thread_context.hh revision 13582
1/* 2 * Copyright (c) 2011-2012, 2016 ARM Limited 3 * Copyright (c) 2013 Advanced Micro Devices, Inc. 4 * All rights reserved 5 * 6 * The license below extends only to copyright in the software and shall 7 * not be construed as granting a license to any other intellectual 8 * property including but not limited to intellectual property relating 9 * to a hardware implementation of the functionality of the software 10 * licensed hereunder. You may use the software subject to the license 11 * terms below provided that you ensure that this notice is replicated 12 * unmodified and in its entirety in all distributions of the software, 13 * modified or unmodified, in source code or in binary form. 14 * 15 * Copyright (c) 2006 The Regents of The University of Michigan 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Kevin Lim 42 */ 43 44#ifndef __CPU_THREAD_CONTEXT_HH__ 45#define __CPU_THREAD_CONTEXT_HH__ 46 47#include <iostream> 48#include <string> 49 50#include "arch/registers.hh" 51#include "arch/types.hh" 52#include "base/types.hh" 53#include "config/the_isa.hh" 54#include "cpu/reg_class.hh" 55 56// @todo: Figure out a more architecture independent way to obtain the ITB and 57// DTB pointers. 58namespace TheISA 59{ 60 class Decoder; 61} 62class BaseCPU; 63class BaseTLB; 64class CheckerCPU; 65class Checkpoint; 66class EndQuiesceEvent; 67class SETranslatingPortProxy; 68class FSTranslatingPortProxy; 69class PortProxy; 70class Process; 71class System; 72namespace TheISA { 73 namespace Kernel { 74 class Statistics; 75 } 76} 77 78/** 79 * ThreadContext is the external interface to all thread state for 80 * anything outside of the CPU. It provides all accessor methods to 81 * state that might be needed by external objects, ranging from 82 * register values to things such as kernel stats. It is an abstract 83 * base class; the CPU can create its own ThreadContext by either 84 * deriving from it, or using the templated ProxyThreadContext. 85 * 86 * The ThreadContext is slightly different than the ExecContext. The 87 * ThreadContext provides access to an individual thread's state; an 88 * ExecContext provides ISA access to the CPU (meaning it is 89 * implicitly multithreaded on SMT systems). Additionally the 90 * ThreadState is an abstract class that exactly defines the 91 * interface; the ExecContext is a more implicit interface that must 92 * be implemented so that the ISA can access whatever state it needs. 93 */ 94class ThreadContext 95{ 96 protected: 97 typedef TheISA::MachInst MachInst; 98 typedef TheISA::CCReg CCReg; 99 using VecRegContainer = TheISA::VecRegContainer; 100 using VecElem = TheISA::VecElem; 101 public: 102 103 enum Status 104 { 105 /// Running. Instructions should be executed only when 106 /// the context is in this state. 107 Active, 108 109 /// Temporarily inactive. Entered while waiting for 110 /// synchronization, etc. 111 Suspended, 112 113 /// Permanently shut down. Entered when target executes 114 /// m5exit pseudo-instruction. When all contexts enter 115 /// this state, the simulation will terminate. 116 Halted 117 }; 118 119 virtual ~ThreadContext() { }; 120 121 virtual BaseCPU *getCpuPtr() = 0; 122 123 virtual int cpuId() const = 0; 124 125 virtual uint32_t socketId() const = 0; 126 127 virtual int threadId() const = 0; 128 129 virtual void setThreadId(int id) = 0; 130 131 virtual int contextId() const = 0; 132 133 virtual void setContextId(int id) = 0; 134 135 virtual BaseTLB *getITBPtr() = 0; 136 137 virtual BaseTLB *getDTBPtr() = 0; 138 139 virtual CheckerCPU *getCheckerCpuPtr() = 0; 140 141 virtual TheISA::Decoder *getDecoderPtr() = 0; 142 143 virtual System *getSystemPtr() = 0; 144 145 virtual TheISA::Kernel::Statistics *getKernelStats() = 0; 146 147 virtual PortProxy &getPhysProxy() = 0; 148 149 virtual FSTranslatingPortProxy &getVirtProxy() = 0; 150 151 /** 152 * Initialise the physical and virtual port proxies and tie them to 153 * the data port of the CPU. 154 * 155 * tc ThreadContext for the virtual-to-physical translation 156 */ 157 virtual void initMemProxies(ThreadContext *tc) = 0; 158 159 virtual SETranslatingPortProxy &getMemProxy() = 0; 160 161 virtual Process *getProcessPtr() = 0; 162 163 virtual void setProcessPtr(Process *p) = 0; 164 165 virtual Status status() const = 0; 166 167 virtual void setStatus(Status new_status) = 0; 168 169 /// Set the status to Active. 170 virtual void activate() = 0; 171 172 /// Set the status to Suspended. 173 virtual void suspend() = 0; 174 175 /// Set the status to Halted. 176 virtual void halt() = 0; 177 178 /// Quiesce thread context 179 void quiesce(); 180 181 /// Quiesce, suspend, and schedule activate at resume 182 void quiesceTick(Tick resume); 183 184 virtual void dumpFuncProfile() = 0; 185 186 virtual void takeOverFrom(ThreadContext *old_context) = 0; 187 188 virtual void regStats(const std::string &name) = 0; 189 190 virtual EndQuiesceEvent *getQuiesceEvent() = 0; 191 192 // Not necessarily the best location for these... 193 // Having an extra function just to read these is obnoxious 194 virtual Tick readLastActivate() = 0; 195 virtual Tick readLastSuspend() = 0; 196 197 virtual void profileClear() = 0; 198 virtual void profileSample() = 0; 199 200 virtual void copyArchRegs(ThreadContext *tc) = 0; 201 202 virtual void clearArchRegs() = 0; 203 204 // 205 // New accessors for new decoder. 206 // 207 virtual RegVal readIntReg(int reg_idx) = 0; 208 209 virtual RegVal readFloatRegBits(int reg_idx) = 0; 210 211 virtual const VecRegContainer& readVecReg(const RegId& reg) const = 0; 212 virtual VecRegContainer& getWritableVecReg(const RegId& reg) = 0; 213 214 /** Vector Register Lane Interfaces. */ 215 /** @{ */ 216 /** Reads source vector 8bit operand. */ 217 virtual ConstVecLane8 218 readVec8BitLaneReg(const RegId& reg) const = 0; 219 220 /** Reads source vector 16bit operand. */ 221 virtual ConstVecLane16 222 readVec16BitLaneReg(const RegId& reg) const = 0; 223 224 /** Reads source vector 32bit operand. */ 225 virtual ConstVecLane32 226 readVec32BitLaneReg(const RegId& reg) const = 0; 227 228 /** Reads source vector 64bit operand. */ 229 virtual ConstVecLane64 230 readVec64BitLaneReg(const RegId& reg) const = 0; 231 232 /** Write a lane of the destination vector register. */ 233 virtual void setVecLane(const RegId& reg, 234 const LaneData<LaneSize::Byte>& val) = 0; 235 virtual void setVecLane(const RegId& reg, 236 const LaneData<LaneSize::TwoByte>& val) = 0; 237 virtual void setVecLane(const RegId& reg, 238 const LaneData<LaneSize::FourByte>& val) = 0; 239 virtual void setVecLane(const RegId& reg, 240 const LaneData<LaneSize::EightByte>& val) = 0; 241 /** @} */ 242 243 virtual const VecElem& readVecElem(const RegId& reg) const = 0; 244 245 virtual CCReg readCCReg(int reg_idx) = 0; 246 247 virtual void setIntReg(int reg_idx, RegVal val) = 0; 248 249 virtual void setFloatRegBits(int reg_idx, RegVal val) = 0; 250 251 virtual void setVecReg(const RegId& reg, const VecRegContainer& val) = 0; 252 253 virtual void setVecElem(const RegId& reg, const VecElem& val) = 0; 254 255 virtual void setCCReg(int reg_idx, CCReg val) = 0; 256 257 virtual TheISA::PCState pcState() = 0; 258 259 virtual void pcState(const TheISA::PCState &val) = 0; 260 261 void 262 setNPC(Addr val) 263 { 264 TheISA::PCState pc_state = pcState(); 265 pc_state.setNPC(val); 266 pcState(pc_state); 267 } 268 269 virtual void pcStateNoRecord(const TheISA::PCState &val) = 0; 270 271 virtual Addr instAddr() = 0; 272 273 virtual Addr nextInstAddr() = 0; 274 275 virtual MicroPC microPC() = 0; 276 277 virtual RegVal readMiscRegNoEffect(int misc_reg) const = 0; 278 279 virtual RegVal readMiscReg(int misc_reg) = 0; 280 281 virtual void setMiscRegNoEffect(int misc_reg, RegVal val) = 0; 282 283 virtual void setMiscReg(int misc_reg, RegVal val) = 0; 284 285 virtual RegId flattenRegId(const RegId& regId) const = 0; 286 287 virtual RegVal 288 readRegOtherThread(const RegId& misc_reg, ThreadID tid) 289 { 290 return 0; 291 } 292 293 virtual void 294 setRegOtherThread(const RegId& misc_reg, RegVal val, ThreadID tid) 295 { 296 } 297 298 // Also not necessarily the best location for these two. Hopefully will go 299 // away once we decide upon where st cond failures goes. 300 virtual unsigned readStCondFailures() = 0; 301 302 virtual void setStCondFailures(unsigned sc_failures) = 0; 303 304 // Same with st cond failures. 305 virtual Counter readFuncExeInst() = 0; 306 307 virtual void syscall(int64_t callnum, Fault *fault) = 0; 308 309 // This function exits the thread context in the CPU and returns 310 // 1 if the CPU has no more active threads (meaning it's OK to exit); 311 // Used in syscall-emulation mode when a thread calls the exit syscall. 312 virtual int exit() { return 1; }; 313 314 /** function to compare two thread contexts (for debugging) */ 315 static void compare(ThreadContext *one, ThreadContext *two); 316 317 /** @{ */ 318 /** 319 * Flat register interfaces 320 * 321 * Some architectures have different registers visible in 322 * different modes. Such architectures "flatten" a register (see 323 * flattenRegId()) to map it into the 324 * gem5 register file. This interface provides a flat interface to 325 * the underlying register file, which allows for example 326 * serialization code to access all registers. 327 */ 328 329 virtual RegVal readIntRegFlat(int idx) = 0; 330 virtual void setIntRegFlat(int idx, RegVal val) = 0; 331 332 virtual RegVal readFloatRegBitsFlat(int idx) = 0; 333 virtual void setFloatRegBitsFlat(int idx, RegVal val) = 0; 334 335 virtual const VecRegContainer& readVecRegFlat(int idx) const = 0; 336 virtual VecRegContainer& getWritableVecRegFlat(int idx) = 0; 337 virtual void setVecRegFlat(int idx, const VecRegContainer& val) = 0; 338 339 virtual const VecElem& readVecElemFlat(const RegIndex& idx, 340 const ElemIndex& elemIdx) const = 0; 341 virtual void setVecElemFlat(const RegIndex& idx, const ElemIndex& elemIdx, 342 const VecElem& val) = 0; 343 344 virtual CCReg readCCRegFlat(int idx) = 0; 345 virtual void setCCRegFlat(int idx, CCReg val) = 0; 346 /** @} */ 347 348}; 349 350/** 351 * ProxyThreadContext class that provides a way to implement a 352 * ThreadContext without having to derive from it. ThreadContext is an 353 * abstract class, so anything that derives from it and uses its 354 * interface will pay the overhead of virtual function calls. This 355 * class is created to enable a user-defined Thread object to be used 356 * wherever ThreadContexts are used, without paying the overhead of 357 * virtual function calls when it is used by itself. See 358 * simple_thread.hh for an example of this. 359 */ 360template <class TC> 361class ProxyThreadContext : public ThreadContext 362{ 363 public: 364 ProxyThreadContext(TC *actual_tc) 365 { actualTC = actual_tc; } 366 367 private: 368 TC *actualTC; 369 370 public: 371 372 BaseCPU *getCpuPtr() { return actualTC->getCpuPtr(); } 373 374 int cpuId() const { return actualTC->cpuId(); } 375 376 uint32_t socketId() const { return actualTC->socketId(); } 377 378 int threadId() const { return actualTC->threadId(); } 379 380 void setThreadId(int id) { actualTC->setThreadId(id); } 381 382 int contextId() const { return actualTC->contextId(); } 383 384 void setContextId(int id) { actualTC->setContextId(id); } 385 386 BaseTLB *getITBPtr() { return actualTC->getITBPtr(); } 387 388 BaseTLB *getDTBPtr() { return actualTC->getDTBPtr(); } 389 390 CheckerCPU *getCheckerCpuPtr() { return actualTC->getCheckerCpuPtr(); } 391 392 TheISA::Decoder *getDecoderPtr() { return actualTC->getDecoderPtr(); } 393 394 System *getSystemPtr() { return actualTC->getSystemPtr(); } 395 396 TheISA::Kernel::Statistics *getKernelStats() 397 { return actualTC->getKernelStats(); } 398 399 PortProxy &getPhysProxy() { return actualTC->getPhysProxy(); } 400 401 FSTranslatingPortProxy &getVirtProxy() { return actualTC->getVirtProxy(); } 402 403 void initMemProxies(ThreadContext *tc) { actualTC->initMemProxies(tc); } 404 405 SETranslatingPortProxy &getMemProxy() { return actualTC->getMemProxy(); } 406 407 Process *getProcessPtr() { return actualTC->getProcessPtr(); } 408 409 void setProcessPtr(Process *p) { actualTC->setProcessPtr(p); } 410 411 Status status() const { return actualTC->status(); } 412 413 void setStatus(Status new_status) { actualTC->setStatus(new_status); } 414 415 /// Set the status to Active. 416 void activate() { actualTC->activate(); } 417 418 /// Set the status to Suspended. 419 void suspend() { actualTC->suspend(); } 420 421 /// Set the status to Halted. 422 void halt() { actualTC->halt(); } 423 424 /// Quiesce thread context 425 void quiesce() { actualTC->quiesce(); } 426 427 /// Quiesce, suspend, and schedule activate at resume 428 void quiesceTick(Tick resume) { actualTC->quiesceTick(resume); } 429 430 void dumpFuncProfile() { actualTC->dumpFuncProfile(); } 431 432 void takeOverFrom(ThreadContext *oldContext) 433 { actualTC->takeOverFrom(oldContext); } 434 435 void regStats(const std::string &name) { actualTC->regStats(name); } 436 437 EndQuiesceEvent *getQuiesceEvent() { return actualTC->getQuiesceEvent(); } 438 439 Tick readLastActivate() { return actualTC->readLastActivate(); } 440 Tick readLastSuspend() { return actualTC->readLastSuspend(); } 441 442 void profileClear() { return actualTC->profileClear(); } 443 void profileSample() { return actualTC->profileSample(); } 444 445 // @todo: Do I need this? 446 void copyArchRegs(ThreadContext *tc) { actualTC->copyArchRegs(tc); } 447 448 void clearArchRegs() { actualTC->clearArchRegs(); } 449 450 // 451 // New accessors for new decoder. 452 // 453 RegVal readIntReg(int reg_idx) 454 { return actualTC->readIntReg(reg_idx); } 455 456 RegVal readFloatRegBits(int reg_idx) 457 { return actualTC->readFloatRegBits(reg_idx); } 458 459 const VecRegContainer& readVecReg(const RegId& reg) const 460 { return actualTC->readVecReg(reg); } 461 462 VecRegContainer& getWritableVecReg(const RegId& reg) 463 { return actualTC->getWritableVecReg(reg); } 464 465 /** Vector Register Lane Interfaces. */ 466 /** @{ */ 467 /** Reads source vector 8bit operand. */ 468 ConstVecLane8 469 readVec8BitLaneReg(const RegId& reg) const 470 { return actualTC->readVec8BitLaneReg(reg); } 471 472 /** Reads source vector 16bit operand. */ 473 ConstVecLane16 474 readVec16BitLaneReg(const RegId& reg) const 475 { return actualTC->readVec16BitLaneReg(reg); } 476 477 /** Reads source vector 32bit operand. */ 478 ConstVecLane32 479 readVec32BitLaneReg(const RegId& reg) const 480 { return actualTC->readVec32BitLaneReg(reg); } 481 482 /** Reads source vector 64bit operand. */ 483 ConstVecLane64 484 readVec64BitLaneReg(const RegId& reg) const 485 { return actualTC->readVec64BitLaneReg(reg); } 486 487 /** Write a lane of the destination vector register. */ 488 virtual void setVecLane(const RegId& reg, 489 const LaneData<LaneSize::Byte>& val) 490 { return actualTC->setVecLane(reg, val); } 491 virtual void setVecLane(const RegId& reg, 492 const LaneData<LaneSize::TwoByte>& val) 493 { return actualTC->setVecLane(reg, val); } 494 virtual void setVecLane(const RegId& reg, 495 const LaneData<LaneSize::FourByte>& val) 496 { return actualTC->setVecLane(reg, val); } 497 virtual void setVecLane(const RegId& reg, 498 const LaneData<LaneSize::EightByte>& val) 499 { return actualTC->setVecLane(reg, val); } 500 /** @} */ 501 502 const VecElem& readVecElem(const RegId& reg) const 503 { return actualTC->readVecElem(reg); } 504 505 CCReg readCCReg(int reg_idx) 506 { return actualTC->readCCReg(reg_idx); } 507 508 void setIntReg(int reg_idx, RegVal val) 509 { actualTC->setIntReg(reg_idx, val); } 510 511 void setFloatRegBits(int reg_idx, RegVal val) 512 { actualTC->setFloatRegBits(reg_idx, val); } 513 514 void setVecReg(const RegId& reg, const VecRegContainer& val) 515 { actualTC->setVecReg(reg, val); } 516 517 void setVecElem(const RegId& reg, const VecElem& val) 518 { actualTC->setVecElem(reg, val); } 519 520 void setCCReg(int reg_idx, CCReg val) 521 { actualTC->setCCReg(reg_idx, val); } 522 523 TheISA::PCState pcState() { return actualTC->pcState(); } 524 525 void pcState(const TheISA::PCState &val) { actualTC->pcState(val); } 526 527 void pcStateNoRecord(const TheISA::PCState &val) { actualTC->pcState(val); } 528 529 Addr instAddr() { return actualTC->instAddr(); } 530 Addr nextInstAddr() { return actualTC->nextInstAddr(); } 531 MicroPC microPC() { return actualTC->microPC(); } 532 533 bool readPredicate() { return actualTC->readPredicate(); } 534 535 void setPredicate(bool val) 536 { actualTC->setPredicate(val); } 537 538 RegVal readMiscRegNoEffect(int misc_reg) const 539 { return actualTC->readMiscRegNoEffect(misc_reg); } 540 541 RegVal readMiscReg(int misc_reg) 542 { return actualTC->readMiscReg(misc_reg); } 543 544 void setMiscRegNoEffect(int misc_reg, RegVal val) 545 { return actualTC->setMiscRegNoEffect(misc_reg, val); } 546 547 void setMiscReg(int misc_reg, RegVal val) 548 { return actualTC->setMiscReg(misc_reg, val); } 549 550 RegId flattenRegId(const RegId& regId) const 551 { return actualTC->flattenRegId(regId); } 552 553 unsigned readStCondFailures() 554 { return actualTC->readStCondFailures(); } 555 556 void setStCondFailures(unsigned sc_failures) 557 { actualTC->setStCondFailures(sc_failures); } 558 559 void syscall(int64_t callnum, Fault *fault) 560 { actualTC->syscall(callnum, fault); } 561 562 Counter readFuncExeInst() { return actualTC->readFuncExeInst(); } 563 564 RegVal readIntRegFlat(int idx) 565 { return actualTC->readIntRegFlat(idx); } 566 567 void setIntRegFlat(int idx, RegVal val) 568 { actualTC->setIntRegFlat(idx, val); } 569 570 RegVal readFloatRegBitsFlat(int idx) 571 { return actualTC->readFloatRegBitsFlat(idx); } 572 573 void setFloatRegBitsFlat(int idx, RegVal val) 574 { actualTC->setFloatRegBitsFlat(idx, val); } 575 576 const VecRegContainer& readVecRegFlat(int id) const 577 { return actualTC->readVecRegFlat(id); } 578 579 VecRegContainer& getWritableVecRegFlat(int id) 580 { return actualTC->getWritableVecRegFlat(id); } 581 582 void setVecRegFlat(int idx, const VecRegContainer& val) 583 { actualTC->setVecRegFlat(idx, val); } 584 585 const VecElem& readVecElemFlat(const RegIndex& id, 586 const ElemIndex& elemIndex) const 587 { return actualTC->readVecElemFlat(id, elemIndex); } 588 589 void setVecElemFlat(const RegIndex& id, const ElemIndex& elemIndex, 590 const VecElem& val) 591 { actualTC->setVecElemFlat(id, elemIndex, val); } 592 593 CCReg readCCRegFlat(int idx) 594 { return actualTC->readCCRegFlat(idx); } 595 596 void setCCRegFlat(int idx, CCReg val) 597 { actualTC->setCCRegFlat(idx, val); } 598}; 599 600/** @{ */ 601/** 602 * Thread context serialization helpers 603 * 604 * These helper functions provide a way to the data in a 605 * ThreadContext. They are provided as separate helper function since 606 * implementing them as members of the ThreadContext interface would 607 * be confusing when the ThreadContext is exported via a proxy. 608 */ 609 610void serialize(ThreadContext &tc, CheckpointOut &cp); 611void unserialize(ThreadContext &tc, CheckpointIn &cp); 612 613/** @} */ 614 615 616/** 617 * Copy state between thread contexts in preparation for CPU handover. 618 * 619 * @note This method modifies the old thread contexts as well as the 620 * new thread context. The old thread context will have its quiesce 621 * event descheduled if it is scheduled and its status set to halted. 622 * 623 * @param new_tc Destination ThreadContext. 624 * @param old_tc Source ThreadContext. 625 */ 626void takeOverFrom(ThreadContext &new_tc, ThreadContext &old_tc); 627 628#endif 629