static_inst.hh revision 5865:54ed46881217
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#ifndef __CPU_STATIC_INST_HH__
32#define __CPU_STATIC_INST_HH__
33
34#include <bitset>
35#include <string>
36
37#include "arch/isa_traits.hh"
38#include "arch/utility.hh"
39#include "sim/faults.hh"
40#include "base/bitfield.hh"
41#include "base/hashmap.hh"
42#include "base/misc.hh"
43#include "base/refcnt.hh"
44#include "cpu/op_class.hh"
45#include "sim/faults.hh"
46#include "sim/host.hh"
47
48// forward declarations
49struct AlphaSimpleImpl;
50struct OzoneImpl;
51struct SimpleImpl;
52class ThreadContext;
53class DynInst;
54class Packet;
55
56class O3CPUImpl;
57template <class Impl> class BaseO3DynInst;
58typedef BaseO3DynInst<O3CPUImpl> O3DynInst;
59template <class Impl> class OzoneDynInst;
60class InOrderDynInst;
61
62class CheckerCPU;
63class FastCPU;
64class AtomicSimpleCPU;
65class TimingSimpleCPU;
66class InorderCPU;
67class SymbolTable;
68class AddrDecodePage;
69
70namespace Trace {
71    class InstRecord;
72}
73
74typedef uint16_t MicroPC;
75
76static const MicroPC MicroPCRomBit = 1 << (sizeof(MicroPC) * 8 - 1);
77
78static inline MicroPC
79romMicroPC(MicroPC upc)
80{
81    return upc | MicroPCRomBit;
82}
83
84static inline MicroPC
85normalMicroPC(MicroPC upc)
86{
87    return upc & ~MicroPCRomBit;
88}
89
90static inline bool
91isRomMicroPC(MicroPC upc)
92{
93    return MicroPCRomBit & upc;
94}
95
96/**
97 * Base, ISA-independent static instruction class.
98 *
99 * The main component of this class is the vector of flags and the
100 * associated methods for reading them.  Any object that can rely
101 * solely on these flags can process instructions without being
102 * recompiled for multiple ISAs.
103 */
104class StaticInstBase : public RefCounted
105{
106  protected:
107
108    /// Set of boolean static instruction properties.
109    ///
110    /// Notes:
111    /// - The IsInteger and IsFloating flags are based on the class of
112    /// registers accessed by the instruction.  Although most
113    /// instructions will have exactly one of these two flags set, it
114    /// is possible for an instruction to have neither (e.g., direct
115    /// unconditional branches, memory barriers) or both (e.g., an
116    /// FP/int conversion).
117    /// - If IsMemRef is set, then exactly one of IsLoad or IsStore
118    /// will be set.
119    /// - If IsControl is set, then exactly one of IsDirectControl or
120    /// IsIndirect Control will be set, and exactly one of
121    /// IsCondControl or IsUncondControl will be set.
122    /// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
123    /// implemented as flags since in the current model there's no
124    /// other way for instructions to inject behavior into the
125    /// pipeline outside of fetch.  Once we go to an exec-in-exec CPU
126    /// model we should be able to get rid of these flags and
127    /// implement this behavior via the execute() methods.
128    ///
129    enum Flags {
130        IsNop,          ///< Is a no-op (no effect at all).
131
132        IsInteger,      ///< References integer regs.
133        IsFloating,     ///< References FP regs.
134
135        IsMemRef,       ///< References memory (load, store, or prefetch).
136        IsLoad,         ///< Reads from memory (load or prefetch).
137        IsStore,        ///< Writes to memory.
138        IsStoreConditional,    ///< Store conditional instruction.
139        IsIndexed,      ///< Accesses memory with an indexed address computation
140        IsInstPrefetch, ///< Instruction-cache prefetch.
141        IsDataPrefetch, ///< Data-cache prefetch.
142        IsCopy,         ///< Fast Cache block copy
143
144        IsControl,              ///< Control transfer instruction.
145        IsDirectControl,        ///< PC relative control transfer.
146        IsIndirectControl,      ///< Register indirect control transfer.
147        IsCondControl,          ///< Conditional control transfer.
148        IsUncondControl,        ///< Unconditional control transfer.
149        IsCall,                 ///< Subroutine call.
150        IsReturn,               ///< Subroutine return.
151
152        IsCondDelaySlot,///< Conditional Delay-Slot Instruction
153
154        IsThreadSync,   ///< Thread synchronization operation.
155
156        IsSerializing,  ///< Serializes pipeline: won't execute until all
157                        /// older instructions have committed.
158        IsSerializeBefore,
159        IsSerializeAfter,
160        IsMemBarrier,   ///< Is a memory barrier
161        IsWriteBarrier, ///< Is a write barrier
162        IsERET, /// <- Causes the IFU to stall (MIPS ISA)
163
164        IsNonSpeculative, ///< Should not be executed speculatively
165        IsQuiesce,      ///< Is a quiesce instruction
166
167        IsIprAccess,    ///< Accesses IPRs
168        IsUnverifiable, ///< Can't be verified by a checker
169
170        IsSyscall,      ///< Causes a system call to be emulated in syscall
171                        /// emulation mode.
172
173        //Flags for microcode
174        IsMacroop,      ///< Is a macroop containing microops
175        IsMicroop,      ///< Is a microop
176        IsDelayedCommit,        ///< This microop doesn't commit right away
177        IsLastMicroop,  ///< This microop ends a microop sequence
178        IsFirstMicroop, ///< This microop begins a microop sequence
179        //This flag doesn't do anything yet
180        IsMicroBranch,  ///< This microop branches within the microcode for a macroop
181        IsDspOp,
182
183        NumFlags
184    };
185
186    /// Flag values for this instruction.
187    std::bitset<NumFlags> flags;
188
189    /// See opClass().
190    OpClass _opClass;
191
192    /// See numSrcRegs().
193    int8_t _numSrcRegs;
194
195    /// See numDestRegs().
196    int8_t _numDestRegs;
197
198    /// The following are used to track physical register usage
199    /// for machines with separate int & FP reg files.
200    //@{
201    int8_t _numFPDestRegs;
202    int8_t _numIntDestRegs;
203    //@}
204
205    /// Constructor.
206    /// It's important to initialize everything here to a sane
207    /// default, since the decoder generally only overrides
208    /// the fields that are meaningful for the particular
209    /// instruction.
210    StaticInstBase(OpClass __opClass)
211        : _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
212          _numFPDestRegs(0), _numIntDestRegs(0)
213    {
214    }
215
216  public:
217
218    /// @name Register information.
219    /// The sum of numFPDestRegs() and numIntDestRegs() equals
220    /// numDestRegs().  The former two functions are used to track
221    /// physical register usage for machines with separate int & FP
222    /// reg files.
223    //@{
224    /// Number of source registers.
225    int8_t numSrcRegs()  const { return _numSrcRegs; }
226    /// Number of destination registers.
227    int8_t numDestRegs() const { return _numDestRegs; }
228    /// Number of floating-point destination regs.
229    int8_t numFPDestRegs()  const { return _numFPDestRegs; }
230    /// Number of integer destination regs.
231    int8_t numIntDestRegs() const { return _numIntDestRegs; }
232    //@}
233
234    /// @name Flag accessors.
235    /// These functions are used to access the values of the various
236    /// instruction property flags.  See StaticInstBase::Flags for descriptions
237    /// of the individual flags.
238    //@{
239
240    bool isNop()          const { return flags[IsNop]; }
241
242    bool isMemRef()       const { return flags[IsMemRef]; }
243    bool isLoad()         const { return flags[IsLoad]; }
244    bool isStore()        const { return flags[IsStore]; }
245    bool isStoreConditional()     const { return flags[IsStoreConditional]; }
246    bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
247    bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
248    bool isCopy()         const { return flags[IsCopy];}
249
250    bool isInteger()      const { return flags[IsInteger]; }
251    bool isFloating()     const { return flags[IsFloating]; }
252
253    bool isControl()      const { return flags[IsControl]; }
254    bool isCall()         const { return flags[IsCall]; }
255    bool isReturn()       const { return flags[IsReturn]; }
256    bool isDirectCtrl()   const { return flags[IsDirectControl]; }
257    bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
258    bool isCondCtrl()     const { return flags[IsCondControl]; }
259    bool isUncondCtrl()   const { return flags[IsUncondControl]; }
260    bool isCondDelaySlot() const { return flags[IsCondDelaySlot]; }
261
262    bool isThreadSync()   const { return flags[IsThreadSync]; }
263    bool isSerializing()  const { return flags[IsSerializing] ||
264                                      flags[IsSerializeBefore] ||
265                                      flags[IsSerializeAfter]; }
266    bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
267    bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
268    bool isMemBarrier()   const { return flags[IsMemBarrier]; }
269    bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
270    bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
271    bool isQuiesce() const { return flags[IsQuiesce]; }
272    bool isIprAccess() const { return flags[IsIprAccess]; }
273    bool isUnverifiable() const { return flags[IsUnverifiable]; }
274    bool isSyscall() const { return flags[IsSyscall]; }
275    bool isMacroop() const { return flags[IsMacroop]; }
276    bool isMicroop() const { return flags[IsMicroop]; }
277    bool isDelayedCommit() const { return flags[IsDelayedCommit]; }
278    bool isLastMicroop() const { return flags[IsLastMicroop]; }
279    bool isFirstMicroop() const { return flags[IsFirstMicroop]; }
280    //This flag doesn't do anything yet
281    bool isMicroBranch() const { return flags[IsMicroBranch]; }
282    //@}
283
284    void setLastMicroop() { flags[IsLastMicroop] = true; }
285    /// Operation class.  Used to select appropriate function unit in issue.
286    OpClass opClass()     const { return _opClass; }
287};
288
289
290// forward declaration
291class StaticInstPtr;
292
293/**
294 * Generic yet ISA-dependent static instruction class.
295 *
296 * This class builds on StaticInstBase, defining fields and interfaces
297 * that are generic across all ISAs but that differ in details
298 * according to the specific ISA being used.
299 */
300class StaticInst : public StaticInstBase
301{
302  public:
303
304    /// Binary machine instruction type.
305    typedef TheISA::MachInst MachInst;
306    /// Binary extended machine instruction type.
307    typedef TheISA::ExtMachInst ExtMachInst;
308    /// Logical register index type.
309    typedef TheISA::RegIndex RegIndex;
310
311    enum {
312        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        //< Max source regs
313        MaxInstDestRegs = TheISA::MaxInstDestRegs,      //< Max dest regs
314    };
315
316
317    /// Return logical index (architectural reg num) of i'th destination reg.
318    /// Only the entries from 0 through numDestRegs()-1 are valid.
319    RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
320
321    /// Return logical index (architectural reg num) of i'th source reg.
322    /// Only the entries from 0 through numSrcRegs()-1 are valid.
323    RegIndex srcRegIdx(int i)  const { return _srcRegIdx[i]; }
324
325    /// Pointer to a statically allocated "null" instruction object.
326    /// Used to give eaCompInst() and memAccInst() something to return
327    /// when called on non-memory instructions.
328    static StaticInstPtr nullStaticInstPtr;
329
330    /**
331     * Memory references only: returns "fake" instruction representing
332     * the effective address part of the memory operation.  Used to
333     * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
334     * just the EA computation.
335     */
336    virtual const
337    StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
338
339    /**
340     * Memory references only: returns "fake" instruction representing
341     * the memory access part of the memory operation.  Used to
342     * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
343     * just the memory access (not the EA computation).
344     */
345    virtual const
346    StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
347
348    /// The binary machine instruction.
349    const ExtMachInst machInst;
350
351  protected:
352
353    /// See destRegIdx().
354    RegIndex _destRegIdx[MaxInstDestRegs];
355    /// See srcRegIdx().
356    RegIndex _srcRegIdx[MaxInstSrcRegs];
357
358    /**
359     * Base mnemonic (e.g., "add").  Used by generateDisassembly()
360     * methods.  Also useful to readily identify instructions from
361     * within the debugger when #cachedDisassembly has not been
362     * initialized.
363     */
364    const char *mnemonic;
365
366    /**
367     * String representation of disassembly (lazily evaluated via
368     * disassemble()).
369     */
370    mutable std::string *cachedDisassembly;
371
372    /**
373     * Internal function to generate disassembly string.
374     */
375    virtual std::string
376    generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
377
378    /// Constructor.
379    StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
380        : StaticInstBase(__opClass),
381          machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
382    { }
383
384  public:
385
386    virtual ~StaticInst()
387    {
388        if (cachedDisassembly)
389            delete cachedDisassembly;
390    }
391
392/**
393 * The execute() signatures are auto-generated by scons based on the
394 * set of CPU models we are compiling in today.
395 */
396#include "cpu/static_inst_exec_sigs.hh"
397
398    /**
399     * Return the microop that goes with a particular micropc. This should
400     * only be defined/used in macroops which will contain microops
401     */
402    virtual StaticInstPtr fetchMicroop(MicroPC micropc);
403
404    /**
405     * Return the target address for a PC-relative branch.
406     * Invalid if not a PC-relative branch (i.e. isDirectCtrl()
407     * should be true).
408     */
409    virtual Addr branchTarget(Addr branchPC) const
410    {
411        panic("StaticInst::branchTarget() called on instruction "
412              "that is not a PC-relative branch.");
413        M5_DUMMY_RETURN
414    }
415
416    /**
417     * Return the target address for an indirect branch (jump).  The
418     * register value is read from the supplied thread context, so
419     * the result is valid only if the thread context is about to
420     * execute the branch in question.  Invalid if not an indirect
421     * branch (i.e. isIndirectCtrl() should be true).
422     */
423    virtual Addr branchTarget(ThreadContext *tc) const
424    {
425        panic("StaticInst::branchTarget() called on instruction "
426              "that is not an indirect branch.");
427        M5_DUMMY_RETURN
428    }
429
430    /**
431     * Return true if the instruction is a control transfer, and if so,
432     * return the target address as well.
433     */
434    bool hasBranchTarget(Addr pc, ThreadContext *tc, Addr &tgt) const;
435
436    virtual Request::Flags memAccFlags()
437    {
438        panic("StaticInst::memAccFlags called on non-memory instruction");
439        return 0;
440    };
441
442    /**
443     * Return string representation of disassembled instruction.
444     * The default version of this function will call the internal
445     * virtual generateDisassembly() function to get the string,
446     * then cache it in #cachedDisassembly.  If the disassembly
447     * should not be cached, this function should be overridden directly.
448     */
449    virtual const std::string &disassemble(Addr pc,
450                                           const SymbolTable *symtab = 0) const
451    {
452        if (!cachedDisassembly)
453            cachedDisassembly =
454                new std::string(generateDisassembly(pc, symtab));
455
456        return *cachedDisassembly;
457    }
458
459    /// Decoded instruction cache type.
460    /// For now we're using a generic hash_map; this seems to work
461    /// pretty well.
462    typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
463
464    /// A cache of decoded instruction objects.
465    static DecodeCache decodeCache;
466
467    /**
468     * Dump some basic stats on the decode cache hash map.
469     * Only gets called if DECODE_CACHE_HASH_STATS is defined.
470     */
471    static void dumpDecodeCacheStats();
472
473    /// Decode a machine instruction.
474    /// @param mach_inst The binary instruction to decode.
475    /// @retval A pointer to the corresponding StaticInst object.
476    //This is defined as inlined below.
477    static StaticInstPtr decode(ExtMachInst mach_inst, Addr addr);
478
479    /// Return name of machine instruction
480    std::string getName() { return mnemonic; }
481
482    /// Decoded instruction cache type, for address decoding.
483    /// A generic hash_map is used.
484    typedef m5::hash_map<Addr, AddrDecodePage *> AddrDecodeCache;
485
486    /// A cache of decoded instruction objects from addresses.
487    static AddrDecodeCache addrDecodeCache;
488
489    struct cacheElement {
490        Addr page_addr;
491        AddrDecodePage *decodePage;
492
493        cacheElement()
494          :decodePage(NULL) { }
495    } ;
496
497    /// An array of recently decoded instructions.
498    // might not use an array if there is only two elements
499    static struct cacheElement recentDecodes[2];
500
501    /// Updates the recently decoded instructions entries
502    /// @param page_addr The page address recently used.
503    /// @param decodePage Pointer to decoding page containing the decoded
504    ///                   instruction.
505    static inline void
506    updateCache(Addr page_addr, AddrDecodePage *decodePage)
507    {
508        recentDecodes[1].page_addr = recentDecodes[0].page_addr;
509        recentDecodes[1].decodePage = recentDecodes[0].decodePage;
510        recentDecodes[0].page_addr = page_addr;
511        recentDecodes[0].decodePage = decodePage;
512    }
513
514    /// Searches the decoded instruction cache for instruction decoding.
515    /// If it is not found, then we decode the instruction.
516    /// Otherwise, we get the instruction from the cache and move it into
517    /// the address-to-instruction decoding page.
518    /// @param mach_inst The binary instruction to decode.
519    /// @param addr The address that contained the binary instruction.
520    /// @param decodePage Pointer to decoding page containing the instruction.
521    /// @retval A pointer to the corresponding StaticInst object.
522    //This is defined as inlined below.
523    static StaticInstPtr searchCache(ExtMachInst mach_inst, Addr addr,
524                                     AddrDecodePage * decodePage);
525};
526
527typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
528
529/// Reference-counted pointer to a StaticInst object.
530/// This type should be used instead of "StaticInst *" so that
531/// StaticInst objects can be properly reference-counted.
532class StaticInstPtr : public RefCountingPtr<StaticInst>
533{
534  public:
535    /// Constructor.
536    StaticInstPtr()
537        : RefCountingPtr<StaticInst>()
538    {
539    }
540
541    /// Conversion from "StaticInst *".
542    StaticInstPtr(StaticInst *p)
543        : RefCountingPtr<StaticInst>(p)
544    {
545    }
546
547    /// Copy constructor.
548    StaticInstPtr(const StaticInstPtr &r)
549        : RefCountingPtr<StaticInst>(r)
550    {
551    }
552
553    /// Construct directly from machine instruction.
554    /// Calls StaticInst::decode().
555    explicit StaticInstPtr(TheISA::ExtMachInst mach_inst, Addr addr)
556        : RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst, addr))
557    {
558    }
559
560    /// Convert to pointer to StaticInstBase class.
561    operator const StaticInstBasePtr()
562    {
563        return this->get();
564    }
565};
566
567/// A page of a list of decoded instructions from an address.
568class AddrDecodePage
569{
570  typedef TheISA::ExtMachInst ExtMachInst;
571  protected:
572    StaticInstPtr instructions[TheISA::PageBytes];
573    bool valid[TheISA::PageBytes];
574    Addr lowerMask;
575
576  public:
577    /// Constructor
578    AddrDecodePage() {
579        lowerMask = TheISA::PageBytes - 1;
580        memset(valid, 0, TheISA::PageBytes);
581    }
582
583    /// Checks if the instruction is already decoded and the machine
584    /// instruction in the cache matches the current machine instruction
585    /// related to the address
586    /// @param mach_inst The binary instruction to check
587    /// @param addr The address containing the instruction
588    inline bool decoded(ExtMachInst mach_inst, Addr addr)
589    {
590        return (valid[addr & lowerMask] &&
591                (instructions[addr & lowerMask]->machInst == mach_inst));
592    }
593
594    /// Returns the instruction object. decoded should be called first
595    /// to check if the instruction is valid.
596    /// @param addr The address of the instruction.
597    /// @retval A pointer to the corresponding StaticInst object.
598    inline StaticInstPtr getInst(Addr addr)
599    {   return instructions[addr & lowerMask]; }
600
601    /// Inserts a pointer to a StaticInst object into the list of decoded
602    /// instructions on the page.
603    /// @param addr The address of the instruction.
604    /// @param si A pointer to the corresponding StaticInst object.
605    inline void insert(Addr addr, StaticInstPtr &si)
606    {
607        instructions[addr & lowerMask] = si;
608        valid[addr & lowerMask] = true;
609    }
610
611};
612
613
614inline StaticInstPtr
615StaticInst::decode(StaticInst::ExtMachInst mach_inst, Addr addr)
616{
617#ifdef DECODE_CACHE_HASH_STATS
618    // Simple stats on decode hash_map.  Turns out the default
619    // hash function is as good as anything I could come up with.
620    const int dump_every_n = 10000000;
621    static int decodes_til_dump = dump_every_n;
622
623    if (--decodes_til_dump == 0) {
624        dumpDecodeCacheStats();
625        decodes_til_dump = dump_every_n;
626    }
627#endif
628
629    Addr page_addr = addr & ~(TheISA::PageBytes - 1);
630
631    // checks recently decoded addresses
632    if (recentDecodes[0].decodePage &&
633        page_addr == recentDecodes[0].page_addr) {
634        if (recentDecodes[0].decodePage->decoded(mach_inst, addr))
635            return recentDecodes[0].decodePage->getInst(addr);
636
637        return searchCache(mach_inst, addr, recentDecodes[0].decodePage);
638    }
639
640    if (recentDecodes[1].decodePage &&
641        page_addr == recentDecodes[1].page_addr) {
642        if (recentDecodes[1].decodePage->decoded(mach_inst, addr))
643            return recentDecodes[1].decodePage->getInst(addr);
644
645        return searchCache(mach_inst, addr, recentDecodes[1].decodePage);
646    }
647
648    // searches the page containing the address to decode
649    AddrDecodeCache::iterator iter = addrDecodeCache.find(page_addr);
650    if (iter != addrDecodeCache.end()) {
651        updateCache(page_addr, iter->second);
652        if (iter->second->decoded(mach_inst, addr))
653            return iter->second->getInst(addr);
654
655        return searchCache(mach_inst, addr, iter->second);
656    }
657
658    // creates a new object for a page of decoded instructions
659    AddrDecodePage * decodePage = new AddrDecodePage;
660    addrDecodeCache[page_addr] = decodePage;
661    updateCache(page_addr, decodePage);
662    return searchCache(mach_inst, addr, decodePage);
663}
664
665inline StaticInstPtr
666StaticInst::searchCache(ExtMachInst mach_inst, Addr addr,
667                        AddrDecodePage * decodePage)
668{
669    DecodeCache::iterator iter = decodeCache.find(mach_inst);
670    if (iter != decodeCache.end()) {
671        decodePage->insert(addr, iter->second);
672        return iter->second;
673    }
674
675    StaticInstPtr si = TheISA::decodeInst(mach_inst);
676    decodePage->insert(addr, si);
677    decodeCache[mach_inst] = si;
678    return si;
679}
680
681#endif // __CPU_STATIC_INST_HH__
682