static_inst.hh revision 6216:2f4020838149
111680SN/A/*
211680SN/A * Copyright (c) 2003-2005 The Regents of The University of Michigan
38721SN/A * All rights reserved.
48721SN/A *
56928SN/A * Redistribution and use in source and binary forms, with or without
611680SN/A * modification, are permitted provided that the following conditions are
711680SN/A * met: redistributions of source code must retain the above copyright
811680SN/A * notice, this list of conditions and the following disclaimer;
911680SN/A * redistributions in binary form must reproduce the above copyright
1011023SN/A * notice, this list of conditions and the following disclaimer in the
116928SN/A * documentation and/or other materials provided with the distribution;
126928SN/A * neither the name of the copyright holders nor the names of its
1311680SN/A * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#ifndef __CPU_STATIC_INST_HH__
32#define __CPU_STATIC_INST_HH__
33
34#include <bitset>
35#include <string>
36
37#include "arch/isa_traits.hh"
38#include "arch/utility.hh"
39#include "base/bitfield.hh"
40#include "base/hashmap.hh"
41#include "base/misc.hh"
42#include "base/refcnt.hh"
43#include "base/types.hh"
44#include "cpu/op_class.hh"
45#include "sim/faults.hh"
46#include "sim/faults.hh"
47
48// forward declarations
49struct AlphaSimpleImpl;
50struct OzoneImpl;
51struct SimpleImpl;
52class ThreadContext;
53class DynInst;
54class Packet;
55
56class O3CPUImpl;
57template <class Impl> class BaseO3DynInst;
58typedef BaseO3DynInst<O3CPUImpl> O3DynInst;
59template <class Impl> class OzoneDynInst;
60class InOrderDynInst;
61
62class CheckerCPU;
63class FastCPU;
64class AtomicSimpleCPU;
65class TimingSimpleCPU;
66class InorderCPU;
67class SymbolTable;
68class AddrDecodePage;
69
70namespace Trace {
71    class InstRecord;
72}
73
74typedef uint16_t MicroPC;
75
76static const MicroPC MicroPCRomBit = 1 << (sizeof(MicroPC) * 8 - 1);
77
78static inline MicroPC
79romMicroPC(MicroPC upc)
80{
81    return upc | MicroPCRomBit;
82}
83
84static inline MicroPC
85normalMicroPC(MicroPC upc)
86{
87    return upc & ~MicroPCRomBit;
88}
89
90static inline bool
91isRomMicroPC(MicroPC upc)
92{
93    return MicroPCRomBit & upc;
94}
95
96/**
97 * Base, ISA-independent static instruction class.
98 *
99 * The main component of this class is the vector of flags and the
100 * associated methods for reading them.  Any object that can rely
101 * solely on these flags can process instructions without being
102 * recompiled for multiple ISAs.
103 */
104class StaticInstBase : public RefCounted
105{
106  protected:
107
108    /// Set of boolean static instruction properties.
109    ///
110    /// Notes:
111    /// - The IsInteger and IsFloating flags are based on the class of
112    /// registers accessed by the instruction.  Although most
113    /// instructions will have exactly one of these two flags set, it
114    /// is possible for an instruction to have neither (e.g., direct
115    /// unconditional branches, memory barriers) or both (e.g., an
116    /// FP/int conversion).
117    /// - If IsMemRef is set, then exactly one of IsLoad or IsStore
118    /// will be set.
119    /// - If IsControl is set, then exactly one of IsDirectControl or
120    /// IsIndirect Control will be set, and exactly one of
121    /// IsCondControl or IsUncondControl will be set.
122    /// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
123    /// implemented as flags since in the current model there's no
124    /// other way for instructions to inject behavior into the
125    /// pipeline outside of fetch.  Once we go to an exec-in-exec CPU
126    /// model we should be able to get rid of these flags and
127    /// implement this behavior via the execute() methods.
128    ///
129    enum Flags {
130        IsNop,          ///< Is a no-op (no effect at all).
131
132        IsInteger,      ///< References integer regs.
133        IsFloating,     ///< References FP regs.
134
135        IsMemRef,       ///< References memory (load, store, or prefetch).
136        IsLoad,         ///< Reads from memory (load or prefetch).
137        IsStore,        ///< Writes to memory.
138        IsStoreConditional,    ///< Store conditional instruction.
139        IsIndexed,      ///< Accesses memory with an indexed address computation
140        IsInstPrefetch, ///< Instruction-cache prefetch.
141        IsDataPrefetch, ///< Data-cache prefetch.
142        IsCopy,         ///< Fast Cache block copy
143
144        IsControl,              ///< Control transfer instruction.
145        IsDirectControl,        ///< PC relative control transfer.
146        IsIndirectControl,      ///< Register indirect control transfer.
147        IsCondControl,          ///< Conditional control transfer.
148        IsUncondControl,        ///< Unconditional control transfer.
149        IsCall,                 ///< Subroutine call.
150        IsReturn,               ///< Subroutine return.
151
152        IsCondDelaySlot,///< Conditional Delay-Slot Instruction
153
154        IsThreadSync,   ///< Thread synchronization operation.
155
156        IsSerializing,  ///< Serializes pipeline: won't execute until all
157                        /// older instructions have committed.
158        IsSerializeBefore,
159        IsSerializeAfter,
160        IsMemBarrier,   ///< Is a memory barrier
161        IsWriteBarrier, ///< Is a write barrier
162        IsReadBarrier,  ///< Is a read barrier
163        IsERET, /// <- Causes the IFU to stall (MIPS ISA)
164
165        IsNonSpeculative, ///< Should not be executed speculatively
166        IsQuiesce,      ///< Is a quiesce instruction
167
168        IsIprAccess,    ///< Accesses IPRs
169        IsUnverifiable, ///< Can't be verified by a checker
170
171        IsSyscall,      ///< Causes a system call to be emulated in syscall
172                        /// emulation mode.
173
174        //Flags for microcode
175        IsMacroop,      ///< Is a macroop containing microops
176        IsMicroop,      ///< Is a microop
177        IsDelayedCommit,        ///< This microop doesn't commit right away
178        IsLastMicroop,  ///< This microop ends a microop sequence
179        IsFirstMicroop, ///< This microop begins a microop sequence
180        //This flag doesn't do anything yet
181        IsMicroBranch,  ///< This microop branches within the microcode for a macroop
182        IsDspOp,
183
184        NumFlags
185    };
186
187    /// Flag values for this instruction.
188    std::bitset<NumFlags> flags;
189
190    /// See opClass().
191    OpClass _opClass;
192
193    /// See numSrcRegs().
194    int8_t _numSrcRegs;
195
196    /// See numDestRegs().
197    int8_t _numDestRegs;
198
199    /// The following are used to track physical register usage
200    /// for machines with separate int & FP reg files.
201    //@{
202    int8_t _numFPDestRegs;
203    int8_t _numIntDestRegs;
204    //@}
205
206    /// Constructor.
207    /// It's important to initialize everything here to a sane
208    /// default, since the decoder generally only overrides
209    /// the fields that are meaningful for the particular
210    /// instruction.
211    StaticInstBase(OpClass __opClass)
212        : _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
213          _numFPDestRegs(0), _numIntDestRegs(0)
214    {
215    }
216
217  public:
218
219    /// @name Register information.
220    /// The sum of numFPDestRegs() and numIntDestRegs() equals
221    /// numDestRegs().  The former two functions are used to track
222    /// physical register usage for machines with separate int & FP
223    /// reg files.
224    //@{
225    /// Number of source registers.
226    int8_t numSrcRegs()  const { return _numSrcRegs; }
227    /// Number of destination registers.
228    int8_t numDestRegs() const { return _numDestRegs; }
229    /// Number of floating-point destination regs.
230    int8_t numFPDestRegs()  const { return _numFPDestRegs; }
231    /// Number of integer destination regs.
232    int8_t numIntDestRegs() const { return _numIntDestRegs; }
233    //@}
234
235    /// @name Flag accessors.
236    /// These functions are used to access the values of the various
237    /// instruction property flags.  See StaticInstBase::Flags for descriptions
238    /// of the individual flags.
239    //@{
240
241    bool isNop()          const { return flags[IsNop]; }
242
243    bool isMemRef()       const { return flags[IsMemRef]; }
244    bool isLoad()         const { return flags[IsLoad]; }
245    bool isStore()        const { return flags[IsStore]; }
246    bool isStoreConditional()     const { return flags[IsStoreConditional]; }
247    bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
248    bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
249    bool isCopy()         const { return flags[IsCopy];}
250
251    bool isInteger()      const { return flags[IsInteger]; }
252    bool isFloating()     const { return flags[IsFloating]; }
253
254    bool isControl()      const { return flags[IsControl]; }
255    bool isCall()         const { return flags[IsCall]; }
256    bool isReturn()       const { return flags[IsReturn]; }
257    bool isDirectCtrl()   const { return flags[IsDirectControl]; }
258    bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
259    bool isCondCtrl()     const { return flags[IsCondControl]; }
260    bool isUncondCtrl()   const { return flags[IsUncondControl]; }
261    bool isCondDelaySlot() const { return flags[IsCondDelaySlot]; }
262
263    bool isThreadSync()   const { return flags[IsThreadSync]; }
264    bool isSerializing()  const { return flags[IsSerializing] ||
265                                      flags[IsSerializeBefore] ||
266                                      flags[IsSerializeAfter]; }
267    bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
268    bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
269    bool isMemBarrier()   const { return flags[IsMemBarrier]; }
270    bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
271    bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
272    bool isQuiesce() const { return flags[IsQuiesce]; }
273    bool isIprAccess() const { return flags[IsIprAccess]; }
274    bool isUnverifiable() const { return flags[IsUnverifiable]; }
275    bool isSyscall() const { return flags[IsSyscall]; }
276    bool isMacroop() const { return flags[IsMacroop]; }
277    bool isMicroop() const { return flags[IsMicroop]; }
278    bool isDelayedCommit() const { return flags[IsDelayedCommit]; }
279    bool isLastMicroop() const { return flags[IsLastMicroop]; }
280    bool isFirstMicroop() const { return flags[IsFirstMicroop]; }
281    //This flag doesn't do anything yet
282    bool isMicroBranch() const { return flags[IsMicroBranch]; }
283    //@}
284
285    void setLastMicroop() { flags[IsLastMicroop] = true; }
286    /// Operation class.  Used to select appropriate function unit in issue.
287    OpClass opClass()     const { return _opClass; }
288};
289
290
291// forward declaration
292class StaticInstPtr;
293
294/**
295 * Generic yet ISA-dependent static instruction class.
296 *
297 * This class builds on StaticInstBase, defining fields and interfaces
298 * that are generic across all ISAs but that differ in details
299 * according to the specific ISA being used.
300 */
301class StaticInst : public StaticInstBase
302{
303  public:
304
305    /// Binary machine instruction type.
306    typedef TheISA::MachInst MachInst;
307    /// Binary extended machine instruction type.
308    typedef TheISA::ExtMachInst ExtMachInst;
309    /// Logical register index type.
310    typedef TheISA::RegIndex RegIndex;
311
312    enum {
313        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        //< Max source regs
314        MaxInstDestRegs = TheISA::MaxInstDestRegs,      //< Max dest regs
315    };
316
317
318    /// Return logical index (architectural reg num) of i'th destination reg.
319    /// Only the entries from 0 through numDestRegs()-1 are valid.
320    RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
321
322    /// Return logical index (architectural reg num) of i'th source reg.
323    /// Only the entries from 0 through numSrcRegs()-1 are valid.
324    RegIndex srcRegIdx(int i)  const { return _srcRegIdx[i]; }
325
326    /// Pointer to a statically allocated "null" instruction object.
327    /// Used to give eaCompInst() and memAccInst() something to return
328    /// when called on non-memory instructions.
329    static StaticInstPtr nullStaticInstPtr;
330
331    /**
332     * Memory references only: returns "fake" instruction representing
333     * the effective address part of the memory operation.  Used to
334     * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
335     * just the EA computation.
336     */
337    virtual const
338    StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
339
340    /**
341     * Memory references only: returns "fake" instruction representing
342     * the memory access part of the memory operation.  Used to
343     * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
344     * just the memory access (not the EA computation).
345     */
346    virtual const
347    StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
348
349    /// The binary machine instruction.
350    const ExtMachInst machInst;
351
352  protected:
353
354    /// See destRegIdx().
355    RegIndex _destRegIdx[MaxInstDestRegs];
356    /// See srcRegIdx().
357    RegIndex _srcRegIdx[MaxInstSrcRegs];
358
359    /**
360     * Base mnemonic (e.g., "add").  Used by generateDisassembly()
361     * methods.  Also useful to readily identify instructions from
362     * within the debugger when #cachedDisassembly has not been
363     * initialized.
364     */
365    const char *mnemonic;
366
367    /**
368     * String representation of disassembly (lazily evaluated via
369     * disassemble()).
370     */
371    mutable std::string *cachedDisassembly;
372
373    /**
374     * Internal function to generate disassembly string.
375     */
376    virtual std::string
377    generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
378
379    /// Constructor.
380    StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
381        : StaticInstBase(__opClass),
382          machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
383    { }
384
385  public:
386    virtual ~StaticInst();
387
388/**
389 * The execute() signatures are auto-generated by scons based on the
390 * set of CPU models we are compiling in today.
391 */
392#include "cpu/static_inst_exec_sigs.hh"
393
394    /**
395     * Return the microop that goes with a particular micropc. This should
396     * only be defined/used in macroops which will contain microops
397     */
398    virtual StaticInstPtr fetchMicroop(MicroPC micropc);
399
400    /**
401     * Return the target address for a PC-relative branch.
402     * Invalid if not a PC-relative branch (i.e. isDirectCtrl()
403     * should be true).
404     */
405    virtual Addr branchTarget(Addr branchPC) const;
406
407    /**
408     * Return the target address for an indirect branch (jump).  The
409     * register value is read from the supplied thread context, so
410     * the result is valid only if the thread context is about to
411     * execute the branch in question.  Invalid if not an indirect
412     * branch (i.e. isIndirectCtrl() should be true).
413     */
414    virtual Addr branchTarget(ThreadContext *tc) const;
415
416    /**
417     * Return true if the instruction is a control transfer, and if so,
418     * return the target address as well.
419     */
420    bool hasBranchTarget(Addr pc, ThreadContext *tc, Addr &tgt) const;
421
422    /**
423     * Return string representation of disassembled instruction.
424     * The default version of this function will call the internal
425     * virtual generateDisassembly() function to get the string,
426     * then cache it in #cachedDisassembly.  If the disassembly
427     * should not be cached, this function should be overridden directly.
428     */
429    virtual const std::string &disassemble(Addr pc,
430        const SymbolTable *symtab = 0) const;
431
432    /// Decoded instruction cache type.
433    /// For now we're using a generic hash_map; this seems to work
434    /// pretty well.
435    typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
436
437    /// A cache of decoded instruction objects.
438    static DecodeCache decodeCache;
439
440    /**
441     * Dump some basic stats on the decode cache hash map.
442     * Only gets called if DECODE_CACHE_HASH_STATS is defined.
443     */
444    static void dumpDecodeCacheStats();
445
446    /// Decode a machine instruction.
447    /// @param mach_inst The binary instruction to decode.
448    /// @retval A pointer to the corresponding StaticInst object.
449    //This is defined as inlined below.
450    static StaticInstPtr decode(ExtMachInst mach_inst, Addr addr);
451
452    /// Return name of machine instruction
453    std::string getName() { return mnemonic; }
454
455    /// Decoded instruction cache type, for address decoding.
456    /// A generic hash_map is used.
457    typedef m5::hash_map<Addr, AddrDecodePage *> AddrDecodeCache;
458
459    /// A cache of decoded instruction objects from addresses.
460    static AddrDecodeCache addrDecodeCache;
461
462    struct cacheElement
463    {
464        Addr page_addr;
465        AddrDecodePage *decodePage;
466
467        cacheElement() : decodePage(NULL) { }
468    };
469
470    /// An array of recently decoded instructions.
471    // might not use an array if there is only two elements
472    static struct cacheElement recentDecodes[2];
473
474    /// Updates the recently decoded instructions entries
475    /// @param page_addr The page address recently used.
476    /// @param decodePage Pointer to decoding page containing the decoded
477    ///                   instruction.
478    static inline void
479    updateCache(Addr page_addr, AddrDecodePage *decodePage)
480    {
481        recentDecodes[1].page_addr = recentDecodes[0].page_addr;
482        recentDecodes[1].decodePage = recentDecodes[0].decodePage;
483        recentDecodes[0].page_addr = page_addr;
484        recentDecodes[0].decodePage = decodePage;
485    }
486
487    /// Searches the decoded instruction cache for instruction decoding.
488    /// If it is not found, then we decode the instruction.
489    /// Otherwise, we get the instruction from the cache and move it into
490    /// the address-to-instruction decoding page.
491    /// @param mach_inst The binary instruction to decode.
492    /// @param addr The address that contained the binary instruction.
493    /// @param decodePage Pointer to decoding page containing the instruction.
494    /// @retval A pointer to the corresponding StaticInst object.
495    //This is defined as inlined below.
496    static StaticInstPtr searchCache(ExtMachInst mach_inst, Addr addr,
497                                     AddrDecodePage *decodePage);
498};
499
500typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
501
502/// Reference-counted pointer to a StaticInst object.
503/// This type should be used instead of "StaticInst *" so that
504/// StaticInst objects can be properly reference-counted.
505class StaticInstPtr : public RefCountingPtr<StaticInst>
506{
507  public:
508    /// Constructor.
509    StaticInstPtr()
510        : RefCountingPtr<StaticInst>()
511    {
512    }
513
514    /// Conversion from "StaticInst *".
515    StaticInstPtr(StaticInst *p)
516        : RefCountingPtr<StaticInst>(p)
517    {
518    }
519
520    /// Copy constructor.
521    StaticInstPtr(const StaticInstPtr &r)
522        : RefCountingPtr<StaticInst>(r)
523    {
524    }
525
526    /// Construct directly from machine instruction.
527    /// Calls StaticInst::decode().
528    explicit StaticInstPtr(TheISA::ExtMachInst mach_inst, Addr addr)
529        : RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst, addr))
530    {
531    }
532
533    /// Convert to pointer to StaticInstBase class.
534    operator const StaticInstBasePtr()
535    {
536        return this->get();
537    }
538};
539
540/// A page of a list of decoded instructions from an address.
541class AddrDecodePage
542{
543  typedef TheISA::ExtMachInst ExtMachInst;
544  protected:
545    StaticInstPtr instructions[TheISA::PageBytes];
546    bool valid[TheISA::PageBytes];
547    Addr lowerMask;
548
549  public:
550    /// Constructor
551    AddrDecodePage()
552    {
553        lowerMask = TheISA::PageBytes - 1;
554        memset(valid, 0, TheISA::PageBytes);
555    }
556
557    /// Checks if the instruction is already decoded and the machine
558    /// instruction in the cache matches the current machine instruction
559    /// related to the address
560    /// @param mach_inst The binary instruction to check
561    /// @param addr The address containing the instruction
562    bool
563    decoded(ExtMachInst mach_inst, Addr addr)
564    {
565        return (valid[addr & lowerMask] &&
566                (instructions[addr & lowerMask]->machInst == mach_inst));
567    }
568
569    /// Returns the instruction object. decoded should be called first
570    /// to check if the instruction is valid.
571    /// @param addr The address of the instruction.
572    /// @retval A pointer to the corresponding StaticInst object.
573    StaticInstPtr
574    getInst(Addr addr)
575    {
576        return instructions[addr & lowerMask];
577    }
578
579    /// Inserts a pointer to a StaticInst object into the list of decoded
580    /// instructions on the page.
581    /// @param addr The address of the instruction.
582    /// @param si A pointer to the corresponding StaticInst object.
583    void
584    insert(Addr addr, StaticInstPtr &si)
585    {
586        instructions[addr & lowerMask] = si;
587        valid[addr & lowerMask] = true;
588    }
589};
590
591
592inline StaticInstPtr
593StaticInst::decode(StaticInst::ExtMachInst mach_inst, Addr addr)
594{
595#ifdef DECODE_CACHE_HASH_STATS
596    // Simple stats on decode hash_map.  Turns out the default
597    // hash function is as good as anything I could come up with.
598    const int dump_every_n = 10000000;
599    static int decodes_til_dump = dump_every_n;
600
601    if (--decodes_til_dump == 0) {
602        dumpDecodeCacheStats();
603        decodes_til_dump = dump_every_n;
604    }
605#endif
606
607    Addr page_addr = addr & ~(TheISA::PageBytes - 1);
608
609    // checks recently decoded addresses
610    if (recentDecodes[0].decodePage &&
611        page_addr == recentDecodes[0].page_addr) {
612        if (recentDecodes[0].decodePage->decoded(mach_inst, addr))
613            return recentDecodes[0].decodePage->getInst(addr);
614
615        return searchCache(mach_inst, addr, recentDecodes[0].decodePage);
616    }
617
618    if (recentDecodes[1].decodePage &&
619        page_addr == recentDecodes[1].page_addr) {
620        if (recentDecodes[1].decodePage->decoded(mach_inst, addr))
621            return recentDecodes[1].decodePage->getInst(addr);
622
623        return searchCache(mach_inst, addr, recentDecodes[1].decodePage);
624    }
625
626    // searches the page containing the address to decode
627    AddrDecodeCache::iterator iter = addrDecodeCache.find(page_addr);
628    if (iter != addrDecodeCache.end()) {
629        updateCache(page_addr, iter->second);
630        if (iter->second->decoded(mach_inst, addr))
631            return iter->second->getInst(addr);
632
633        return searchCache(mach_inst, addr, iter->second);
634    }
635
636    // creates a new object for a page of decoded instructions
637    AddrDecodePage *decodePage = new AddrDecodePage;
638    addrDecodeCache[page_addr] = decodePage;
639    updateCache(page_addr, decodePage);
640    return searchCache(mach_inst, addr, decodePage);
641}
642
643inline StaticInstPtr
644StaticInst::searchCache(ExtMachInst mach_inst, Addr addr,
645                        AddrDecodePage *decodePage)
646{
647    DecodeCache::iterator iter = decodeCache.find(mach_inst);
648    if (iter != decodeCache.end()) {
649        decodePage->insert(addr, iter->second);
650        return iter->second;
651    }
652
653    StaticInstPtr si = TheISA::decodeInst(mach_inst);
654    decodePage->insert(addr, si);
655    decodeCache[mach_inst] = si;
656    return si;
657}
658
659#endif // __CPU_STATIC_INST_HH__
660