static_inst.hh revision 2985:c010893f23ae
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#ifndef __CPU_STATIC_INST_HH__
32#define __CPU_STATIC_INST_HH__
33
34#include <bitset>
35#include <string>
36
37#include "arch/isa_traits.hh"
38#include "sim/faults.hh"
39#include "base/bitfield.hh"
40#include "base/hashmap.hh"
41#include "base/misc.hh"
42#include "base/refcnt.hh"
43#include "cpu/op_class.hh"
44#include "cpu/o3/dyn_inst.hh"
45#include "sim/faults.hh"
46#include "sim/host.hh"
47
48// forward declarations
49struct AlphaSimpleImpl;
50struct OzoneImpl;
51struct SimpleImpl;
52class ThreadContext;
53class DynInst;
54class Packet;
55
56template <class Impl>
57class OzoneDynInst;
58
59class CheckerCPU;
60class FastCPU;
61class AtomicSimpleCPU;
62class TimingSimpleCPU;
63class InorderCPU;
64class SymbolTable;
65
66namespace Trace {
67    class InstRecord;
68}
69
70/**
71 * Base, ISA-independent static instruction class.
72 *
73 * The main component of this class is the vector of flags and the
74 * associated methods for reading them.  Any object that can rely
75 * solely on these flags can process instructions without being
76 * recompiled for multiple ISAs.
77 */
78class StaticInstBase : public RefCounted
79{
80  protected:
81
82    /// Set of boolean static instruction properties.
83    ///
84    /// Notes:
85    /// - The IsInteger and IsFloating flags are based on the class of
86    /// registers accessed by the instruction.  Although most
87    /// instructions will have exactly one of these two flags set, it
88    /// is possible for an instruction to have neither (e.g., direct
89    /// unconditional branches, memory barriers) or both (e.g., an
90    /// FP/int conversion).
91    /// - If IsMemRef is set, then exactly one of IsLoad or IsStore
92    /// will be set.
93    /// - If IsControl is set, then exactly one of IsDirectControl or
94    /// IsIndirect Control will be set, and exactly one of
95    /// IsCondControl or IsUncondControl will be set.
96    /// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
97    /// implemented as flags since in the current model there's no
98    /// other way for instructions to inject behavior into the
99    /// pipeline outside of fetch.  Once we go to an exec-in-exec CPU
100    /// model we should be able to get rid of these flags and
101    /// implement this behavior via the execute() methods.
102    ///
103    enum Flags {
104        IsNop,		///< Is a no-op (no effect at all).
105
106        IsInteger,	///< References integer regs.
107        IsFloating,	///< References FP regs.
108
109        IsMemRef,	///< References memory (load, store, or prefetch).
110        IsLoad,		///< Reads from memory (load or prefetch).
111        IsStore,	///< Writes to memory.
112        IsStoreConditional,    ///< Store conditional instruction.
113        IsInstPrefetch,	///< Instruction-cache prefetch.
114        IsDataPrefetch,	///< Data-cache prefetch.
115        IsCopy,         ///< Fast Cache block copy
116
117        IsControl,		///< Control transfer instruction.
118        IsDirectControl,	///< PC relative control transfer.
119        IsIndirectControl,	///< Register indirect control transfer.
120        IsCondControl,		///< Conditional control transfer.
121        IsUncondControl,	///< Unconditional control transfer.
122        IsCall,			///< Subroutine call.
123        IsReturn,		///< Subroutine return.
124
125        IsCondDelaySlot,///< Conditional Delay-Slot Instruction
126
127        IsThreadSync,	///< Thread synchronization operation.
128
129        IsSerializing,	///< Serializes pipeline: won't execute until all
130                        /// older instructions have committed.
131        IsSerializeBefore,
132        IsSerializeAfter,
133        IsMemBarrier,	///< Is a memory barrier
134        IsWriteBarrier,	///< Is a write barrier
135
136        IsNonSpeculative, ///< Should not be executed speculatively
137        IsQuiesce,      ///< Is a quiesce instruction
138
139        IsIprAccess,    ///< Accesses IPRs
140        IsUnverifiable, ///< Can't be verified by a checker
141
142        NumFlags
143    };
144
145    /// Flag values for this instruction.
146    std::bitset<NumFlags> flags;
147
148    /// See opClass().
149    OpClass _opClass;
150
151    /// See numSrcRegs().
152    int8_t _numSrcRegs;
153
154    /// See numDestRegs().
155    int8_t _numDestRegs;
156
157    /// The following are used to track physical register usage
158    /// for machines with separate int & FP reg files.
159    //@{
160    int8_t _numFPDestRegs;
161    int8_t _numIntDestRegs;
162    //@}
163
164    /// Constructor.
165    /// It's important to initialize everything here to a sane
166    /// default, since the decoder generally only overrides
167    /// the fields that are meaningful for the particular
168    /// instruction.
169    StaticInstBase(OpClass __opClass)
170        : _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
171          _numFPDestRegs(0), _numIntDestRegs(0)
172    {
173    }
174
175  public:
176
177    /// @name Register information.
178    /// The sum of numFPDestRegs() and numIntDestRegs() equals
179    /// numDestRegs().  The former two functions are used to track
180    /// physical register usage for machines with separate int & FP
181    /// reg files.
182    //@{
183    /// Number of source registers.
184    int8_t numSrcRegs()  const { return _numSrcRegs; }
185    /// Number of destination registers.
186    int8_t numDestRegs() const { return _numDestRegs; }
187    /// Number of floating-point destination regs.
188    int8_t numFPDestRegs()  const { return _numFPDestRegs; }
189    /// Number of integer destination regs.
190    int8_t numIntDestRegs() const { return _numIntDestRegs; }
191    //@}
192
193    /// @name Flag accessors.
194    /// These functions are used to access the values of the various
195    /// instruction property flags.  See StaticInstBase::Flags for descriptions
196    /// of the individual flags.
197    //@{
198
199    bool isNop() 	  const { return flags[IsNop]; }
200
201    bool isMemRef()    	  const { return flags[IsMemRef]; }
202    bool isLoad()	  const { return flags[IsLoad]; }
203    bool isStore()	  const { return flags[IsStore]; }
204    bool isStoreConditional()	  const { return flags[IsStoreConditional]; }
205    bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
206    bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
207    bool isCopy()         const { return flags[IsCopy];}
208
209    bool isInteger()	  const { return flags[IsInteger]; }
210    bool isFloating()	  const { return flags[IsFloating]; }
211
212    bool isControl()	  const { return flags[IsControl]; }
213    bool isCall()	  const { return flags[IsCall]; }
214    bool isReturn()	  const { return flags[IsReturn]; }
215    bool isDirectCtrl()	  const { return flags[IsDirectControl]; }
216    bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
217    bool isCondCtrl()	  const { return flags[IsCondControl]; }
218    bool isUncondCtrl()	  const { return flags[IsUncondControl]; }
219    bool isCondDelaySlot() const { return flags[IsCondDelaySlot]; }
220
221    bool isThreadSync()   const { return flags[IsThreadSync]; }
222    bool isSerializing()  const { return flags[IsSerializing] ||
223                                      flags[IsSerializeBefore] ||
224                                      flags[IsSerializeAfter]; }
225    bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
226    bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
227    bool isMemBarrier()   const { return flags[IsMemBarrier]; }
228    bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
229    bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
230    bool isQuiesce() const { return flags[IsQuiesce]; }
231    bool isIprAccess() const { return flags[IsIprAccess]; }
232    bool isUnverifiable() const { return flags[IsUnverifiable]; }
233    //@}
234
235    /// Operation class.  Used to select appropriate function unit in issue.
236    OpClass opClass()     const { return _opClass; }
237};
238
239
240// forward declaration
241class StaticInstPtr;
242
243/**
244 * Generic yet ISA-dependent static instruction class.
245 *
246 * This class builds on StaticInstBase, defining fields and interfaces
247 * that are generic across all ISAs but that differ in details
248 * according to the specific ISA being used.
249 */
250class StaticInst : public StaticInstBase
251{
252  public:
253
254    /// Binary machine instruction type.
255    typedef TheISA::MachInst MachInst;
256    /// Binary extended machine instruction type.
257    typedef TheISA::ExtMachInst ExtMachInst;
258    /// Logical register index type.
259    typedef TheISA::RegIndex RegIndex;
260
261    enum {
262        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,	//< Max source regs
263        MaxInstDestRegs = TheISA::MaxInstDestRegs,	//< Max dest regs
264    };
265
266
267    /// Return logical index (architectural reg num) of i'th destination reg.
268    /// Only the entries from 0 through numDestRegs()-1 are valid.
269    RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
270
271    /// Return logical index (architectural reg num) of i'th source reg.
272    /// Only the entries from 0 through numSrcRegs()-1 are valid.
273    RegIndex srcRegIdx(int i)  const { return _srcRegIdx[i]; }
274
275    /// Pointer to a statically allocated "null" instruction object.
276    /// Used to give eaCompInst() and memAccInst() something to return
277    /// when called on non-memory instructions.
278    static StaticInstPtr nullStaticInstPtr;
279
280    /**
281     * Memory references only: returns "fake" instruction representing
282     * the effective address part of the memory operation.  Used to
283     * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
284     * just the EA computation.
285     */
286    virtual const
287    StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
288
289    /**
290     * Memory references only: returns "fake" instruction representing
291     * the memory access part of the memory operation.  Used to
292     * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
293     * just the memory access (not the EA computation).
294     */
295    virtual const
296    StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
297
298    /// The binary machine instruction.
299    const ExtMachInst machInst;
300
301  protected:
302
303    /// See destRegIdx().
304    RegIndex _destRegIdx[MaxInstDestRegs];
305    /// See srcRegIdx().
306    RegIndex _srcRegIdx[MaxInstSrcRegs];
307
308    /**
309     * Base mnemonic (e.g., "add").  Used by generateDisassembly()
310     * methods.  Also useful to readily identify instructions from
311     * within the debugger when #cachedDisassembly has not been
312     * initialized.
313     */
314    const char *mnemonic;
315
316    /**
317     * String representation of disassembly (lazily evaluated via
318     * disassemble()).
319     */
320    mutable std::string *cachedDisassembly;
321
322    /**
323     * Internal function to generate disassembly string.
324     */
325    virtual std::string
326    generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
327
328    /// Constructor.
329    StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
330        : StaticInstBase(__opClass),
331          machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
332    {
333    }
334
335  public:
336
337    virtual ~StaticInst()
338    {
339        if (cachedDisassembly)
340            delete cachedDisassembly;
341    }
342
343/**
344 * The execute() signatures are auto-generated by scons based on the
345 * set of CPU models we are compiling in today.
346 */
347#include "cpu/static_inst_exec_sigs.hh"
348
349    /**
350     * Return the target address for a PC-relative branch.
351     * Invalid if not a PC-relative branch (i.e. isDirectCtrl()
352     * should be true).
353     */
354    virtual Addr branchTarget(Addr branchPC) const
355    {
356        panic("StaticInst::branchTarget() called on instruction "
357              "that is not a PC-relative branch.");
358    }
359
360    /**
361     * Return the target address for an indirect branch (jump).  The
362     * register value is read from the supplied thread context, so
363     * the result is valid only if the thread context is about to
364     * execute the branch in question.  Invalid if not an indirect
365     * branch (i.e. isIndirectCtrl() should be true).
366     */
367    virtual Addr branchTarget(ThreadContext *tc) const
368    {
369        panic("StaticInst::branchTarget() called on instruction "
370              "that is not an indirect branch.");
371    }
372
373    /**
374     * Return true if the instruction is a control transfer, and if so,
375     * return the target address as well.
376     */
377    bool hasBranchTarget(Addr pc, ThreadContext *tc, Addr &tgt) const;
378
379    /**
380     * Return string representation of disassembled instruction.
381     * The default version of this function will call the internal
382     * virtual generateDisassembly() function to get the string,
383     * then cache it in #cachedDisassembly.  If the disassembly
384     * should not be cached, this function should be overridden directly.
385     */
386    virtual const std::string &disassemble(Addr pc,
387                                           const SymbolTable *symtab = 0) const
388    {
389        if (!cachedDisassembly)
390            cachedDisassembly =
391                new std::string(generateDisassembly(pc, symtab));
392
393        return *cachedDisassembly;
394    }
395
396    /// Decoded instruction cache type.
397    /// For now we're using a generic hash_map; this seems to work
398    /// pretty well.
399    typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
400
401    /// A cache of decoded instruction objects.
402    static DecodeCache decodeCache;
403
404    /**
405     * Dump some basic stats on the decode cache hash map.
406     * Only gets called if DECODE_CACHE_HASH_STATS is defined.
407     */
408    static void dumpDecodeCacheStats();
409
410    /// Decode a machine instruction.
411    /// @param mach_inst The binary instruction to decode.
412    /// @retval A pointer to the corresponding StaticInst object.
413    //This is defined as inline below.
414    static StaticInstPtr decode(ExtMachInst mach_inst);
415
416    /// Return opcode of machine instruction
417    uint32_t getOpcode() { return bits(machInst, 31, 26);}
418
419    /// Return name of machine instruction
420    std::string getName() { return mnemonic; }
421};
422
423typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
424
425/// Reference-counted pointer to a StaticInst object.
426/// This type should be used instead of "StaticInst *" so that
427/// StaticInst objects can be properly reference-counted.
428class StaticInstPtr : public RefCountingPtr<StaticInst>
429{
430  public:
431    /// Constructor.
432    StaticInstPtr()
433        : RefCountingPtr<StaticInst>()
434    {
435    }
436
437    /// Conversion from "StaticInst *".
438    StaticInstPtr(StaticInst *p)
439        : RefCountingPtr<StaticInst>(p)
440    {
441    }
442
443    /// Copy constructor.
444    StaticInstPtr(const StaticInstPtr &r)
445        : RefCountingPtr<StaticInst>(r)
446    {
447    }
448
449    /// Construct directly from machine instruction.
450    /// Calls StaticInst::decode().
451    StaticInstPtr(TheISA::ExtMachInst mach_inst)
452        : RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst))
453    {
454    }
455
456    /// Convert to pointer to StaticInstBase class.
457    operator const StaticInstBasePtr()
458    {
459        return this->get();
460    }
461};
462
463inline StaticInstPtr
464StaticInst::decode(StaticInst::ExtMachInst mach_inst)
465{
466#ifdef DECODE_CACHE_HASH_STATS
467    // Simple stats on decode hash_map.  Turns out the default
468    // hash function is as good as anything I could come up with.
469    const int dump_every_n = 10000000;
470    static int decodes_til_dump = dump_every_n;
471
472    if (--decodes_til_dump == 0) {
473        dumpDecodeCacheStats();
474        decodes_til_dump = dump_every_n;
475    }
476#endif
477
478    DecodeCache::iterator iter = decodeCache.find(mach_inst);
479    if (iter != decodeCache.end()) {
480        return iter->second;
481    }
482
483    StaticInstPtr si = TheISA::decodeInst(mach_inst);
484    decodeCache[mach_inst] = si;
485    return si;
486}
487
488#endif // __CPU_STATIC_INST_HH__
489