thread_context.hh revision 393
1/*
2 * Copyright (c) 2003 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#ifndef __EXEC_CONTEXT_HH__
30#define __EXEC_CONTEXT_HH__
31
32#include "sim/host.hh"
33#include "mem/mem_req.hh"
34#include "sim/serialize.hh"
35
36// forward declaration: see functional_memory.hh
37class FunctionalMemory;
38class PhysicalMemory;
39class BaseCPU;
40
41#ifdef FULL_SYSTEM
42
43#include "targetarch/alpha_memory.hh"
44class MemoryController;
45
46#include "kern/tru64/kernel_stats.hh"
47#include "sim/system.hh"
48
49#ifdef FS_MEASURE
50#include "sim/sw_context.hh"
51#endif
52
53#else // !FULL_SYSTEM
54
55#include "sim/process.hh"
56
57#endif // FULL_SYSTEM
58
59//
60// The ExecContext object represents a functional context for
61// instruction execution.  It incorporates everything required for
62// architecture-level functional simulation of a single thread.
63//
64
65class ExecContext
66{
67  public:
68    enum Status
69    {
70        /// Initialized but not running yet.  All CPUs start in
71        /// this state, but most transition to Active on cycle 1.
72        /// In MP or SMT systems, non-primary contexts will stay
73        /// in this state until a thread is assigned to them.
74        Unallocated,
75
76        /// Running.  Instructions should be executed only when
77        /// the context is in this state.
78        Active,
79
80        /// Temporarily inactive.  Entered while waiting for
81        /// synchronization, etc.
82        Suspended,
83
84        /// Permanently shut down.  Entered when target executes
85        /// m5exit pseudo-instruction.  When all contexts enter
86        /// this state, the simulation will terminate.
87        Halted
88    };
89
90  private:
91    Status _status;
92
93  public:
94    Status status() const { return _status; }
95
96    /// Set the status to Active.  Optional delay indicates number of
97    /// cycles to wait before beginning execution.
98    void activate(int delay = 1);
99
100    /// Set the status to Suspended.
101    void suspend();
102
103    /// Set the status to Unallocated.
104    void deallocate();
105
106    /// Set the status to Halted.
107    void halt();
108
109#ifdef FULL_SYSTEM
110  public:
111    KernelStats kernelStats;
112#endif
113
114  public:
115    RegFile regs;	// correct-path register context
116
117    // pointer to CPU associated with this context
118    BaseCPU *cpu;
119
120    // Index of hardware thread context on the CPU that this represents.
121    int thread_num;
122
123    // ID of this context w.r.t. the System or Process object to which
124    // it belongs.  For full-system mode, this is the system CPU ID.
125    int cpu_id;
126
127#ifdef FULL_SYSTEM
128
129    FunctionalMemory *mem;
130    AlphaItb *itb;
131    AlphaDtb *dtb;
132    System *system;
133
134    // the following two fields are redundant, since we can always
135    // look them up through the system pointer, but we'll leave them
136    // here for now for convenience
137    MemoryController *memCtrl;
138    PhysicalMemory *physmem;
139
140#ifdef FS_MEASURE
141    SWContext *swCtx;
142#endif
143
144#else
145    Process *process;
146
147    FunctionalMemory *mem;	// functional storage for process address space
148
149    // Address space ID.  Note that this is used for TIMING cache
150    // simulation only; all functional memory accesses should use
151    // one of the FunctionalMemory pointers above.
152    short asid;
153
154#endif
155
156
157    /*
158     * number of executed instructions, for matching with syscall trace
159     * points in EIO files.
160     */
161    Counter func_exe_insn;
162
163    //
164    // Count failed store conditionals so we can warn of apparent
165    // application deadlock situations.
166    unsigned storeCondFailures;
167
168    // constructor: initialize context from given process structure
169#ifdef FULL_SYSTEM
170    ExecContext(BaseCPU *_cpu, int _thread_num, System *_system,
171                AlphaItb *_itb, AlphaDtb *_dtb, FunctionalMemory *_dem);
172#else
173    ExecContext(BaseCPU *_cpu, int _thread_num, Process *_process, int _asid);
174    ExecContext(BaseCPU *_cpu, int _thread_num, FunctionalMemory *_mem,
175                int _asid);
176#endif
177    virtual ~ExecContext() {}
178
179    virtual void takeOverFrom(ExecContext *oldContext);
180
181    void regStats(const std::string &name);
182
183    void serialize(std::ostream &os);
184    void unserialize(Checkpoint *cp, const std::string &section);
185
186#ifdef FULL_SYSTEM
187    bool validInstAddr(Addr addr) { return true; }
188    bool validDataAddr(Addr addr) { return true; }
189    int getInstAsid() { return ITB_ASN_ASN(regs.ipr[TheISA::IPR_ITB_ASN]); }
190    int getDataAsid() { return DTB_ASN_ASN(regs.ipr[TheISA::IPR_DTB_ASN]); }
191
192    Fault translateInstReq(MemReqPtr req)
193    {
194        return itb->translate(req);
195    }
196
197    Fault translateDataReadReq(MemReqPtr req)
198    {
199        return dtb->translate(req, false);
200    }
201
202    Fault translateDataWriteReq(MemReqPtr req)
203    {
204        return dtb->translate(req, true);
205    }
206
207#else
208    bool validInstAddr(Addr addr)
209    { return process->validInstAddr(addr); }
210
211    bool validDataAddr(Addr addr)
212    { return process->validDataAddr(addr); }
213
214    int getInstAsid() { return asid; }
215    int getDataAsid() { return asid; }
216
217    Fault dummyTranslation(MemReqPtr req)
218    {
219#if 0
220        assert((req->vaddr >> 48 & 0xffff) == 0);
221#endif
222
223        // put the asid in the upper 16 bits of the paddr
224        req->paddr = req->vaddr & ~((Addr)0xffff << sizeof(Addr) * 8 - 16);
225        req->paddr = req->paddr | (Addr)req->asid << sizeof(Addr) * 8 - 16;
226        return No_Fault;
227    }
228    Fault translateInstReq(MemReqPtr req)
229    {
230        return dummyTranslation(req);
231    }
232    Fault translateDataReadReq(MemReqPtr req)
233    {
234        return dummyTranslation(req);
235    }
236    Fault translateDataWriteReq(MemReqPtr req)
237    {
238        return dummyTranslation(req);
239    }
240
241#endif
242
243    template <class T>
244    Fault read(MemReqPtr req, T& data)
245    {
246#if defined(TARGET_ALPHA) && defined(FULL_SYSTEM)
247        if (req->flags & LOCKED) {
248            MiscRegFile *cregs = &req->xc->regs.miscRegs;
249            cregs->lock_addr = req->paddr;
250            cregs->lock_flag = true;
251        }
252#endif
253        return mem->read(req, data);
254    }
255
256    template <class T>
257    Fault write(MemReqPtr req, T& data)
258    {
259#if defined(TARGET_ALPHA) && defined(FULL_SYSTEM)
260
261        MiscRegFile *cregs;
262
263        // If this is a store conditional, act appropriately
264        if (req->flags & LOCKED) {
265            cregs = &req->xc->regs.miscRegs;
266
267            if (req->flags & UNCACHEABLE) {
268                // Don't update result register (see stq_c in isa_desc)
269                req->result = 2;
270                req->xc->storeCondFailures = 0;//Needed? [RGD]
271            } else {
272                req->result = cregs->lock_flag;
273                if (!cregs->lock_flag ||
274                    ((cregs->lock_addr & ~0xf) != (req->paddr & ~0xf))) {
275                    cregs->lock_flag = false;
276                    if (((++req->xc->storeCondFailures) % 100000) == 0) {
277                        std::cerr << "Warning: "
278                                  << req->xc->storeCondFailures
279                                  << " consecutive store conditional failures "
280                                  << "on cpu " << req->xc->cpu_id
281                                  << std::endl;
282                    }
283                    return No_Fault;
284                }
285                else req->xc->storeCondFailures = 0;
286            }
287        }
288
289        // Need to clear any locked flags on other proccessors for
290        // this address.  Only do this for succsful Store Conditionals
291        // and all other stores (WH64?).  Unsuccessful Store
292        // Conditionals would have returned above, and wouldn't fall
293        // through.
294        for (int i = 0; i < system->execContexts.size(); i++){
295            cregs = &system->execContexts[i]->regs.miscRegs;
296            if ((cregs->lock_addr & ~0xf) == (req->paddr & ~0xf)) {
297                cregs->lock_flag = false;
298            }
299        }
300
301#endif
302        return mem->write(req, data);
303    }
304
305    virtual bool misspeculating();
306
307
308    //
309    // New accessors for new decoder.
310    //
311    uint64_t readIntReg(int reg_idx)
312    {
313        return regs.intRegFile[reg_idx];
314    }
315
316    float readFloatRegSingle(int reg_idx)
317    {
318        return (float)regs.floatRegFile.d[reg_idx];
319    }
320
321    double readFloatRegDouble(int reg_idx)
322    {
323        return regs.floatRegFile.d[reg_idx];
324    }
325
326    uint64_t readFloatRegInt(int reg_idx)
327    {
328        return regs.floatRegFile.q[reg_idx];
329    }
330
331    void setIntReg(int reg_idx, uint64_t val)
332    {
333        regs.intRegFile[reg_idx] = val;
334    }
335
336    void setFloatRegSingle(int reg_idx, float val)
337    {
338        regs.floatRegFile.d[reg_idx] = (double)val;
339    }
340
341    void setFloatRegDouble(int reg_idx, double val)
342    {
343        regs.floatRegFile.d[reg_idx] = val;
344    }
345
346    void setFloatRegInt(int reg_idx, uint64_t val)
347    {
348        regs.floatRegFile.q[reg_idx] = val;
349    }
350
351    uint64_t readPC()
352    {
353        return regs.pc;
354    }
355
356    void setNextPC(uint64_t val)
357    {
358        regs.npc = val;
359    }
360
361    uint64_t readUniq()
362    {
363        return regs.miscRegs.uniq;
364    }
365
366    void setUniq(uint64_t val)
367    {
368        regs.miscRegs.uniq = val;
369    }
370
371    uint64_t readFpcr()
372    {
373        return regs.miscRegs.fpcr;
374    }
375
376    void setFpcr(uint64_t val)
377    {
378        regs.miscRegs.fpcr = val;
379    }
380
381#ifdef FULL_SYSTEM
382    uint64_t readIpr(int idx, Fault &fault);
383    Fault setIpr(int idx, uint64_t val);
384    Fault hwrei();
385    void ev5_trap(Fault fault);
386    bool simPalCheck(int palFunc);
387#endif
388
389#ifndef FULL_SYSTEM
390    IntReg getSyscallArg(int i)
391    {
392        return regs.intRegFile[ArgumentReg0 + i];
393    }
394
395    // used to shift args for indirect syscall
396    void setSyscallArg(int i, IntReg val)
397    {
398        regs.intRegFile[ArgumentReg0 + i] = val;
399    }
400
401    void setSyscallReturn(int64_t return_value)
402    {
403        // check for error condition.  Alpha syscall convention is to
404        // indicate success/failure in reg a3 (r19) and put the
405        // return value itself in the standard return value reg (v0).
406        const int RegA3 = 19;	// only place this is used
407        if (return_value >= 0) {
408            // no error
409            regs.intRegFile[RegA3] = 0;
410            regs.intRegFile[ReturnValueReg] = return_value;
411        } else {
412            // got an error, return details
413            regs.intRegFile[RegA3] = (IntReg) -1;
414            regs.intRegFile[ReturnValueReg] = -return_value;
415        }
416    }
417
418    void syscall()
419    {
420        process->syscall(this);
421    }
422#endif
423};
424
425
426// for non-speculative execution context, spec_mode is always false
427inline bool
428ExecContext::misspeculating()
429{
430    return false;
431}
432
433#endif // __EXEC_CONTEXT_HH__
434