static_inst.hh revision 4181:6edaeff44647
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#ifndef __CPU_STATIC_INST_HH__
32#define __CPU_STATIC_INST_HH__
33
34#include <bitset>
35#include <string>
36
37#include "arch/isa_traits.hh"
38#include "sim/faults.hh"
39#include "base/bitfield.hh"
40#include "base/hashmap.hh"
41#include "base/misc.hh"
42#include "base/refcnt.hh"
43#include "cpu/op_class.hh"
44#include "cpu/o3/dyn_inst.hh"
45#include "sim/faults.hh"
46#include "sim/host.hh"
47
48// forward declarations
49struct AlphaSimpleImpl;
50struct OzoneImpl;
51struct SimpleImpl;
52class ThreadContext;
53class DynInst;
54class Packet;
55
56template <class Impl>
57class OzoneDynInst;
58
59class CheckerCPU;
60class FastCPU;
61class AtomicSimpleCPU;
62class TimingSimpleCPU;
63class InorderCPU;
64class SymbolTable;
65
66namespace Trace {
67    class InstRecord;
68}
69
70typedef uint32_t MicroPC;
71
72/**
73 * Base, ISA-independent static instruction class.
74 *
75 * The main component of this class is the vector of flags and the
76 * associated methods for reading them.  Any object that can rely
77 * solely on these flags can process instructions without being
78 * recompiled for multiple ISAs.
79 */
80class StaticInstBase : public RefCounted
81{
82  protected:
83
84    /// Set of boolean static instruction properties.
85    ///
86    /// Notes:
87    /// - The IsInteger and IsFloating flags are based on the class of
88    /// registers accessed by the instruction.  Although most
89    /// instructions will have exactly one of these two flags set, it
90    /// is possible for an instruction to have neither (e.g., direct
91    /// unconditional branches, memory barriers) or both (e.g., an
92    /// FP/int conversion).
93    /// - If IsMemRef is set, then exactly one of IsLoad or IsStore
94    /// will be set.
95    /// - If IsControl is set, then exactly one of IsDirectControl or
96    /// IsIndirect Control will be set, and exactly one of
97    /// IsCondControl or IsUncondControl will be set.
98    /// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
99    /// implemented as flags since in the current model there's no
100    /// other way for instructions to inject behavior into the
101    /// pipeline outside of fetch.  Once we go to an exec-in-exec CPU
102    /// model we should be able to get rid of these flags and
103    /// implement this behavior via the execute() methods.
104    ///
105    enum Flags {
106        IsNop,		///< Is a no-op (no effect at all).
107
108        IsInteger,	///< References integer regs.
109        IsFloating,	///< References FP regs.
110
111        IsMemRef,	///< References memory (load, store, or prefetch).
112        IsLoad,		///< Reads from memory (load or prefetch).
113        IsStore,	///< Writes to memory.
114        IsStoreConditional,    ///< Store conditional instruction.
115        IsInstPrefetch,	///< Instruction-cache prefetch.
116        IsDataPrefetch,	///< Data-cache prefetch.
117        IsCopy,         ///< Fast Cache block copy
118
119        IsControl,		///< Control transfer instruction.
120        IsDirectControl,	///< PC relative control transfer.
121        IsIndirectControl,	///< Register indirect control transfer.
122        IsCondControl,		///< Conditional control transfer.
123        IsUncondControl,	///< Unconditional control transfer.
124        IsCall,			///< Subroutine call.
125        IsReturn,		///< Subroutine return.
126
127        IsCondDelaySlot,///< Conditional Delay-Slot Instruction
128
129        IsThreadSync,	///< Thread synchronization operation.
130
131        IsSerializing,	///< Serializes pipeline: won't execute until all
132                        /// older instructions have committed.
133        IsSerializeBefore,
134        IsSerializeAfter,
135        IsMemBarrier,	///< Is a memory barrier
136        IsWriteBarrier,	///< Is a write barrier
137
138        IsNonSpeculative, ///< Should not be executed speculatively
139        IsQuiesce,      ///< Is a quiesce instruction
140
141        IsIprAccess,    ///< Accesses IPRs
142        IsUnverifiable, ///< Can't be verified by a checker
143
144        //Flags for microcode
145        IsMacroOp,      ///< Is a macroop containing microops
146        IsMicroOp,	///< Is a microop
147        IsDelayedCommit,	///< This microop doesn't commit right away
148        IsLastMicroOp,	///< This microop ends a microop sequence
149        IsFirstMicroOp,	///< This microop begins a microop sequence
150        //This flag doesn't do anything yet
151        IsMicroBranch,	///< This microop branches within the microcode for a macroop
152
153        NumFlags
154    };
155
156    /// Flag values for this instruction.
157    std::bitset<NumFlags> flags;
158
159    /// See opClass().
160    OpClass _opClass;
161
162    /// See numSrcRegs().
163    int8_t _numSrcRegs;
164
165    /// See numDestRegs().
166    int8_t _numDestRegs;
167
168    /// The following are used to track physical register usage
169    /// for machines with separate int & FP reg files.
170    //@{
171    int8_t _numFPDestRegs;
172    int8_t _numIntDestRegs;
173    //@}
174
175    /// Constructor.
176    /// It's important to initialize everything here to a sane
177    /// default, since the decoder generally only overrides
178    /// the fields that are meaningful for the particular
179    /// instruction.
180    StaticInstBase(OpClass __opClass)
181        : _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
182          _numFPDestRegs(0), _numIntDestRegs(0)
183    {
184    }
185
186  public:
187
188    /// @name Register information.
189    /// The sum of numFPDestRegs() and numIntDestRegs() equals
190    /// numDestRegs().  The former two functions are used to track
191    /// physical register usage for machines with separate int & FP
192    /// reg files.
193    //@{
194    /// Number of source registers.
195    int8_t numSrcRegs()  const { return _numSrcRegs; }
196    /// Number of destination registers.
197    int8_t numDestRegs() const { return _numDestRegs; }
198    /// Number of floating-point destination regs.
199    int8_t numFPDestRegs()  const { return _numFPDestRegs; }
200    /// Number of integer destination regs.
201    int8_t numIntDestRegs() const { return _numIntDestRegs; }
202    //@}
203
204    /// @name Flag accessors.
205    /// These functions are used to access the values of the various
206    /// instruction property flags.  See StaticInstBase::Flags for descriptions
207    /// of the individual flags.
208    //@{
209
210    bool isNop() 	  const { return flags[IsNop]; }
211
212    bool isMemRef()    	  const { return flags[IsMemRef]; }
213    bool isLoad()	  const { return flags[IsLoad]; }
214    bool isStore()	  const { return flags[IsStore]; }
215    bool isStoreConditional()	  const { return flags[IsStoreConditional]; }
216    bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
217    bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
218    bool isCopy()         const { return flags[IsCopy];}
219
220    bool isInteger()	  const { return flags[IsInteger]; }
221    bool isFloating()	  const { return flags[IsFloating]; }
222
223    bool isControl()	  const { return flags[IsControl]; }
224    bool isCall()	  const { return flags[IsCall]; }
225    bool isReturn()	  const { return flags[IsReturn]; }
226    bool isDirectCtrl()	  const { return flags[IsDirectControl]; }
227    bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
228    bool isCondCtrl()	  const { return flags[IsCondControl]; }
229    bool isUncondCtrl()	  const { return flags[IsUncondControl]; }
230    bool isCondDelaySlot() const { return flags[IsCondDelaySlot]; }
231
232    bool isThreadSync()   const { return flags[IsThreadSync]; }
233    bool isSerializing()  const { return flags[IsSerializing] ||
234                                      flags[IsSerializeBefore] ||
235                                      flags[IsSerializeAfter]; }
236    bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
237    bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
238    bool isMemBarrier()   const { return flags[IsMemBarrier]; }
239    bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
240    bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
241    bool isQuiesce() const { return flags[IsQuiesce]; }
242    bool isIprAccess() const { return flags[IsIprAccess]; }
243    bool isUnverifiable() const { return flags[IsUnverifiable]; }
244    bool isMacroOp() const { return flags[IsMacroOp]; }
245    bool isMicroOp() const { return flags[IsMicroOp]; }
246    bool isDelayedCommit() const { return flags[IsDelayedCommit]; }
247    bool isLastMicroOp() const { return flags[IsLastMicroOp]; }
248    bool isFirstMicroOp() const { return flags[IsFirstMicroOp]; }
249    //This flag doesn't do anything yet
250    bool isMicroBranch() const { return flags[IsMicroBranch]; }
251    //@}
252
253    /// Operation class.  Used to select appropriate function unit in issue.
254    OpClass opClass()     const { return _opClass; }
255};
256
257
258// forward declaration
259class StaticInstPtr;
260
261/**
262 * Generic yet ISA-dependent static instruction class.
263 *
264 * This class builds on StaticInstBase, defining fields and interfaces
265 * that are generic across all ISAs but that differ in details
266 * according to the specific ISA being used.
267 */
268class StaticInst : public StaticInstBase
269{
270  public:
271
272    /// Binary machine instruction type.
273    typedef TheISA::MachInst MachInst;
274    /// Binary extended machine instruction type.
275    typedef TheISA::ExtMachInst ExtMachInst;
276    /// Logical register index type.
277    typedef TheISA::RegIndex RegIndex;
278
279    enum {
280        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,	//< Max source regs
281        MaxInstDestRegs = TheISA::MaxInstDestRegs,	//< Max dest regs
282    };
283
284
285    /// Return logical index (architectural reg num) of i'th destination reg.
286    /// Only the entries from 0 through numDestRegs()-1 are valid.
287    RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
288
289    /// Return logical index (architectural reg num) of i'th source reg.
290    /// Only the entries from 0 through numSrcRegs()-1 are valid.
291    RegIndex srcRegIdx(int i)  const { return _srcRegIdx[i]; }
292
293    /// Pointer to a statically allocated "null" instruction object.
294    /// Used to give eaCompInst() and memAccInst() something to return
295    /// when called on non-memory instructions.
296    static StaticInstPtr nullStaticInstPtr;
297
298    /**
299     * Memory references only: returns "fake" instruction representing
300     * the effective address part of the memory operation.  Used to
301     * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
302     * just the EA computation.
303     */
304    virtual const
305    StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
306
307    /**
308     * Memory references only: returns "fake" instruction representing
309     * the memory access part of the memory operation.  Used to
310     * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
311     * just the memory access (not the EA computation).
312     */
313    virtual const
314    StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
315
316    /// The binary machine instruction.
317    const ExtMachInst machInst;
318
319  protected:
320
321    /// See destRegIdx().
322    RegIndex _destRegIdx[MaxInstDestRegs];
323    /// See srcRegIdx().
324    RegIndex _srcRegIdx[MaxInstSrcRegs];
325
326    /**
327     * Base mnemonic (e.g., "add").  Used by generateDisassembly()
328     * methods.  Also useful to readily identify instructions from
329     * within the debugger when #cachedDisassembly has not been
330     * initialized.
331     */
332    const char *mnemonic;
333
334    /**
335     * String representation of disassembly (lazily evaluated via
336     * disassemble()).
337     */
338    mutable std::string *cachedDisassembly;
339
340    /**
341     * Internal function to generate disassembly string.
342     */
343    virtual std::string
344    generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
345
346    /// Constructor.
347    StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
348        : StaticInstBase(__opClass),
349          machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
350    {
351    }
352
353  public:
354
355    virtual ~StaticInst()
356    {
357        if (cachedDisassembly)
358            delete cachedDisassembly;
359    }
360
361/**
362 * The execute() signatures are auto-generated by scons based on the
363 * set of CPU models we are compiling in today.
364 */
365#include "cpu/static_inst_exec_sigs.hh"
366
367    /**
368     * Return the microop that goes with a particular micropc. This should
369     * only be defined/used in macroops which will contain microops
370     */
371    virtual StaticInstPtr fetchMicroOp(MicroPC micropc);
372
373    /**
374     * Return the target address for a PC-relative branch.
375     * Invalid if not a PC-relative branch (i.e. isDirectCtrl()
376     * should be true).
377     */
378    virtual Addr branchTarget(Addr branchPC) const
379    {
380        panic("StaticInst::branchTarget() called on instruction "
381              "that is not a PC-relative branch.");
382        M5_DUMMY_RETURN
383    }
384
385    /**
386     * Return the target address for an indirect branch (jump).  The
387     * register value is read from the supplied thread context, so
388     * the result is valid only if the thread context is about to
389     * execute the branch in question.  Invalid if not an indirect
390     * branch (i.e. isIndirectCtrl() should be true).
391     */
392    virtual Addr branchTarget(ThreadContext *tc) const
393    {
394        panic("StaticInst::branchTarget() called on instruction "
395              "that is not an indirect branch.");
396    }
397        M5_DUMMY_RETURN
398
399    /**
400     * Return true if the instruction is a control transfer, and if so,
401     * return the target address as well.
402     */
403    bool hasBranchTarget(Addr pc, ThreadContext *tc, Addr &tgt) const;
404
405    /**
406     * Return string representation of disassembled instruction.
407     * The default version of this function will call the internal
408     * virtual generateDisassembly() function to get the string,
409     * then cache it in #cachedDisassembly.  If the disassembly
410     * should not be cached, this function should be overridden directly.
411     */
412    virtual const std::string &disassemble(Addr pc,
413                                           const SymbolTable *symtab = 0) const
414    {
415        if (!cachedDisassembly)
416            cachedDisassembly =
417                new std::string(generateDisassembly(pc, symtab));
418
419        return *cachedDisassembly;
420    }
421
422    /// Decoded instruction cache type.
423    /// For now we're using a generic hash_map; this seems to work
424    /// pretty well.
425    typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
426
427    /// A cache of decoded instruction objects.
428    static DecodeCache decodeCache;
429
430    /**
431     * Dump some basic stats on the decode cache hash map.
432     * Only gets called if DECODE_CACHE_HASH_STATS is defined.
433     */
434    static void dumpDecodeCacheStats();
435
436    /// Decode a machine instruction.
437    /// @param mach_inst The binary instruction to decode.
438    /// @retval A pointer to the corresponding StaticInst object.
439    //This is defined as inline below.
440    static StaticInstPtr decode(ExtMachInst mach_inst);
441
442    /// Return name of machine instruction
443    std::string getName() { return mnemonic; }
444};
445
446typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
447
448/// Reference-counted pointer to a StaticInst object.
449/// This type should be used instead of "StaticInst *" so that
450/// StaticInst objects can be properly reference-counted.
451class StaticInstPtr : public RefCountingPtr<StaticInst>
452{
453  public:
454    /// Constructor.
455    StaticInstPtr()
456        : RefCountingPtr<StaticInst>()
457    {
458    }
459
460    /// Conversion from "StaticInst *".
461    StaticInstPtr(StaticInst *p)
462        : RefCountingPtr<StaticInst>(p)
463    {
464    }
465
466    /// Copy constructor.
467    StaticInstPtr(const StaticInstPtr &r)
468        : RefCountingPtr<StaticInst>(r)
469    {
470    }
471
472    /// Construct directly from machine instruction.
473    /// Calls StaticInst::decode().
474    explicit StaticInstPtr(TheISA::ExtMachInst mach_inst)
475        : RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst))
476    {
477    }
478
479    /// Convert to pointer to StaticInstBase class.
480    operator const StaticInstBasePtr()
481    {
482        return this->get();
483    }
484};
485
486inline StaticInstPtr
487StaticInst::decode(StaticInst::ExtMachInst mach_inst)
488{
489#ifdef DECODE_CACHE_HASH_STATS
490    // Simple stats on decode hash_map.  Turns out the default
491    // hash function is as good as anything I could come up with.
492    const int dump_every_n = 10000000;
493    static int decodes_til_dump = dump_every_n;
494
495    if (--decodes_til_dump == 0) {
496        dumpDecodeCacheStats();
497        decodes_til_dump = dump_every_n;
498    }
499#endif
500
501    DecodeCache::iterator iter = decodeCache.find(mach_inst);
502    if (iter != decodeCache.end()) {
503        return iter->second;
504    }
505
506    StaticInstPtr si = TheISA::decodeInst(mach_inst);
507    decodeCache[mach_inst] = si;
508    return si;
509}
510
511#endif // __CPU_STATIC_INST_HH__
512