thread_context.hh revision 1917
1/*
2 * Copyright (c) 2001-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#ifndef __CPU_EXEC_CONTEXT_HH__
30#define __CPU_EXEC_CONTEXT_HH__
31
32#include "config/full_system.hh"
33#include "mem/functional/functional.hh"
34#include "mem/mem_req.hh"
35#include "sim/host.hh"
36#include "sim/serialize.hh"
37#include "targetarch/byte_swap.hh"
38
39// forward declaration: see functional_memory.hh
40class FunctionalMemory;
41class PhysicalMemory;
42class BaseCPU;
43
44#if FULL_SYSTEM
45
46#include "sim/system.hh"
47#include "targetarch/alpha_memory.hh"
48
49class FunctionProfile;
50class ProfileNode;
51class MemoryController;
52namespace Kernel { class Binning; class Statistics; }
53
54#else // !FULL_SYSTEM
55
56#include "sim/process.hh"
57
58#endif // FULL_SYSTEM
59
60//
61// The ExecContext object represents a functional context for
62// instruction execution.  It incorporates everything required for
63// architecture-level functional simulation of a single thread.
64//
65
66class ExecContext
67{
68  public:
69    enum Status
70    {
71        /// Initialized but not running yet.  All CPUs start in
72        /// this state, but most transition to Active on cycle 1.
73        /// In MP or SMT systems, non-primary contexts will stay
74        /// in this state until a thread is assigned to them.
75        Unallocated,
76
77        /// Running.  Instructions should be executed only when
78        /// the context is in this state.
79        Active,
80
81        /// Temporarily inactive.  Entered while waiting for
82        /// synchronization, etc.
83        Suspended,
84
85        /// Permanently shut down.  Entered when target executes
86        /// m5exit pseudo-instruction.  When all contexts enter
87        /// this state, the simulation will terminate.
88        Halted
89    };
90
91  private:
92    Status _status;
93
94  public:
95    Status status() const { return _status; }
96
97    /// Set the status to Active.  Optional delay indicates number of
98    /// cycles to wait before beginning execution.
99    void activate(int delay = 1);
100
101    /// Set the status to Suspended.
102    void suspend();
103
104    /// Set the status to Unallocated.
105    void deallocate();
106
107    /// Set the status to Halted.
108    void halt();
109
110  public:
111    RegFile regs;	// correct-path register context
112
113    // pointer to CPU associated with this context
114    BaseCPU *cpu;
115
116    // Current instruction
117    MachInst inst;
118
119    // Index of hardware thread context on the CPU that this represents.
120    int thread_num;
121
122    // ID of this context w.r.t. the System or Process object to which
123    // it belongs.  For full-system mode, this is the system CPU ID.
124    int cpu_id;
125
126#if FULL_SYSTEM
127    FunctionalMemory *mem;
128    AlphaITB *itb;
129    AlphaDTB *dtb;
130    System *system;
131
132    // the following two fields are redundant, since we can always
133    // look them up through the system pointer, but we'll leave them
134    // here for now for convenience
135    MemoryController *memctrl;
136    PhysicalMemory *physmem;
137
138    Kernel::Binning *kernelBinning;
139    Kernel::Statistics *kernelStats;
140    bool bin;
141    bool fnbin;
142
143    FunctionProfile *profile;
144    ProfileNode *profileNode;
145    Addr profilePC;
146    void dumpFuncProfile();
147
148#else
149    Process *process;
150
151    FunctionalMemory *mem;	// functional storage for process address space
152
153    // Address space ID.  Note that this is used for TIMING cache
154    // simulation only; all functional memory accesses should use
155    // one of the FunctionalMemory pointers above.
156    short asid;
157
158#endif
159
160    /**
161     * Temporary storage to pass the source address from copy_load to
162     * copy_store.
163     * @todo Remove this temporary when we have a better way to do it.
164     */
165    Addr copySrcAddr;
166    /**
167     * Temp storage for the physical source address of a copy.
168     * @todo Remove this temporary when we have a better way to do it.
169     */
170    Addr copySrcPhysAddr;
171
172
173    /*
174     * number of executed instructions, for matching with syscall trace
175     * points in EIO files.
176     */
177    Counter func_exe_inst;
178
179    //
180    // Count failed store conditionals so we can warn of apparent
181    // application deadlock situations.
182    unsigned storeCondFailures;
183
184    // constructor: initialize context from given process structure
185#if FULL_SYSTEM
186    ExecContext(BaseCPU *_cpu, int _thread_num, System *_system,
187                AlphaITB *_itb, AlphaDTB *_dtb, FunctionalMemory *_dem);
188#else
189    ExecContext(BaseCPU *_cpu, int _thread_num, Process *_process, int _asid);
190    ExecContext(BaseCPU *_cpu, int _thread_num, FunctionalMemory *_mem,
191                int _asid);
192#endif
193    virtual ~ExecContext();
194
195    virtual void takeOverFrom(ExecContext *oldContext);
196
197    void regStats(const std::string &name);
198
199    void serialize(std::ostream &os);
200    void unserialize(Checkpoint *cp, const std::string &section);
201
202#if FULL_SYSTEM
203    bool validInstAddr(Addr addr) { return true; }
204    bool validDataAddr(Addr addr) { return true; }
205    int getInstAsid() { return regs.instAsid(); }
206    int getDataAsid() { return regs.dataAsid(); }
207
208    Fault translateInstReq(MemReqPtr &req)
209    {
210        return itb->translate(req);
211    }
212
213    Fault translateDataReadReq(MemReqPtr &req)
214    {
215        return dtb->translate(req, false);
216    }
217
218    Fault translateDataWriteReq(MemReqPtr &req)
219    {
220        return dtb->translate(req, true);
221    }
222
223#else
224    bool validInstAddr(Addr addr)
225    { return process->validInstAddr(addr); }
226
227    bool validDataAddr(Addr addr)
228    { return process->validDataAddr(addr); }
229
230    int getInstAsid() { return asid; }
231    int getDataAsid() { return asid; }
232
233    Fault dummyTranslation(MemReqPtr &req)
234    {
235#if 0
236        assert((req->vaddr >> 48 & 0xffff) == 0);
237#endif
238
239        // put the asid in the upper 16 bits of the paddr
240        req->paddr = req->vaddr & ~((Addr)0xffff << sizeof(Addr) * 8 - 16);
241        req->paddr = req->paddr | (Addr)req->asid << sizeof(Addr) * 8 - 16;
242        return No_Fault;
243    }
244    Fault translateInstReq(MemReqPtr &req)
245    {
246        return dummyTranslation(req);
247    }
248    Fault translateDataReadReq(MemReqPtr &req)
249    {
250        return dummyTranslation(req);
251    }
252    Fault translateDataWriteReq(MemReqPtr &req)
253    {
254        return dummyTranslation(req);
255    }
256
257#endif
258
259    template <class T>
260    Fault read(MemReqPtr &req, T &data)
261    {
262#if FULL_SYSTEM && defined(TARGET_ALPHA)
263        if (req->flags & LOCKED) {
264            MiscRegFile *cregs = &req->xc->regs.miscRegs;
265            cregs->lock_addr = req->paddr;
266            cregs->lock_flag = true;
267        }
268#endif
269
270        Fault error;
271        error = mem->read(req, data);
272        data = gtoh(data);
273        return error;
274    }
275
276    template <class T>
277    Fault write(MemReqPtr &req, T &data)
278    {
279#if FULL_SYSTEM && defined(TARGET_ALPHA)
280
281        MiscRegFile *cregs;
282
283        // If this is a store conditional, act appropriately
284        if (req->flags & LOCKED) {
285            cregs = &req->xc->regs.miscRegs;
286
287            if (req->flags & UNCACHEABLE) {
288                // Don't update result register (see stq_c in isa_desc)
289                req->result = 2;
290                req->xc->storeCondFailures = 0;//Needed? [RGD]
291            } else {
292                req->result = cregs->lock_flag;
293                if (!cregs->lock_flag ||
294                    ((cregs->lock_addr & ~0xf) != (req->paddr & ~0xf))) {
295                    cregs->lock_flag = false;
296                    if (((++req->xc->storeCondFailures) % 100000) == 0) {
297                        std::cerr << "Warning: "
298                                  << req->xc->storeCondFailures
299                                  << " consecutive store conditional failures "
300                                  << "on cpu " << req->xc->cpu_id
301                                  << std::endl;
302                    }
303                    return No_Fault;
304                }
305                else req->xc->storeCondFailures = 0;
306            }
307        }
308
309        // Need to clear any locked flags on other proccessors for
310        // this address.  Only do this for succsful Store Conditionals
311        // and all other stores (WH64?).  Unsuccessful Store
312        // Conditionals would have returned above, and wouldn't fall
313        // through.
314        for (int i = 0; i < system->execContexts.size(); i++){
315            cregs = &system->execContexts[i]->regs.miscRegs;
316            if ((cregs->lock_addr & ~0xf) == (req->paddr & ~0xf)) {
317                cregs->lock_flag = false;
318            }
319        }
320
321#endif
322        return mem->write(req, (T)htog(data));
323    }
324
325    virtual bool misspeculating();
326
327
328    MachInst getInst() { return inst; }
329
330    void setInst(MachInst new_inst)
331    {
332        inst = new_inst;
333    }
334
335    Fault instRead(MemReqPtr &req)
336    {
337        return mem->read(req, inst);
338    }
339
340    //
341    // New accessors for new decoder.
342    //
343    uint64_t readIntReg(int reg_idx)
344    {
345        return regs.intRegFile[reg_idx];
346    }
347
348    float readFloatRegSingle(int reg_idx)
349    {
350        return (float)regs.floatRegFile.d[reg_idx];
351    }
352
353    double readFloatRegDouble(int reg_idx)
354    {
355        return regs.floatRegFile.d[reg_idx];
356    }
357
358    uint64_t readFloatRegInt(int reg_idx)
359    {
360        return regs.floatRegFile.q[reg_idx];
361    }
362
363    void setIntReg(int reg_idx, uint64_t val)
364    {
365        regs.intRegFile[reg_idx] = val;
366    }
367
368    void setFloatRegSingle(int reg_idx, float val)
369    {
370        regs.floatRegFile.d[reg_idx] = (double)val;
371    }
372
373    void setFloatRegDouble(int reg_idx, double val)
374    {
375        regs.floatRegFile.d[reg_idx] = val;
376    }
377
378    void setFloatRegInt(int reg_idx, uint64_t val)
379    {
380        regs.floatRegFile.q[reg_idx] = val;
381    }
382
383    uint64_t readPC()
384    {
385        return regs.pc;
386    }
387
388    void setNextPC(uint64_t val)
389    {
390        regs.npc = val;
391    }
392
393    uint64_t readUniq()
394    {
395        return regs.miscRegs.uniq;
396    }
397
398    void setUniq(uint64_t val)
399    {
400        regs.miscRegs.uniq = val;
401    }
402
403    uint64_t readFpcr()
404    {
405        return regs.miscRegs.fpcr;
406    }
407
408    void setFpcr(uint64_t val)
409    {
410        regs.miscRegs.fpcr = val;
411    }
412
413#if FULL_SYSTEM
414    uint64_t readIpr(int idx, Fault &fault);
415    Fault setIpr(int idx, uint64_t val);
416    int readIntrFlag() { return regs.intrflag; }
417    void setIntrFlag(int val) { regs.intrflag = val; }
418    Fault hwrei();
419    bool inPalMode() { return AlphaISA::PcPAL(regs.pc); }
420    void ev5_trap(Fault fault);
421    bool simPalCheck(int palFunc);
422#endif
423
424    /** Meant to be more generic trap function to be
425     *  called when an instruction faults.
426     *  @param fault The fault generated by executing the instruction.
427     *  @todo How to do this properly so it's dependent upon ISA only?
428     */
429
430    void trap(Fault fault);
431
432#if !FULL_SYSTEM
433    IntReg getSyscallArg(int i)
434    {
435        return regs.intRegFile[ArgumentReg0 + i];
436    }
437
438    // used to shift args for indirect syscall
439    void setSyscallArg(int i, IntReg val)
440    {
441        regs.intRegFile[ArgumentReg0 + i] = val;
442    }
443
444    void setSyscallReturn(SyscallReturn return_value)
445    {
446        // check for error condition.  Alpha syscall convention is to
447        // indicate success/failure in reg a3 (r19) and put the
448        // return value itself in the standard return value reg (v0).
449        const int RegA3 = 19;	// only place this is used
450        if (return_value.successful()) {
451            // no error
452            regs.intRegFile[RegA3] = 0;
453            regs.intRegFile[ReturnValueReg] = return_value.value();
454        } else {
455            // got an error, return details
456            regs.intRegFile[RegA3] = (IntReg) -1;
457            regs.intRegFile[ReturnValueReg] = -return_value.value();
458        }
459    }
460
461    void syscall()
462    {
463        process->syscall(this);
464    }
465#endif
466};
467
468
469// for non-speculative execution context, spec_mode is always false
470inline bool
471ExecContext::misspeculating()
472{
473    return false;
474}
475
476#endif // __CPU_EXEC_CONTEXT_HH__
477