(CheckpointOut &cp) const
499{
500    paramOut(cp, "timer_count", 1);
501
502    systemCounter.serializeSection(cp, "sys_counter");
503
504    physTimer.serializeSection(cp, "phys_timer0");
505    virtTimer.serializeSection(cp, "virt_timer0");
506}
507
508void
509GenericTimerMem::unserialize(CheckpointIn &cp)
510{
511    systemCounter.unserializeSection(cp, "sys_counter");
512
513    unsigned timer_count;
514    UNSERIALIZE_SCALAR(timer_count);
515    // The timer count variable is just here for future versions where
516    // we support more than one set of timers.
517    if (timer_count != 1)
518        panic("Incompatible checkpoint: Only one set of timers supported");
519
520    physTimer.unserializeSection(cp, "phys_timer0");
521    virtTimer.unserializeSection(cp, "virt_timer0");
522}
523
524Tick
525GenericTimerMem::read(PacketPtr pkt)
526{
527    const unsigned size(pkt->getSize());
528    const Addr addr(pkt->getAddr());
529    uint64_t value;
530
531    pkt->makeResponse();
532    if (ctrlRange.contains(addr)) {
533        value = ctrlRead(addr - ctrlRange.start(), size);
534    } else if (timerRange.contains(addr)) {
535        value = timerRead(addr - timerRange.start(), size);
536    } else {
537        panic("Invalid address: 0x%x\n", addr);
538    }
539
540    DPRINTF(Timer, "Read 0x%x <- 0x%x(%i)\n", value, addr, size);
541
542    if (size == 8) {
543        pkt->set<uint64_t>(value);
544    } else if (size == 4) {
545        pkt->set<uint32_t>(value);
546    } else {
547        panic("Unexpected access size: %i\n", size);
548    }
549
550    return 0;
551}
552
553Tick
554GenericTimerMem::write(PacketPtr pkt)
555{
556    const unsigned size(pkt->getSize());
557    if (size != 8 && size != 4)
558        panic("Unexpected access size\n");
559
560    const Addr addr(pkt->getAddr());
561    const uint64_t value(size == 8 ?
562                         pkt->get<uint64_t>() : pkt->get<uint32_t>());
563
564    DPRINTF(Timer, "Write 0x%x -> 0x%x(%i)\n", value, addr, size);
565    if (ctrlRange.contains(addr)) {
566        ctrlWrite(addr - ctrlRange.start(), size, value);
567    } else if (timerRange.contains(addr)) {
568        timerWrite(addr - timerRange.start(), size, value);
569    } else {
570        panic("Invalid address: 0x%x\n", addr);
571    }
572
573    pkt->makeResponse();
574    return 0;
575}
576
577uint64_t
578GenericTimerMem::ctrlRead(Addr addr, size_t size) const
579{
580    if (size == 4) {
581        switch (addr) {
582          case CTRL_CNTFRQ:
583            return systemCounter.freq();
584
585          case CTRL_CNTTIDR:
586            return 0x3; // Frame 0 implemented with virtual timers
587
588          case CTRL_CNTNSAR:
589          case CTRL_CNTACR_BASE:
590            warn("Reading from unimplemented control register (0x%x)\n", addr);
591            return 0;
592
593          case CTRL_CNTVOFF_LO_BASE:
594            return virtTimer.offset();
595
596          case CTRL_CNTVOFF_HI_BASE:
597            return virtTimer.offset() >> 32;
598
599          default:
600            warn("Unexpected address (0x%x:%i), assuming RAZ\n", addr, size);
601            return 0;
602        }
603    } else if (size == 8) {
604        switch (addr) {
605          case CTRL_CNTVOFF_LO_BASE:
606            return virtTimer.offset();
607
608          default:
609            warn("Unexpected address (0x%x:%i), assuming RAZ\n", addr, size);
610            return 0;
611        }
612    } else {
613        panic("Invalid access size: %i\n", size);
614    }
615}
616
617void
618GenericTimerMem::ctrlWrite(Addr addr, size_t size, uint64_t value)
619{
620    if (size == 4) {
621        switch (addr) {
622          case CTRL_CNTFRQ:
623          case CTRL_CNTNSAR:
624          case CTRL_CNTTIDR:
625          case CTRL_CNTACR_BASE:
626            warn("Write to unimplemented control register (0x%x)\n", addr);
627            return;
628
629          case CTRL_CNTVOFF_LO_BASE:
630            virtTimer.setOffset(
631                insertBits(virtTimer.offset(), 31, 0, value));
632            return;
633
634          case CTRL_CNTVOFF_HI_BASE:
635            virtTimer.setOffset(
636                insertBits(virtTimer.offset(), 63, 32, value));
637            return;
638
639          default:
640            warn("Ignoring write to unexpected address (0x%x:%i)\n",
641                 addr, size);
642            return;
643        }
644    } else if (size == 8) {
645        switch (addr) {
646          case CTRL_CNTVOFF_LO_BASE:
647            virtTimer.setOffset(value);
648            return;
649
650          default:
651            warn("Ignoring write to unexpected address (0x%x:%i)\n",
652                 addr, size);
653            return;
654        }
655    } else {
656        panic("Invalid access size: %i\n", size);
657    }
658}
659
660uint64_t
661GenericTimerMem::timerRead(Addr addr, size_t size) const
662{
663    if (size == 4) {
664        switch (addr) {
665          case TIMER_CNTPCT_LO:
666            return physTimer.value();
667
668          case TIMER_CNTPCT_HI:
669            return physTimer.value() >> 32;
670
671          case TIMER_CNTVCT_LO:
672            return virtTimer.value();
673
674          case TIMER_CNTVCT_HI:
675            return virtTimer.value() >> 32;
676
677          case TIMER_CNTFRQ:
678            return systemCounter.freq();
679
680          case TIMER_CNTEL0ACR:
681            warn("Read from unimplemented timer register (0x%x)\n", addr);
682            return 0;
683
684          case CTRL_CNTVOFF_LO_BASE:
685            return virtTimer.offset();
686
687          case CTRL_CNTVOFF_HI_BASE:
688            return virtTimer.offset() >> 32;
689
690          case TIMER_CNTP_CVAL_LO:
691            return physTimer.compareValue();
692
693          case TIMER_CNTP_CVAL_HI:
694            return physTimer.compareValue() >> 32;
695
696          case TIMER_CNTP_TVAL:
697            return physTimer.timerValue();
698
699          case TIMER_CNTP_CTL:
700            return physTimer.control();
701
702          case TIMER_CNTV_CVAL_LO:
703            return virtTimer.compareValue();
704
705          case TIMER_CNTV_CVAL_HI:
706            return virtTimer.compareValue() >> 32;
707
708          case TIMER_CNTV_TVAL:
709            return virtTimer.timerValue();
710
711          case TIMER_CNTV_CTL:
712            return virtTimer.control();
713
714          default:
715            warn("Unexpected address (0x%x:%i), assuming RAZ\n", addr, size);
716            return 0;
717        }
718    } else if (size == 8) {
719        switch (addr) {
720          case TIMER_CNTPCT_LO:
721            return physTimer.value();
722
723          case TIMER_CNTVCT_LO:
724            return virtTimer.value();
725
726          case CTRL_CNTVOFF_LO_BASE:
727            return virtTimer.offset();
728
729          case TIMER_CNTP_CVAL_LO:
730            return physTimer.compareValue();
731
732          case TIMER_CNTV_CVAL_LO:
733            return virtTimer.compareValue();
734
735          default:
736            warn("Unexpected address (0x%x:%i), assuming RAZ\n", addr, size);
737            return 0;
738        }
739    } else {
740        panic("Invalid access size: %i\n", size);
741    }
742}
743
744void
745GenericTimerMem::timerWrite(Addr addr, size_t size, uint64_t value)
746{
747    if (size == 4) {
748        switch (addr) {
749          case TIMER_CNTEL0ACR:
750            warn("Unimplemented timer register (0x%x)\n", addr);
751            return;
752
753          case TIMER_CNTP_CVAL_LO:
754            physTimer.setCompareValue(
755                insertBits(physTimer.compareValue(), 31, 0, value));
756            return;
757
758          case TIMER_CNTP_CVAL_HI:
759            physTimer.setCompareValue(
760                insertBits(physTimer.compareValue(), 63, 32, value));
761            return;
762
763          case TIMER_CNTP_TVAL:
764            physTimer.setTimerValue(value);
765            return;
766
767          case TIMER_CNTP_CTL:
768            physTimer.setControl(value);
769            return;
770
771          case TIMER_CNTV_CVAL_LO:
772            virtTimer.setCompareValue(
773                insertBits(virtTimer.compareValue(), 31, 0, value));
774            return;
775
776          case TIMER_CNTV_CVAL_HI:
777            virtTimer.setCompareValue(
778                insertBits(virtTimer.compareValue(), 63, 32, value));
779            return;
780
781          case TIMER_CNTV_TVAL:
782            virtTimer.setTimerValue(value);
783            return;
784
785          case TIMER_CNTV_CTL:
786            virtTimer.setControl(value);
787            return;
788
789          default:
790            warn("Unexpected address (0x%x:%i), ignoring write\n", addr, size);
791            return;
792        }
793    } else if (size == 8) {
794        switch (addr) {
795          case TIMER_CNTP_CVAL_LO:
796            return physTimer.setCompareValue(value);
797
798          case TIMER_CNTV_CVAL_LO:
799            return virtTimer.setCompareValue(value);
800
801          default:
802            warn("Unexpected address (0x%x:%i), ignoring write\n", addr, size);
803            return;
804        }
805    } else {
806        panic("Invalid access size: %i\n", size);
807    }
808}
809
810GenericTimer *
811GenericTimerParams::create()
812{
813    return new GenericTimer(this);
814}
815
816GenericTimerMem *
817GenericTimerMemParams::create()
818{
819    return new GenericTimerMem(this);
820}
821