thread_context.hh revision 12406:86bde4a026b5
1/*
2 * Copyright (c) 2011-2012, 2016 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 */
43
44#ifndef __CPU_THREAD_CONTEXT_HH__
45#define __CPU_THREAD_CONTEXT_HH__
46
47#include <iostream>
48#include <string>
49
50#include "arch/registers.hh"
51#include "arch/types.hh"
52#include "base/types.hh"
53#include "config/the_isa.hh"
54#include "cpu/reg_class.hh"
55
56// @todo: Figure out a more architecture independent way to obtain the ITB and
57// DTB pointers.
58namespace TheISA
59{
60    class Decoder;
61}
62class BaseCPU;
63class BaseTLB;
64class CheckerCPU;
65class Checkpoint;
66class EndQuiesceEvent;
67class SETranslatingPortProxy;
68class FSTranslatingPortProxy;
69class PortProxy;
70class Process;
71class System;
72namespace TheISA {
73    namespace Kernel {
74        class Statistics;
75    }
76}
77
78/**
79 * ThreadContext is the external interface to all thread state for
80 * anything outside of the CPU. It provides all accessor methods to
81 * state that might be needed by external objects, ranging from
82 * register values to things such as kernel stats. It is an abstract
83 * base class; the CPU can create its own ThreadContext by either
84 * deriving from it, or using the templated ProxyThreadContext.
85 *
86 * The ThreadContext is slightly different than the ExecContext.  The
87 * ThreadContext provides access to an individual thread's state; an
88 * ExecContext provides ISA access to the CPU (meaning it is
89 * implicitly multithreaded on SMT systems).  Additionally the
90 * ThreadState is an abstract class that exactly defines the
91 * interface; the ExecContext is a more implicit interface that must
92 * be implemented so that the ISA can access whatever state it needs.
93 */
94class ThreadContext
95{
96  protected:
97    typedef TheISA::MachInst MachInst;
98    typedef TheISA::IntReg IntReg;
99    typedef TheISA::FloatReg FloatReg;
100    typedef TheISA::FloatRegBits FloatRegBits;
101    typedef TheISA::CCReg CCReg;
102    typedef TheISA::MiscReg MiscReg;
103    using VecRegContainer = TheISA::VecRegContainer;
104    using VecElem = TheISA::VecElem;
105  public:
106
107    enum Status
108    {
109        /// Running.  Instructions should be executed only when
110        /// the context is in this state.
111        Active,
112
113        /// Temporarily inactive.  Entered while waiting for
114        /// synchronization, etc.
115        Suspended,
116
117        /// Permanently shut down.  Entered when target executes
118        /// m5exit pseudo-instruction.  When all contexts enter
119        /// this state, the simulation will terminate.
120        Halted
121    };
122
123    virtual ~ThreadContext() { };
124
125    virtual BaseCPU *getCpuPtr() = 0;
126
127    virtual int cpuId() const = 0;
128
129    virtual uint32_t socketId() const = 0;
130
131    virtual int threadId() const = 0;
132
133    virtual void setThreadId(int id) = 0;
134
135    virtual int contextId() const = 0;
136
137    virtual void setContextId(int id) = 0;
138
139    virtual BaseTLB *getITBPtr() = 0;
140
141    virtual BaseTLB *getDTBPtr() = 0;
142
143    virtual CheckerCPU *getCheckerCpuPtr() = 0;
144
145    virtual TheISA::Decoder *getDecoderPtr() = 0;
146
147    virtual System *getSystemPtr() = 0;
148
149    virtual TheISA::Kernel::Statistics *getKernelStats() = 0;
150
151    virtual PortProxy &getPhysProxy() = 0;
152
153    virtual FSTranslatingPortProxy &getVirtProxy() = 0;
154
155    /**
156     * Initialise the physical and virtual port proxies and tie them to
157     * the data port of the CPU.
158     *
159     * tc ThreadContext for the virtual-to-physical translation
160     */
161    virtual void initMemProxies(ThreadContext *tc) = 0;
162
163    virtual SETranslatingPortProxy &getMemProxy() = 0;
164
165    virtual Process *getProcessPtr() = 0;
166
167    virtual void setProcessPtr(Process *p) = 0;
168
169    virtual Status status() const = 0;
170
171    virtual void setStatus(Status new_status) = 0;
172
173    /// Set the status to Active.
174    virtual void activate() = 0;
175
176    /// Set the status to Suspended.
177    virtual void suspend() = 0;
178
179    /// Set the status to Halted.
180    virtual void halt() = 0;
181
182    /// Quiesce thread context
183    void quiesce();
184
185    /// Quiesce, suspend, and schedule activate at resume
186    void quiesceTick(Tick resume);
187
188    virtual void dumpFuncProfile() = 0;
189
190    virtual void takeOverFrom(ThreadContext *old_context) = 0;
191
192    virtual void regStats(const std::string &name) = 0;
193
194    virtual EndQuiesceEvent *getQuiesceEvent() = 0;
195
196    // Not necessarily the best location for these...
197    // Having an extra function just to read these is obnoxious
198    virtual Tick readLastActivate() = 0;
199    virtual Tick readLastSuspend() = 0;
200
201    virtual void profileClear() = 0;
202    virtual void profileSample() = 0;
203
204    virtual void copyArchRegs(ThreadContext *tc) = 0;
205
206    virtual void clearArchRegs() = 0;
207
208    //
209    // New accessors for new decoder.
210    //
211    virtual uint64_t readIntReg(int reg_idx) = 0;
212
213    virtual FloatReg readFloatReg(int reg_idx) = 0;
214
215    virtual FloatRegBits readFloatRegBits(int reg_idx) = 0;
216
217    virtual const VecRegContainer& readVecReg(const RegId& reg) const = 0;
218    virtual VecRegContainer& getWritableVecReg(const RegId& reg) = 0;
219
220    /** Vector Register Lane Interfaces. */
221    /** @{ */
222    /** Reads source vector 8bit operand. */
223    virtual ConstVecLane8
224    readVec8BitLaneReg(const RegId& reg) const = 0;
225
226    /** Reads source vector 16bit operand. */
227    virtual ConstVecLane16
228    readVec16BitLaneReg(const RegId& reg) const = 0;
229
230    /** Reads source vector 32bit operand. */
231    virtual ConstVecLane32
232    readVec32BitLaneReg(const RegId& reg) const = 0;
233
234    /** Reads source vector 64bit operand. */
235    virtual ConstVecLane64
236    readVec64BitLaneReg(const RegId& reg) const = 0;
237
238    /** Write a lane of the destination vector register. */
239    virtual void setVecLane(const RegId& reg,
240            const LaneData<LaneSize::Byte>& val) = 0;
241    virtual void setVecLane(const RegId& reg,
242            const LaneData<LaneSize::TwoByte>& val) = 0;
243    virtual void setVecLane(const RegId& reg,
244            const LaneData<LaneSize::FourByte>& val) = 0;
245    virtual void setVecLane(const RegId& reg,
246            const LaneData<LaneSize::EightByte>& val) = 0;
247    /** @} */
248
249    virtual const VecElem& readVecElem(const RegId& reg) const = 0;
250
251    virtual CCReg readCCReg(int reg_idx) = 0;
252
253    virtual void setIntReg(int reg_idx, uint64_t val) = 0;
254
255    virtual void setFloatReg(int reg_idx, FloatReg val) = 0;
256
257    virtual void setFloatRegBits(int reg_idx, FloatRegBits val) = 0;
258
259    virtual void setVecReg(const RegId& reg, const VecRegContainer& val) = 0;
260
261    virtual void setVecElem(const RegId& reg, const VecElem& val) = 0;
262
263    virtual void setCCReg(int reg_idx, CCReg val) = 0;
264
265    virtual TheISA::PCState pcState() = 0;
266
267    virtual void pcState(const TheISA::PCState &val) = 0;
268
269    void
270    setNPC(Addr val)
271    {
272        TheISA::PCState pc_state = pcState();
273        pc_state.setNPC(val);
274        pcState(pc_state);
275    }
276
277    virtual void pcStateNoRecord(const TheISA::PCState &val) = 0;
278
279    virtual Addr instAddr() = 0;
280
281    virtual Addr nextInstAddr() = 0;
282
283    virtual MicroPC microPC() = 0;
284
285    virtual MiscReg readMiscRegNoEffect(int misc_reg) const = 0;
286
287    virtual MiscReg readMiscReg(int misc_reg) = 0;
288
289    virtual void setMiscRegNoEffect(int misc_reg, const MiscReg &val) = 0;
290
291    virtual void setMiscReg(int misc_reg, const MiscReg &val) = 0;
292
293    virtual RegId flattenRegId(const RegId& regId) const = 0;
294
295    virtual uint64_t
296    readRegOtherThread(const RegId& misc_reg, ThreadID tid)
297    {
298        return 0;
299    }
300
301    virtual void
302    setRegOtherThread(const RegId& misc_reg, const MiscReg &val, ThreadID tid)
303    {
304    }
305
306    // Also not necessarily the best location for these two.  Hopefully will go
307    // away once we decide upon where st cond failures goes.
308    virtual unsigned readStCondFailures() = 0;
309
310    virtual void setStCondFailures(unsigned sc_failures) = 0;
311
312    // Same with st cond failures.
313    virtual Counter readFuncExeInst() = 0;
314
315    virtual void syscall(int64_t callnum, Fault *fault) = 0;
316
317    // This function exits the thread context in the CPU and returns
318    // 1 if the CPU has no more active threads (meaning it's OK to exit);
319    // Used in syscall-emulation mode when a  thread calls the exit syscall.
320    virtual int exit() { return 1; };
321
322    /** function to compare two thread contexts (for debugging) */
323    static void compare(ThreadContext *one, ThreadContext *two);
324
325    /** @{ */
326    /**
327     * Flat register interfaces
328     *
329     * Some architectures have different registers visible in
330     * different modes. Such architectures "flatten" a register (see
331     * flattenRegId()) to map it into the
332     * gem5 register file. This interface provides a flat interface to
333     * the underlying register file, which allows for example
334     * serialization code to access all registers.
335     */
336
337    virtual uint64_t readIntRegFlat(int idx) = 0;
338    virtual void setIntRegFlat(int idx, uint64_t val) = 0;
339
340    virtual FloatReg readFloatRegFlat(int idx) = 0;
341    virtual void setFloatRegFlat(int idx, FloatReg val) = 0;
342
343    virtual FloatRegBits readFloatRegBitsFlat(int idx) = 0;
344    virtual void setFloatRegBitsFlat(int idx, FloatRegBits val) = 0;
345
346    virtual const VecRegContainer& readVecRegFlat(int idx) const = 0;
347    virtual VecRegContainer& getWritableVecRegFlat(int idx) = 0;
348    virtual void setVecRegFlat(int idx, const VecRegContainer& val) = 0;
349
350    virtual const VecElem& readVecElemFlat(const RegIndex& idx,
351                                           const ElemIndex& elemIdx) const = 0;
352    virtual void setVecElemFlat(const RegIndex& idx, const ElemIndex& elemIdx,
353                                const VecElem& val) = 0;
354
355    virtual CCReg readCCRegFlat(int idx) = 0;
356    virtual void setCCRegFlat(int idx, CCReg val) = 0;
357    /** @} */
358
359};
360
361/**
362 * ProxyThreadContext class that provides a way to implement a
363 * ThreadContext without having to derive from it. ThreadContext is an
364 * abstract class, so anything that derives from it and uses its
365 * interface will pay the overhead of virtual function calls.  This
366 * class is created to enable a user-defined Thread object to be used
367 * wherever ThreadContexts are used, without paying the overhead of
368 * virtual function calls when it is used by itself.  See
369 * simple_thread.hh for an example of this.
370 */
371template <class TC>
372class ProxyThreadContext : public ThreadContext
373{
374  public:
375    ProxyThreadContext(TC *actual_tc)
376    { actualTC = actual_tc; }
377
378  private:
379    TC *actualTC;
380
381  public:
382
383    BaseCPU *getCpuPtr() { return actualTC->getCpuPtr(); }
384
385    int cpuId() const { return actualTC->cpuId(); }
386
387    uint32_t socketId() const { return actualTC->socketId(); }
388
389    int threadId() const { return actualTC->threadId(); }
390
391    void setThreadId(int id) { actualTC->setThreadId(id); }
392
393    int contextId() const { return actualTC->contextId(); }
394
395    void setContextId(int id) { actualTC->setContextId(id); }
396
397    BaseTLB *getITBPtr() { return actualTC->getITBPtr(); }
398
399    BaseTLB *getDTBPtr() { return actualTC->getDTBPtr(); }
400
401    CheckerCPU *getCheckerCpuPtr() { return actualTC->getCheckerCpuPtr(); }
402
403    TheISA::Decoder *getDecoderPtr() { return actualTC->getDecoderPtr(); }
404
405    System *getSystemPtr() { return actualTC->getSystemPtr(); }
406
407    TheISA::Kernel::Statistics *getKernelStats()
408    { return actualTC->getKernelStats(); }
409
410    PortProxy &getPhysProxy() { return actualTC->getPhysProxy(); }
411
412    FSTranslatingPortProxy &getVirtProxy() { return actualTC->getVirtProxy(); }
413
414    void initMemProxies(ThreadContext *tc) { actualTC->initMemProxies(tc); }
415
416    SETranslatingPortProxy &getMemProxy() { return actualTC->getMemProxy(); }
417
418    Process *getProcessPtr() { return actualTC->getProcessPtr(); }
419
420    void setProcessPtr(Process *p) { actualTC->setProcessPtr(p); }
421
422    Status status() const { return actualTC->status(); }
423
424    void setStatus(Status new_status) { actualTC->setStatus(new_status); }
425
426    /// Set the status to Active.
427    void activate() { actualTC->activate(); }
428
429    /// Set the status to Suspended.
430    void suspend() { actualTC->suspend(); }
431
432    /// Set the status to Halted.
433    void halt() { actualTC->halt(); }
434
435    /// Quiesce thread context
436    void quiesce() { actualTC->quiesce(); }
437
438    /// Quiesce, suspend, and schedule activate at resume
439    void quiesceTick(Tick resume) { actualTC->quiesceTick(resume); }
440
441    void dumpFuncProfile() { actualTC->dumpFuncProfile(); }
442
443    void takeOverFrom(ThreadContext *oldContext)
444    { actualTC->takeOverFrom(oldContext); }
445
446    void regStats(const std::string &name) { actualTC->regStats(name); }
447
448    EndQuiesceEvent *getQuiesceEvent() { return actualTC->getQuiesceEvent(); }
449
450    Tick readLastActivate() { return actualTC->readLastActivate(); }
451    Tick readLastSuspend() { return actualTC->readLastSuspend(); }
452
453    void profileClear() { return actualTC->profileClear(); }
454    void profileSample() { return actualTC->profileSample(); }
455
456    // @todo: Do I need this?
457    void copyArchRegs(ThreadContext *tc) { actualTC->copyArchRegs(tc); }
458
459    void clearArchRegs() { actualTC->clearArchRegs(); }
460
461    //
462    // New accessors for new decoder.
463    //
464    uint64_t readIntReg(int reg_idx)
465    { return actualTC->readIntReg(reg_idx); }
466
467    FloatReg readFloatReg(int reg_idx)
468    { return actualTC->readFloatReg(reg_idx); }
469
470    FloatRegBits readFloatRegBits(int reg_idx)
471    { return actualTC->readFloatRegBits(reg_idx); }
472
473    const VecRegContainer& readVecReg(const RegId& reg) const
474    { return actualTC->readVecReg(reg); }
475
476    VecRegContainer& getWritableVecReg(const RegId& reg)
477    { return actualTC->getWritableVecReg(reg); }
478
479    /** Vector Register Lane Interfaces. */
480    /** @{ */
481    /** Reads source vector 8bit operand. */
482    ConstVecLane8
483    readVec8BitLaneReg(const RegId& reg) const
484    { return actualTC->readVec8BitLaneReg(reg); }
485
486    /** Reads source vector 16bit operand. */
487    ConstVecLane16
488    readVec16BitLaneReg(const RegId& reg) const
489    { return actualTC->readVec16BitLaneReg(reg); }
490
491    /** Reads source vector 32bit operand. */
492    ConstVecLane32
493    readVec32BitLaneReg(const RegId& reg) const
494    { return actualTC->readVec32BitLaneReg(reg); }
495
496    /** Reads source vector 64bit operand. */
497    ConstVecLane64
498    readVec64BitLaneReg(const RegId& reg) const
499    { return actualTC->readVec64BitLaneReg(reg); }
500
501    /** Write a lane of the destination vector register. */
502    virtual void setVecLane(const RegId& reg,
503            const LaneData<LaneSize::Byte>& val)
504    { return actualTC->setVecLane(reg, val); }
505    virtual void setVecLane(const RegId& reg,
506            const LaneData<LaneSize::TwoByte>& val)
507    { return actualTC->setVecLane(reg, val); }
508    virtual void setVecLane(const RegId& reg,
509            const LaneData<LaneSize::FourByte>& val)
510    { return actualTC->setVecLane(reg, val); }
511    virtual void setVecLane(const RegId& reg,
512            const LaneData<LaneSize::EightByte>& val)
513    { return actualTC->setVecLane(reg, val); }
514    /** @} */
515
516    const VecElem& readVecElem(const RegId& reg) const
517    { return actualTC->readVecElem(reg); }
518
519    CCReg readCCReg(int reg_idx)
520    { return actualTC->readCCReg(reg_idx); }
521
522    void setIntReg(int reg_idx, uint64_t val)
523    { actualTC->setIntReg(reg_idx, val); }
524
525    void setFloatReg(int reg_idx, FloatReg val)
526    { actualTC->setFloatReg(reg_idx, val); }
527
528    void setFloatRegBits(int reg_idx, FloatRegBits val)
529    { actualTC->setFloatRegBits(reg_idx, val); }
530
531    void setVecReg(const RegId& reg, const VecRegContainer& val)
532    { actualTC->setVecReg(reg, val); }
533
534    void setVecElem(const RegId& reg, const VecElem& val)
535    { actualTC->setVecElem(reg, val); }
536
537    void setCCReg(int reg_idx, CCReg val)
538    { actualTC->setCCReg(reg_idx, val); }
539
540    TheISA::PCState pcState() { return actualTC->pcState(); }
541
542    void pcState(const TheISA::PCState &val) { actualTC->pcState(val); }
543
544    void pcStateNoRecord(const TheISA::PCState &val) { actualTC->pcState(val); }
545
546    Addr instAddr() { return actualTC->instAddr(); }
547    Addr nextInstAddr() { return actualTC->nextInstAddr(); }
548    MicroPC microPC() { return actualTC->microPC(); }
549
550    bool readPredicate() { return actualTC->readPredicate(); }
551
552    void setPredicate(bool val)
553    { actualTC->setPredicate(val); }
554
555    MiscReg readMiscRegNoEffect(int misc_reg) const
556    { return actualTC->readMiscRegNoEffect(misc_reg); }
557
558    MiscReg readMiscReg(int misc_reg)
559    { return actualTC->readMiscReg(misc_reg); }
560
561    void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
562    { return actualTC->setMiscRegNoEffect(misc_reg, val); }
563
564    void setMiscReg(int misc_reg, const MiscReg &val)
565    { return actualTC->setMiscReg(misc_reg, val); }
566
567    RegId flattenRegId(const RegId& regId) const
568    { return actualTC->flattenRegId(regId); }
569
570    unsigned readStCondFailures()
571    { return actualTC->readStCondFailures(); }
572
573    void setStCondFailures(unsigned sc_failures)
574    { actualTC->setStCondFailures(sc_failures); }
575
576    void syscall(int64_t callnum, Fault *fault)
577    { actualTC->syscall(callnum, fault); }
578
579    Counter readFuncExeInst() { return actualTC->readFuncExeInst(); }
580
581    uint64_t readIntRegFlat(int idx)
582    { return actualTC->readIntRegFlat(idx); }
583
584    void setIntRegFlat(int idx, uint64_t val)
585    { actualTC->setIntRegFlat(idx, val); }
586
587    FloatReg readFloatRegFlat(int idx)
588    { return actualTC->readFloatRegFlat(idx); }
589
590    void setFloatRegFlat(int idx, FloatReg val)
591    { actualTC->setFloatRegFlat(idx, val); }
592
593    FloatRegBits readFloatRegBitsFlat(int idx)
594    { return actualTC->readFloatRegBitsFlat(idx); }
595
596    void setFloatRegBitsFlat(int idx, FloatRegBits val)
597    { actualTC->setFloatRegBitsFlat(idx, val); }
598
599    const VecRegContainer& readVecRegFlat(int id) const
600    { return actualTC->readVecRegFlat(id); }
601
602    VecRegContainer& getWritableVecRegFlat(int id)
603    { return actualTC->getWritableVecRegFlat(id); }
604
605    void setVecRegFlat(int idx, const VecRegContainer& val)
606    { actualTC->setVecRegFlat(idx, val); }
607
608    const VecElem& readVecElemFlat(const RegIndex& id,
609                                   const ElemIndex& elemIndex) const
610    { return actualTC->readVecElemFlat(id, elemIndex); }
611
612    void setVecElemFlat(const RegIndex& id, const ElemIndex& elemIndex,
613                        const VecElem& val)
614    { actualTC->setVecElemFlat(id, elemIndex, val); }
615
616    CCReg readCCRegFlat(int idx)
617    { return actualTC->readCCRegFlat(idx); }
618
619    void setCCRegFlat(int idx, CCReg val)
620    { actualTC->setCCRegFlat(idx, val); }
621};
622
623/** @{ */
624/**
625 * Thread context serialization helpers
626 *
627 * These helper functions provide a way to the data in a
628 * ThreadContext. They are provided as separate helper function since
629 * implementing them as members of the ThreadContext interface would
630 * be confusing when the ThreadContext is exported via a proxy.
631 */
632
633void serialize(ThreadContext &tc, CheckpointOut &cp);
634void unserialize(ThreadContext &tc, CheckpointIn &cp);
635
636/** @} */
637
638
639/**
640 * Copy state between thread contexts in preparation for CPU handover.
641 *
642 * @note This method modifies the old thread contexts as well as the
643 * new thread context. The old thread context will have its quiesce
644 * event descheduled if it is scheduled and its status set to halted.
645 *
646 * @param new_tc Destination ThreadContext.
647 * @param old_tc Source ThreadContext.
648 */
649void takeOverFrom(ThreadContext &new_tc, ThreadContext &old_tc);
650
651#endif
652