static_inst.hh revision 4962:4e939f4629c3
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#ifndef __CPU_STATIC_INST_HH__
32#define __CPU_STATIC_INST_HH__
33
34#include <bitset>
35#include <string>
36
37#include "arch/isa_traits.hh"
38#include "arch/utility.hh"
39#include "sim/faults.hh"
40#include "base/bitfield.hh"
41#include "base/hashmap.hh"
42#include "base/misc.hh"
43#include "base/refcnt.hh"
44#include "cpu/op_class.hh"
45#include "cpu/o3/dyn_inst.hh"
46#include "sim/faults.hh"
47#include "sim/host.hh"
48
49// forward declarations
50struct AlphaSimpleImpl;
51struct OzoneImpl;
52struct SimpleImpl;
53class ThreadContext;
54class DynInst;
55class Packet;
56
57template <class Impl>
58class OzoneDynInst;
59
60class CheckerCPU;
61class FastCPU;
62class AtomicSimpleCPU;
63class TimingSimpleCPU;
64class InorderCPU;
65class SymbolTable;
66class AddrDecodePage;
67
68namespace Trace {
69    class InstRecord;
70}
71
72typedef uint32_t MicroPC;
73
74/**
75 * Base, ISA-independent static instruction class.
76 *
77 * The main component of this class is the vector of flags and the
78 * associated methods for reading them.  Any object that can rely
79 * solely on these flags can process instructions without being
80 * recompiled for multiple ISAs.
81 */
82class StaticInstBase : public RefCounted
83{
84  protected:
85
86    /// Set of boolean static instruction properties.
87    ///
88    /// Notes:
89    /// - The IsInteger and IsFloating flags are based on the class of
90    /// registers accessed by the instruction.  Although most
91    /// instructions will have exactly one of these two flags set, it
92    /// is possible for an instruction to have neither (e.g., direct
93    /// unconditional branches, memory barriers) or both (e.g., an
94    /// FP/int conversion).
95    /// - If IsMemRef is set, then exactly one of IsLoad or IsStore
96    /// will be set.
97    /// - If IsControl is set, then exactly one of IsDirectControl or
98    /// IsIndirect Control will be set, and exactly one of
99    /// IsCondControl or IsUncondControl will be set.
100    /// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
101    /// implemented as flags since in the current model there's no
102    /// other way for instructions to inject behavior into the
103    /// pipeline outside of fetch.  Once we go to an exec-in-exec CPU
104    /// model we should be able to get rid of these flags and
105    /// implement this behavior via the execute() methods.
106    ///
107    enum Flags {
108        IsNop,		///< Is a no-op (no effect at all).
109
110        IsInteger,	///< References integer regs.
111        IsFloating,	///< References FP regs.
112
113        IsMemRef,	///< References memory (load, store, or prefetch).
114        IsLoad,		///< Reads from memory (load or prefetch).
115        IsStore,	///< Writes to memory.
116        IsStoreConditional,    ///< Store conditional instruction.
117        IsInstPrefetch,	///< Instruction-cache prefetch.
118        IsDataPrefetch,	///< Data-cache prefetch.
119        IsCopy,         ///< Fast Cache block copy
120
121        IsControl,		///< Control transfer instruction.
122        IsDirectControl,	///< PC relative control transfer.
123        IsIndirectControl,	///< Register indirect control transfer.
124        IsCondControl,		///< Conditional control transfer.
125        IsUncondControl,	///< Unconditional control transfer.
126        IsCall,			///< Subroutine call.
127        IsReturn,		///< Subroutine return.
128
129        IsCondDelaySlot,///< Conditional Delay-Slot Instruction
130
131        IsThreadSync,	///< Thread synchronization operation.
132
133        IsSerializing,	///< Serializes pipeline: won't execute until all
134                        /// older instructions have committed.
135        IsSerializeBefore,
136        IsSerializeAfter,
137        IsMemBarrier,	///< Is a memory barrier
138        IsWriteBarrier,	///< Is a write barrier
139
140        IsNonSpeculative, ///< Should not be executed speculatively
141        IsQuiesce,      ///< Is a quiesce instruction
142
143        IsIprAccess,    ///< Accesses IPRs
144        IsUnverifiable, ///< Can't be verified by a checker
145
146        IsSyscall,      ///< Causes a system call to be emulated in syscall
147                        /// emulation mode.
148
149        //Flags for microcode
150        IsMacroop,      ///< Is a macroop containing microops
151        IsMicroop,	///< Is a microop
152        IsDelayedCommit,	///< This microop doesn't commit right away
153        IsLastMicroop,	///< This microop ends a microop sequence
154        IsFirstMicroop,	///< This microop begins a microop sequence
155        //This flag doesn't do anything yet
156        IsMicroBranch,	///< This microop branches within the microcode for a macroop
157
158        NumFlags
159    };
160
161    /// Flag values for this instruction.
162    std::bitset<NumFlags> flags;
163
164    /// See opClass().
165    OpClass _opClass;
166
167    /// See numSrcRegs().
168    int8_t _numSrcRegs;
169
170    /// See numDestRegs().
171    int8_t _numDestRegs;
172
173    /// The following are used to track physical register usage
174    /// for machines with separate int & FP reg files.
175    //@{
176    int8_t _numFPDestRegs;
177    int8_t _numIntDestRegs;
178    //@}
179
180    /// Constructor.
181    /// It's important to initialize everything here to a sane
182    /// default, since the decoder generally only overrides
183    /// the fields that are meaningful for the particular
184    /// instruction.
185    StaticInstBase(OpClass __opClass)
186        : _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
187          _numFPDestRegs(0), _numIntDestRegs(0)
188    {
189    }
190
191  public:
192
193    /// @name Register information.
194    /// The sum of numFPDestRegs() and numIntDestRegs() equals
195    /// numDestRegs().  The former two functions are used to track
196    /// physical register usage for machines with separate int & FP
197    /// reg files.
198    //@{
199    /// Number of source registers.
200    int8_t numSrcRegs()  const { return _numSrcRegs; }
201    /// Number of destination registers.
202    int8_t numDestRegs() const { return _numDestRegs; }
203    /// Number of floating-point destination regs.
204    int8_t numFPDestRegs()  const { return _numFPDestRegs; }
205    /// Number of integer destination regs.
206    int8_t numIntDestRegs() const { return _numIntDestRegs; }
207    //@}
208
209    /// @name Flag accessors.
210    /// These functions are used to access the values of the various
211    /// instruction property flags.  See StaticInstBase::Flags for descriptions
212    /// of the individual flags.
213    //@{
214
215    bool isNop() 	  const { return flags[IsNop]; }
216
217    bool isMemRef()    	  const { return flags[IsMemRef]; }
218    bool isLoad()	  const { return flags[IsLoad]; }
219    bool isStore()	  const { return flags[IsStore]; }
220    bool isStoreConditional()	  const { return flags[IsStoreConditional]; }
221    bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
222    bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
223    bool isCopy()         const { return flags[IsCopy];}
224
225    bool isInteger()	  const { return flags[IsInteger]; }
226    bool isFloating()	  const { return flags[IsFloating]; }
227
228    bool isControl()	  const { return flags[IsControl]; }
229    bool isCall()	  const { return flags[IsCall]; }
230    bool isReturn()	  const { return flags[IsReturn]; }
231    bool isDirectCtrl()	  const { return flags[IsDirectControl]; }
232    bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
233    bool isCondCtrl()	  const { return flags[IsCondControl]; }
234    bool isUncondCtrl()	  const { return flags[IsUncondControl]; }
235    bool isCondDelaySlot() const { return flags[IsCondDelaySlot]; }
236
237    bool isThreadSync()   const { return flags[IsThreadSync]; }
238    bool isSerializing()  const { return flags[IsSerializing] ||
239                                      flags[IsSerializeBefore] ||
240                                      flags[IsSerializeAfter]; }
241    bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
242    bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
243    bool isMemBarrier()   const { return flags[IsMemBarrier]; }
244    bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
245    bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
246    bool isQuiesce() const { return flags[IsQuiesce]; }
247    bool isIprAccess() const { return flags[IsIprAccess]; }
248    bool isUnverifiable() const { return flags[IsUnverifiable]; }
249    bool isSyscall() const { return flags[IsSyscall]; }
250    bool isMacroop() const { return flags[IsMacroop]; }
251    bool isMicroop() const { return flags[IsMicroop]; }
252    bool isDelayedCommit() const { return flags[IsDelayedCommit]; }
253    bool isLastMicroop() const { return flags[IsLastMicroop]; }
254    bool isFirstMicroop() const { return flags[IsFirstMicroop]; }
255    //This flag doesn't do anything yet
256    bool isMicroBranch() const { return flags[IsMicroBranch]; }
257    //@}
258
259    /// Operation class.  Used to select appropriate function unit in issue.
260    OpClass opClass()     const { return _opClass; }
261};
262
263
264// forward declaration
265class StaticInstPtr;
266
267/**
268 * Generic yet ISA-dependent static instruction class.
269 *
270 * This class builds on StaticInstBase, defining fields and interfaces
271 * that are generic across all ISAs but that differ in details
272 * according to the specific ISA being used.
273 */
274class StaticInst : public StaticInstBase
275{
276  public:
277
278    /// Binary machine instruction type.
279    typedef TheISA::MachInst MachInst;
280    /// Binary extended machine instruction type.
281    typedef TheISA::ExtMachInst ExtMachInst;
282    /// Logical register index type.
283    typedef TheISA::RegIndex RegIndex;
284
285    enum {
286        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,	//< Max source regs
287        MaxInstDestRegs = TheISA::MaxInstDestRegs,	//< Max dest regs
288    };
289
290
291    /// Return logical index (architectural reg num) of i'th destination reg.
292    /// Only the entries from 0 through numDestRegs()-1 are valid.
293    RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
294
295    /// Return logical index (architectural reg num) of i'th source reg.
296    /// Only the entries from 0 through numSrcRegs()-1 are valid.
297    RegIndex srcRegIdx(int i)  const { return _srcRegIdx[i]; }
298
299    /// Pointer to a statically allocated "null" instruction object.
300    /// Used to give eaCompInst() and memAccInst() something to return
301    /// when called on non-memory instructions.
302    static StaticInstPtr nullStaticInstPtr;
303
304    /**
305     * Memory references only: returns "fake" instruction representing
306     * the effective address part of the memory operation.  Used to
307     * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
308     * just the EA computation.
309     */
310    virtual const
311    StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
312
313    /**
314     * Memory references only: returns "fake" instruction representing
315     * the memory access part of the memory operation.  Used to
316     * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
317     * just the memory access (not the EA computation).
318     */
319    virtual const
320    StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
321
322    /// The binary machine instruction.
323    const ExtMachInst machInst;
324
325  protected:
326
327    /// See destRegIdx().
328    RegIndex _destRegIdx[MaxInstDestRegs];
329    /// See srcRegIdx().
330    RegIndex _srcRegIdx[MaxInstSrcRegs];
331
332    /**
333     * Base mnemonic (e.g., "add").  Used by generateDisassembly()
334     * methods.  Also useful to readily identify instructions from
335     * within the debugger when #cachedDisassembly has not been
336     * initialized.
337     */
338    const char *mnemonic;
339
340    /**
341     * String representation of disassembly (lazily evaluated via
342     * disassemble()).
343     */
344    mutable std::string *cachedDisassembly;
345
346    /**
347     * Internal function to generate disassembly string.
348     */
349    virtual std::string
350    generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
351
352    /// Constructor.
353    StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
354        : StaticInstBase(__opClass),
355          machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
356    { }
357
358  public:
359
360    virtual ~StaticInst()
361    {
362        if (cachedDisassembly)
363            delete cachedDisassembly;
364    }
365
366/**
367 * The execute() signatures are auto-generated by scons based on the
368 * set of CPU models we are compiling in today.
369 */
370#include "cpu/static_inst_exec_sigs.hh"
371
372    /**
373     * Return the microop that goes with a particular micropc. This should
374     * only be defined/used in macroops which will contain microops
375     */
376    virtual StaticInstPtr fetchMicroop(MicroPC micropc);
377
378    /**
379     * Return the target address for a PC-relative branch.
380     * Invalid if not a PC-relative branch (i.e. isDirectCtrl()
381     * should be true).
382     */
383    virtual Addr branchTarget(Addr branchPC) const
384    {
385        panic("StaticInst::branchTarget() called on instruction "
386              "that is not a PC-relative branch.");
387        M5_DUMMY_RETURN
388    }
389
390    /**
391     * Return the target address for an indirect branch (jump).  The
392     * register value is read from the supplied thread context, so
393     * the result is valid only if the thread context is about to
394     * execute the branch in question.  Invalid if not an indirect
395     * branch (i.e. isIndirectCtrl() should be true).
396     */
397    virtual Addr branchTarget(ThreadContext *tc) const
398    {
399        panic("StaticInst::branchTarget() called on instruction "
400              "that is not an indirect branch.");
401    }
402        M5_DUMMY_RETURN
403
404    /**
405     * Return true if the instruction is a control transfer, and if so,
406     * return the target address as well.
407     */
408    bool hasBranchTarget(Addr pc, ThreadContext *tc, Addr &tgt) const;
409
410    /**
411     * Return string representation of disassembled instruction.
412     * The default version of this function will call the internal
413     * virtual generateDisassembly() function to get the string,
414     * then cache it in #cachedDisassembly.  If the disassembly
415     * should not be cached, this function should be overridden directly.
416     */
417    virtual const std::string &disassemble(Addr pc,
418                                           const SymbolTable *symtab = 0) const
419    {
420        if (!cachedDisassembly)
421            cachedDisassembly =
422                new std::string(generateDisassembly(pc, symtab));
423
424        return *cachedDisassembly;
425    }
426
427    /// Decoded instruction cache type.
428    /// For now we're using a generic hash_map; this seems to work
429    /// pretty well.
430    typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
431
432    /// A cache of decoded instruction objects.
433    static DecodeCache decodeCache;
434
435    /**
436     * Dump some basic stats on the decode cache hash map.
437     * Only gets called if DECODE_CACHE_HASH_STATS is defined.
438     */
439    static void dumpDecodeCacheStats();
440
441    /// Decode a machine instruction.
442    /// @param mach_inst The binary instruction to decode.
443    /// @retval A pointer to the corresponding StaticInst object.
444    //This is defined as inlined below.
445    static StaticInstPtr decode(ExtMachInst mach_inst, Addr addr);
446
447    /// Return name of machine instruction
448    std::string getName() { return mnemonic; }
449
450    /// Decoded instruction cache type, for address decoding.
451    /// A generic hash_map is used.
452    typedef m5::hash_map<Addr, AddrDecodePage *> AddrDecodeCache;
453
454    /// A cache of decoded instruction objects from addresses.
455    static AddrDecodeCache addrDecodeCache;
456
457    struct cacheElement {
458        Addr page_addr;
459        AddrDecodePage *decodePage;
460
461        cacheElement()
462          :decodePage(NULL) { }
463    } ;
464
465    /// An array of recently decoded instructions.
466    // might not use an array if there is only two elements
467    static struct cacheElement recentDecodes[2];
468
469    /// Updates the recently decoded instructions entries
470    /// @param page_addr The page address recently used.
471    /// @param decodePage Pointer to decoding page containing the decoded
472    ///                   instruction.
473    static inline void
474    updateCache(Addr page_addr, AddrDecodePage *decodePage)
475    {
476        recentDecodes[1].page_addr = recentDecodes[0].page_addr;
477        recentDecodes[1].decodePage = recentDecodes[0].decodePage;
478        recentDecodes[0].page_addr = page_addr;
479        recentDecodes[0].decodePage = decodePage;
480    }
481
482    /// Searches the decoded instruction cache for instruction decoding.
483    /// If it is not found, then we decode the instruction.
484    /// Otherwise, we get the instruction from the cache and move it into
485    /// the address-to-instruction decoding page.
486    /// @param mach_inst The binary instruction to decode.
487    /// @param addr The address that contained the binary instruction.
488    /// @param decodePage Pointer to decoding page containing the instruction.
489    /// @retval A pointer to the corresponding StaticInst object.
490    //This is defined as inlined below.
491    static StaticInstPtr searchCache(ExtMachInst mach_inst, Addr addr,
492                                     AddrDecodePage * decodePage);
493};
494
495typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
496
497/// Reference-counted pointer to a StaticInst object.
498/// This type should be used instead of "StaticInst *" so that
499/// StaticInst objects can be properly reference-counted.
500class StaticInstPtr : public RefCountingPtr<StaticInst>
501{
502  public:
503    /// Constructor.
504    StaticInstPtr()
505        : RefCountingPtr<StaticInst>()
506    {
507    }
508
509    /// Conversion from "StaticInst *".
510    StaticInstPtr(StaticInst *p)
511        : RefCountingPtr<StaticInst>(p)
512    {
513    }
514
515    /// Copy constructor.
516    StaticInstPtr(const StaticInstPtr &r)
517        : RefCountingPtr<StaticInst>(r)
518    {
519    }
520
521    /// Construct directly from machine instruction.
522    /// Calls StaticInst::decode().
523    explicit StaticInstPtr(TheISA::ExtMachInst mach_inst, Addr addr)
524        : RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst, addr))
525    {
526    }
527
528    /// Convert to pointer to StaticInstBase class.
529    operator const StaticInstBasePtr()
530    {
531        return this->get();
532    }
533};
534
535/// A page of a list of decoded instructions from an address.
536class AddrDecodePage
537{
538  typedef TheISA::ExtMachInst ExtMachInst;
539  protected:
540    StaticInstPtr instructions[TheISA::PageBytes];
541    bool valid[TheISA::PageBytes];
542    Addr lowerMask;
543
544  public:
545    /// Constructor
546    AddrDecodePage() {
547        lowerMask = TheISA::PageBytes - 1;
548        memset(valid, 0, TheISA::PageBytes);
549    }
550
551    /// Checks if the instruction is already decoded and the machine
552    /// instruction in the cache matches the current machine instruction
553    /// related to the address
554    /// @param mach_inst The binary instruction to check
555    /// @param addr The address containing the instruction
556    inline bool decoded(ExtMachInst mach_inst, Addr addr)
557    {
558        return (valid[addr & lowerMask] &&
559                (instructions[addr & lowerMask]->machInst == mach_inst));
560    }
561
562    /// Returns the instruction object. decoded should be called first
563    /// to check if the instruction is valid.
564    /// @param addr The address of the instruction.
565    /// @retval A pointer to the corresponding StaticInst object.
566    inline StaticInstPtr getInst(Addr addr)
567    {   return instructions[addr & lowerMask]; }
568
569    /// Inserts a pointer to a StaticInst object into the list of decoded
570    /// instructions on the page.
571    /// @param addr The address of the instruction.
572    /// @param si A pointer to the corresponding StaticInst object.
573    inline void insert(Addr addr, StaticInstPtr &si)
574    {
575        instructions[addr & lowerMask] = si;
576        valid[addr & lowerMask] = true;
577    }
578
579};
580
581
582inline StaticInstPtr
583StaticInst::decode(StaticInst::ExtMachInst mach_inst, Addr addr)
584{
585#ifdef DECODE_CACHE_HASH_STATS
586    // Simple stats on decode hash_map.  Turns out the default
587    // hash function is as good as anything I could come up with.
588    const int dump_every_n = 10000000;
589    static int decodes_til_dump = dump_every_n;
590
591    if (--decodes_til_dump == 0) {
592        dumpDecodeCacheStats();
593        decodes_til_dump = dump_every_n;
594    }
595#endif
596
597    Addr page_addr = addr & ~(TheISA::PageBytes - 1);
598
599    // checks recently decoded addresses
600    if (recentDecodes[0].decodePage) {
601        if (page_addr == recentDecodes[0].page_addr) {
602            if (recentDecodes[0].decodePage->decoded(mach_inst, addr))
603                return recentDecodes[0].decodePage->getInst(addr);
604
605            return searchCache(mach_inst, addr, recentDecodes[0].decodePage);
606        } else if (recentDecodes[1].decodePage &&
607            page_addr == recentDecodes[1].page_addr) {
608            if (recentDecodes[1].decodePage->decoded(mach_inst, addr))
609                return recentDecodes[1].decodePage->getInst(addr);
610
611            return searchCache(mach_inst, addr, recentDecodes[1].decodePage);
612        }
613    }
614
615    // searches the page containing the address to decode
616    AddrDecodeCache::iterator iter = addrDecodeCache.find(page_addr);
617    if (iter != addrDecodeCache.end()) {
618        updateCache(page_addr, iter->second);
619        if (iter->second->decoded(mach_inst, addr))
620            return iter->second->getInst(addr);
621
622        return searchCache(mach_inst, addr, iter->second);
623    }
624
625    // creates a new object for a page of decoded instructions
626    AddrDecodePage * decodePage = new AddrDecodePage;
627    addrDecodeCache[page_addr] = decodePage;
628    updateCache(page_addr, decodePage);
629    return searchCache(mach_inst, addr, decodePage);
630}
631
632inline StaticInstPtr
633StaticInst::searchCache(ExtMachInst mach_inst, Addr addr,
634                        AddrDecodePage * decodePage)
635{
636    DecodeCache::iterator iter = decodeCache.find(mach_inst);
637    if (iter != decodeCache.end()) {
638        decodePage->insert(addr, iter->second);
639        return iter->second;
640    }
641
642    StaticInstPtr si = TheISA::decodeInst(mach_inst);
643    decodePage->insert(addr, si);
644    decodeCache[mach_inst] = si;
645    return si;
646}
647
648#endif // __CPU_STATIC_INST_HH__
649